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Abstract. Synthesis of program fragments from speci-
fications can make programs easier to write and easier
to reason about. To integrate synthesis into program-
ming languages, synthesis algorithms should behave in a
predictable way—they should succeed for a well-defined
class of specifications. To guarantee correctness and ap-
plicability to software (and not just hardware), these
algorithms should also support unbounded data types,
such as numbers and data structures.

To obtain appropriate synthesis algorithms, we pro-
pose to generalize decision procedures into predictable
and complete synthesis procedures. Such procedures are
guaranteed to find code that satisfies the specification if
such code exists. Moreover, we identify conditions under
which synthesis will statically decide whether the solu-
tion is guaranteed to exist, and whether it is unique. We
demonstrate our approach by starting from a quantifier
elimination decision procedure for Boolean Algebra of
set with Presburger Arithmetic (BAPA) and transform-
ing it into a synthesis procedure. Our procedure also
works in the presence of parametric coefficients. We es-
tablish results on the size and the efficiency of the syn-
thesized code. We show that such procedures are useful
as a language extension with implicit value definitions,
and we show how to extend a compiler to support such
definitions. Our constructs provide the benefits of syn-
thesis to programmers, without requiring them to learn
new concepts, give up a deterministic execution model,
or provide code skeletons.
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1 Introduction

Synthesis of software from specifications [MW71,MW80]
promises to make programmers more productive. De-
spite substantial recent progress [SLTB+06,SLJB08,
VYY09,SGF10], synthesis is limited to small pieces of
code. We expect that this will continue to be the case
for some time in the future, for two reasons: 1) synthe-
sis is algorithmically a difficult problem, and 2) synthesis
requires detailed specifications, which for large programs
become difficult to write.

We therefore expect that practical applications of
synthesis lie in its integration into the compilers of
general-purpose programming languages. To make this
integration feasible, we aim to identify well-defined
classes of expressions and synthesis algorithms guaran-
teed to succeed for these classes of expressions, just like
a compilation attempt succeeds for any well-formed pro-
gram. Our starting point for such synthesis algorithms
are decision procedures.

A decision procedure for satisfiability of a class of for-
mulas accepts a formula in its class and checks whether
the formula has a solution. On top of this basic function-
ality, many decision procedure implementations provide
the additional feature of generating a satisfying assign-
ment (a model) whenever the given formula is satisfiable.
Such a model-generation functionality has many uses,
including better error reporting in verification [Mos09]
and test-case generation [AGT08]. An important insight
is that model generation facility of decision procedure
could also be used as an advanced computation mech-
anism. Given a set of values for some of the variables,
a constraint solver can at run-time find the values of
the remaining variables such that a given constraint
holds. Two recent examples of integrating such a mecha-
nism into a programming language are the quotations of
the F# language [SGC07] and a Scala library [KKS11],
both interfacing to the Z3 satisfiability modulo theories
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(SMT) solver [dB08]. Such mechanisms promise to bring
the algorithmic improvements of SMT solvers to declar-
ative paradigms such as Constraint Logic Programming
[JM94]. However, they involve a possibly unpredictable
search at run-time, and require the deployment of the en-
tire decision procedure as a component of the run-time
system.

Our goal is to provide the benefits of the declarative
approach in a more controlled way: we aim to run a de-
cision procedure at compile time and use it to generate
code. The generated code then computes the desired val-
ues of variables at run-time. Such code is thus specific to
the desired constraint, and can be more efficient. It does
not require the decision procedure to be present at run-
time, and gives the developer static feedback by checking
the conditions under which the generated solution will
exist and be unique. We use the term synthesis for our
approach because it starts from an implicit specification,
and involves compile-time precomputation. Because it
computes a function that satisfies a given input/output
relation, we call our synthesis functional, in contrast to
reactive synthesis approaches [PR89] (another term for
the general direction of our approach is AE-paradigm or
Skolem paradigm). Finally, we call our approach com-
plete because it is guaranteed to work for all specification
expressions from a well-specified class.

We demonstrate our approach by describing synthe-
sis algorithms for the domains of linear arithmetic and
collections of objects. We have implemented these syn-
thesis algorithms and deployed them as a compiler ex-
tension of the Scala programming language [OSV08]. We
have found that using such constraints we were able to
express a number of program fragments in a more natu-
ral way, stating the invariants that the program should
satisfy as opposed to the computation details of estab-
lishing these invariants.

In the area of integer arithmetic, we obtain a lan-
guage extension that can implicitly define integer vari-
ables to satisfy given constraints. The applications of
integer arithmetic synthesis include conversions of quan-
tities expressed in terms of multiple units of measure, co-
ordinate transformations, as well as a substantially more
general notion of pattern matching on integers, going
well beyond matching on constants or (n + k)-patterns
of the Haskell programming language [Jgoa10].

In the area of data structures, we describe a synthe-
sis procedure that can compute sets of elements subject
to constraints expressed in terms of basic set operations
(union, intersection, set difference, subset, equality) as
well as linear constraints on sizes of sets. We have found
these constraints to be useful for manipulating sets of ob-
jects in high-level descriptions of algorithms, from sim-
ple operations such as choosing an element from a set
or a fresh element, or splitting sets subject to size con-
straints. Such constructs arise in pseudo code notations,
and they provide a useful addition to the transformations
previously developed for the SETL programming lan-

guage [Dew79,Sha82]. Regarding data structures, this
paper focuses on sets, but the approach applies to other
constraints for which decision procedures are available
[KPSW10], including multisets [PK08a,PK08b,YPK10]
and algebraic data types [SDK10].

Contributions. This paper makes the following contri-
butions.

1. We describe an approach for deploying algorithms
for synthesis within programming languages. Our
approach introduces a higher-order library function
choose of type (α⇒ bool)⇒ α, which takes as an ar-
gument a specification, given as an expression λx.F
of type α ⇒ bool. Our compiler extension rewrites
calls to choose into efficient code that finds a value
x of type α such that F is true. The generated code
computes x as a function of the free variables (pa-
rameters) of the expression F .
This deployment is easy to understand by program-
mers because it has the same semantics as invoking
a constraint solver at run-time. It does not impact
the semantics or efficiency of existing programming
language constructs, because the execution outside
choose remains unchanged.

2. Building on the choose primitive, we show how to
support pattern matching expressions that are sub-
stantially more expressive than the existing ones, us-
ing the full expressive power of the term language of
a decidable theory.

3. We describe a methodology to convert decision pro-
cedures for a class of formulas into synthesis pro-
cedures that can rewrite the corresponding class of
expressions into efficient executable code. Most ex-
isting procedures based on quantifier elimination are
directly amenable to our approach.

4. As a first illustrative example, we describe synthe-
sis procedures for propositional logic and rational
arithmetic. We show that, compared to invocations of
constraint solvers at run-time, the synthesized code
can have better worst-case complexity in the number
of variables. This is because our synthesis procedure
converts (at compile time) a given constraint into a
solved form that can be executed, avoiding most of
the run-time search. The synthesized code is guaran-
teed to be correct by construction.

5. As our core implemented example, we present syn-
thesis for linear arithmetic over unbounded integers.
Given an integer linear arithmetic formula and a sep-
aration of variables into output variables and param-
eters, our procedure constructs 1) a program that
computes the values of outputs given the values of
inputs, and 2) the weakest among the conditions on
inputs that guarantees the existence of outputs (the
domain of the relation between inputs and outputs).

6. We show that the synthesis for integer arithmetic
can be extended to the non-linear case where coef-
ficients multiplying output variables are expressions
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over parameters that are known only at run-time. We
have implemented this extension and have found that
it increases the range of supported specifications. It
shows that we can have complete functional synthe-
sis at compile-time for specifications for which the
satisfiability over the space of all parameters is un-
decidable, as long as the problem becomes decidable
when the parameters are fixed at run-time.

7. We also present an implemented synthesis proce-
dure for Boolean Algebra with Presburger Arith-
metic (BAPA), a logic of constraints on sets and their
sizes. This algorithm illustrates that complete func-
tional synthesis applies not only to numerical com-
putations, but also to the very important domain of
data structure manipulations. This result also illus-
trates the idea of the composition of synthesis pro-
cedures. While the implementations of BAPA deci-
sion procedures work by reduction to integer arith-
metic decision procedures [KNR06,KR07], we here
show how to build a synthesis procedure for BAPA
on top of our synthesis procedure for integer linear
arithmetic.

8. We describe our experience in using synthesis as
a plugin for the Scala compiler. Our implementa-
tion is publicly available at http://lara.epfl.ch/

dokuwiki/comfusy and can be used as a starting
point for the development of further synthesis ap-
proaches.

2 Example

We first illustrate the use of a synthesis procedure for
integer linear arithmetic. Consider the following example
to break down a given number of seconds (stored in the
variable totsec) into hours, minutes, and leftover seconds.

val (hrs , mns, scs) = choose((h: Int , m: Int , s: Int ) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤ m && m ≤ 60 &&

0 ≤ s && s ≤ 60)

Our synthesizer succeeds, because the constraint is in
integer linear arithmetic. However, the synthesizer emits
the following warning:

Synthesis predicate has multiple solutions

for variable assignment: totsec = 0

Solution 1: h = 0, m = 0, s = 0

Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds on m and
s are not strict. After correcting the error in the speci-
fication, replacing m ≤ 60 with m < 60 and s ≤ 60 with
s < 60, the synthesizer emits no warnings and generates
code corresponding to the following:

val (hrs , mns, scs) = {
val loc1 = totsec div 3600

val num2 = totsec + ((−3600) ∗ loc1)

val loc2 = min(num2 div 60, 59)

val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)

(loc1, loc2, loc3)

}

The absence of warnings guarantees that the solution al-
ways exists and that it is unique. By writing the code in
this style, the developer directly ensures that the con-
dition h ∗ 3600 + m ∗ 60 + s == totsec will be satisfied,
making program understanding easier. Note that, if the
developer imposes the constraint

val (hrs , mns, scs) = choose((h: Int , m: Int , s: Int ) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤ h < 24 &&

0 ≤ m && m < 60 &&

0 ≤ s && s < 60)

our system emits the following warning:

Synthesis predicate is not satisfiable

for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions
when the totsec parameter is too large.

In addition to the choose function, programmers can
use synthesis for more flexible pattern matching on inte-
gers. In existing deterministic programming languages,
matching on integers either tests on constant types, or,
in the case of Haskell’s (n + k) patterns, on some very
special forms of patterns. Our approach supports a much
richer set of patterns, as illustrated by the following fast
exponentiation code that does case analysis on whether
the argument is even or odd:

def pow(base : Int , p : Int ) = {
def fp(m : Int , b : Int , i : Int ) = i match {

case 0 ⇒ m

case 2∗j ⇒ fp(m, b∗b, j)

case 2∗j+1 ⇒ fp(m∗b, b∗b, j)

}
fp(1, base, p)

}

The correctness of the function follows from the obser-
vation that fp(m, b, i) = mbi, which we can prove by
induction. Indeed, if we consider the case 2 ∗ j + 1, we
observe:

fp(m, b, i) = fp(m, b, 2j + 1) = fp(mb, b2, j)

(by induct. hypothesis) =mb(b2)j = mb2j+1 = mbi

Note how the pattern matching on integer arithmetic ex-
pressions exposes the equations that make the inductive
proof clearer. The pattern matching compiler generates
the code that decomposes i into the appropriate new
exponent j. Moreover, it checks that the pattern match-
ing is exhaustive. The construct supports arbitrary ex-
pressions of linear integer arithmetic, and can prove, for
example, that the set of patterns 2 ∗ k, 3 ∗ k, 6 ∗ k− 1,
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6 ∗ k + 1 is exhaustive. The system also accepts implicit
definitions, such as

val 42 ∗ x + 5 ∗ y = z

The system ensures that the above definition matches
every integer z, and emits the code to compute x and y
from z.

Our approach and implementation also work for pa-
rameterized integer arithmetic formulas, which become
linear only once the parameters are known. For exam-
ple, our synthesizer accepts the following specification
that decomposes an offset of a linear representation of a
three-dimensional array with statically unknown dimen-
sions into indices for each coordinate:

val (x1, y1, z1) = choose((x: Int , y: Int , z: Int ) ⇒
offset == x + dimX ∗ y + dimX ∗ dimY ∗ z &&

0 ≤ x && x < dimX &&

0 ≤ y && y < dimY &&

0 ≤ z && z < dimZ)

Here dimX, dimY, dimZ are variables whose value is
unknown until runtime. Note that the satisfiability of
constraints that contain multiplications of variables is
in general undecidable. In such parameterized case our
synthesizer is complete in the sense that it generates
code that 1) always terminates, 2) detects at run-time
whether a solution exists for current parameter values,
and 3) computes one solution whenever a solution exists.

In addition to integer arithmetic, other theories are
amenable to synthesis and provide similar benefits. Con-
sider the problem of splitting a set collection in a bal-
anced way. The following code attempts to do that:

val (a1,a2) = choose((a1:Set[O],a2:Set[ O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size == a2.size)

It turns out that for the above code our synthesizer emits
a warning indicating that there are cases where the con-
straint has no solutions. Indeed, there are no solutions
when the set s is of odd size. If we weaken the specifica-
tion to

val (a1,a2) = choose((a1:Set[O],a2:Set[ O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size − a2.size ≤ 1 &&

a2.size − a1.size ≤ 1)

then our synthesizer can prove that the code has a solu-
tion for all possible input sets s. The synthesizer emits
code that, for each input, computes one such solution.
The nature of constraints on sets is that if there is one
solution, then there are many solutions. Our synthesizer
resolves these choices at compile time, which means that
the generated code is deterministic.

3 From Decision to Synthesis Procedures

We next define precisely the notion of a synthesis proce-
dure and describe a methodology for deriving synthesis
procedures from decision procedures.

Preliminaries. Each of our algorithms works with a set
of formulas, Formulas, defined in terms of terms, Terms.
Formulas denote truth values, whereas terms and vari-
ables denote values from the domain (e.g. integers).
We denote the set of variables by Vars. FV(q) denotes
the set of free variables in a formula or a term q. If
x = (x1, . . . , xn) then xs denotes the set of variables
{x1, . . . , xn}. If q is a term or formula, x = (x1, . . . , xn)
a vector of variables and t = (t1, . . . , tn) a vector of
terms, then q[x := t] denotes the result of substituting
in q the free variables x1, . . . , xn with terms t1, . . . , tn, re-
spectively. Given a substitution σ : FV(F )→ Terms, we
write Fσ for the result of substituting each x ∈ FV(F )
with σ(x). Formulas are interpreted over elements of a
first-order structure D with a countable domain D. We
assume that for each e ∈ D there exists a ground term
ce whose interpretation in D is e; let C = {ce | e ∈ D}.
We further assume that if F ∈ Formulas then also
F [x := ce] ∈ Formulas (the class of formulas is closed
under partial grounding with constants).

The choose programming language construct. We inte-
grate into a programming language a construct of the
form

r = choose(x ⇒ F ) (1)

Here F is a formula (typically represented as a boolean-
valued programming language expressions) and x ⇒ F
denotes an anonymous function from x to the value of F
(that is, λx.F ). Two kinds of variables can appear within
F : output variables x and parameters a. The parameters
a are program variables that are in scope at the point
where choose occurs; their values will be known when the
statement is executed. Output variables x denote values
that need to be computed so that F becomes true, and
they will be assigned to r as a result of the invocation
of choose.

We can translate the above choose construct into the
following sequence of commands in a guarded command
language [Dij76]:

assert(∃x.F );

havoc (r);

assume (F [x := r]);

The simplicity of the above translation indicates that it
is natural to represent choose within existing verification
systems (e.g. [FLL+02,ZKR08]) The use of choose can
help verification because the desired property F is ex-
plicitly assumed and can aid in proving the subsequent
program assertions.
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Model-generating decision procedures. As a starting
point for our synthesis algorithms for choose invoca-
tions we consider a model-generating decision procedure.
Given F ∈ Formulas we expect this decision procedure
to produce either

a) a substitution σ : FV(F )→ C such that Fσ is a true,
or

b) a special value unsat indicating that the formula is
unsatisfiable.

We assume that the decision procedure is determinis-
tic and behaves as a function. We write Z(F )=σ or
Z(F )=unsat to denote the result of applying the deci-
sion procedure to F .

Baseline: invoking a decision procedure at run-time.
Just like an interpreter can be considered as a baseline
implementation for a compiler, deploying a decision pro-
cedure at run-time can be considered as a baseline for
our approach. In this scenario, we replace the statement
(1) with the code

F = makeFormulaTree(makeVars(x), makeGroundTerms(a));

r = (Z(F ) match {
case σ ⇒ (σ(x1), . . . , σ(xn))

case unsat ⇒ throw new Exception(”No solution exists”)

})

Such dynamic invocation approach is flexible and use-
ful. However, there are important performance and pre-
dictability advantages of an alternative compilation ap-
proach.

Synthesis based on decision procedures. Our goal is
therefore to explore a compilation approach where a
modified decision procedure is invoked at compile time,
converting the formula into a solved form.

Definition 1 (Synthesis Procedure). We denote an
invocation of a synthesis procedure by Jx, F K = (pre,Ψ).
A synthesis procedure takes as input a formula F and a
vector of variables x and outputs a pair of

1. a precondition formula pre with FV(pre) ⊆ FV(F )\xs
2. a tuple of terms Ψ with FV(Ψ) ⊆ FV(F ) \ xs

such that the following two implications are valid:

(∃x.F ) → pre
pre → F [x := Ψ]

Observation 2 Because another implication always
holds:

F [x := Ψ]→ ∃x.F

the above definition implies that the three formulas are
all equivalent: (∃x.F ), pre, F [x := Ψ]. Consequently, if
we can define a function witn where for witn(x, F ) = Ψ
we have FV(Ψ) ⊆ FV(F ) \ xs and ∃x.F implies F [x :=
Ψ ], then we can define a synthesis procedure by

Jx, F K = (F [x := witn(x, F )],witn(x, F ))

The reason we use the translation that computes pre in
addition to witn(x, F ) is that the synthesizer performs
simplifications when generating pre, which can produce
a formula faster to evaluate than F [x := witn(x, F )].

The synthesizer emits the terms Ψ in compiler inter-
mediate representation; the standard compiler then pro-
cesses them along with the rest of the code. We identify
the syntax tree of Ψ with its meaning as a function from
the parameters a to the output variables x. The overall
compile-time processing of the choose statement (1) in-
volves the following:

1. emit a non-feasibility warning if the formula ¬pre is
satisfiable, reporting the counterexample for which
the synthesis problem has no solutions;

2. emit a non-uniqueness warning if the formula

F ∧ F [x := y] ∧ x 6= y

is satisfiable, reporting the values of all free variables
as a counterexample showing that there are at least
two solutions;

3. as the compiled code, emit the code that behaves as
assert(pre); r = Ψ

The existence of a model-generating decision proce-
dure implies the existence of a ‘trivial’ synthesis proce-
dure, which satisfies Definition 1 but simply invokes the
decision procedure at run-time. (In the realm of conven-
tional programming languages, this would be analogous
to ‘compiling’ the code by shipping its source code bun-
dled with an interpreter.) The usefulness of the notion of
synthesis procedure therefore comes from the fact that
we can often create compiled code that avoids this trivial
solution. Among the potential advantages of the compi-
lation approach are:

– improved run-time efficiency, because part of the rea-
soning is done at compile-time;

– improved error reporting: the existence and unique-
ness of solutions can be checked at compile time;

– simpler deployment: the emitted code can be com-
piled to any of the targets of the compiler, and re-
quires no additional run-time support.

This paper therefore pursues the compilation approach.
As for the processing of more traditional programming
language constructs, we do believe that there is space
in the future for mixed approaches, such as ‘just-in-time
synthesis’ and ‘profiling-guided synthesis’.

Efficiency of synthesis. We introduce the following mea-
sures to quantify the behavior of synthesis procedures as
a function of the specification expression F :

– time to synthesize the code, as a function of F ;
– size of the synthesized code, as a function of F ;
– running time of the synthesized code as a function

of F and a measure of the run-time values for the
parameters a.
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When using F as the argument of the above measures,
we often consider not only the size of F as a syntactic
object, but also the dimension of the variable vector x
and the parameter vector a of F .

From quantifier elimination to synthesis. The precondi-
tion pre can be viewed as a result of applying quantifier
elimination (see e.g. [Hod93, Page 67], [Nip08]) to re-
move x from F , with the following differences.

1. Synthesis procedures strengthen quantifier elimina-
tion procedures by identifying not only pre but also
emitting the code Ψ that efficiently computes a wit-
ness for x.

2. Quantifier elimination is typically applied to arbi-
trary quantified formulas of first-order logic and aims
to successively eliminate all variables. To enable re-
cursive application of variable elimination, pre must
be in the same language of formulas as F . This con-
dition is not required in the final step of synthesis
procedure, because no further elimination is applied
to the final precondition. Therefore, if the final pre-
condition becomes a run-time check, it can contain
arbitrary executable code. If the final precondition
becomes a compile-time satisfiability check for the
totality of the relation, then it suffices for it to be in
any decidable logic.

3. Worst-case bounds on quantifier elimination algo-
rithms measure the size of the generated formula and
the time needed to generate it, but not the size of
Ψ or the time to evaluate Ψ. For some domains, it
can be computationally more difficult to compute (or
even ’print’) the solution than to simply check the
existence of a solution.

Despite the differences, we have found that we can nat-
urally extend existing quantifier elimination procedures
with explicit computation of witnesses that constitute
the program Ψ.

4 Selected Generic Techniques

We next describe some basic observations and techniques
for synthesis that are independent of a particular theory.

4.1 Synthesis for Multiple Variables

Suppose that we have a function witn(x, F ) that cor-
responds to constructive quantifier elimination step for
one variable and produces a term Ψ such that F [x := Ψ ]
holds iff ∃x.F holds. We can then lift witn(x, F ) to syn-
thesis for any number of variables, using the (non-tail
recursive) translation scheme in Figure 1. This transla-
tion includes the base case in which there are no vari-
ables to eliminate, so F becomes the precondition, and
the recursive case that applies the witn function.

J , K :
⋃
n

(
Varsn × Formulas→ Formulas× Termsn

)
J(), F K = (F, ())

J(x1, . . . , xn), F K =

let Ψn = witn(xn, F )

F ′ = simplify(F [xn := Ψn])

(pre, (Ψ1, . . . , Ψn−1)) = J(x1, . . . , xn−1), F ′K
Ψ ′n = Ψn[x1 := Ψ1, . . . , xn−1 := Ψn−1]

in

(pre, (Ψ1, . . . , Ψn−1, Ψ
′
n))

Fig. 1. Successive Elimination of Variables for Synthesis

In implementation we can use local variable defini-
tions instead of substitutions. Given (1), we generate as
Ψ a Scala code block

val x1 =Ψ1

. . .
val xn−1 =Ψn−1
val xn =Ψn
x


where the variables in Ψn directly refer to variables com-
puted in Ψ1, . . . , Ψn−1 and where FV(Ψi) ⊆ FV(F ) \
{xi, . . . , xn}. A consequence of this recursive translation
pattern is that the synthesized code computes values in
reverse order compared to the steps of a quantifier elim-
ination procedure. This observation can be helpful in
understanding the output of our synthesis procedures.

4.2 One-Point Rule Synthesis

If x /∈ FV(t) we can define

witn(x, x = t ∧ F ) = t

If the formula does not have the form x = t ∧ F , we
can often rewrite it into this form using theory-specific
transformations.

4.3 Output-Independent Preconditions

Whenever FV(F1) ∩ xs = ∅, we can apply the following
synthesis rule:

Jx, F1 ∧ F2K = let (pre,Ψ) = Jx, F2K in

(pre ∧ F1,Ψ)

which moves a ‘constant’ conjunct of the specification
into the precondition. We assume that this rule is applied
whenever possible and do not explicitly mention it in the
sequel.
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4.4 Propositional Connectives in First-Order Theories

Consider a quantifier-free formula in some first-order
theory. Consider the tasks of checking formula satisfiabil-
ity or applying elimination of a variable. For both tasks,
we can first rewrite the formula into disjunctive normal
form and then process each disjunct independently. This
allows us to focus on handling conjunctions of literals as
opposed to arbitrary propositional combination.

We next show that we can similarly use disjunctive
normal form in synthesis. Consider a formula D1 ∨ . . .∨
Dn in disjunctive normal form. We can apply synthesis
to each Di yielding a precondition prei and the solved
form Ψi. We can then synthesize code with conditionals
that select the first Ψi that applies:

Jx, D1 ∨ . . . ∨DnK =
let (pre1,Ψ1) = Jx, D1K

. . .
(pren,Ψn) = Jx, DnK

in
n∨
i=1

prei,



if (pre1) Ψ1

else if (pre2) Ψ2

. . .
else if (pren) Ψn

else
throw new Exception(“No solution”)




Although the disjunctive normal form can be ex-

ponentially larger than the original formula, the trans-
formation to disjunctive normal form is used in prac-
tice [Pug92] and has advantages in terms of the quality
of synthesized code generated for individual disjuncts.
What further justifies this approach is that we expect a
small number of disjuncts in our specifications, and may
need different synthesized values for variables in different
disjuncts.

Other methods can have better worst-case quanti-
fier elimination complexity [Coo72,FR79,Wei97,Nip08]
than disjunctive normal form approaches. We discuss
these alternative approaches in the sequel as well, but
it is the above disjunctive normal form approach that
we currently use in our implementation.

4.5 Synthesis for Propositional Logic

Our paper focuses on synthesis for formulas over un-
bounded domains. Nonetheless, to illustrate the poten-
tial asymptotic gain of precomputation in synthesis, we
illustrate synthesis for the case when F is a proposi-
tional formula (see e.g. [KS00] for a more sophisticated
approach to this problem). Suppose that x are output
variables and a are the remaining propositional variables
(parameters) in F .

To synthesize a function from a to x, build an ordered
binary decision diagram (OBDD) [Bry86] for F , treat-
ing both a and x as variables for OBDD construction,

and using a variable ordering that puts all parameters
a before all output variables x. Then split the OBDD
graph at the point where all the decisions on a have
been made. That is, consider the set of nodes that ter-
minate on some paths on which all decisions on a have
been made and no decisions on x have been made. For
each of these OBDD nodes, we precompute whether this
node reaches the true sink node. As the result of synthe-
sis, we emit the code that consists of nested if-then-else
tests encoding the decisions on a, followed by the code
that, for each non-false node those values of x that trace
one path to the true sink node.

Consider the code generated using the method above.
Note that, although the size of the code is bounded by
a single exponential, the code executes in time close to
linear in the total number of variables a and x. This is
in contrast to NP-hardness of finding a satisfying assign-
ment for a propositional formula F , which would occur
in the baseline approach of invoking a SAT solver at
run-time. In summary, for propositional logic synthe-
sis (and, more generally, for NP-hard constraints over
bounded domains) we can precompute solutions and
generate code that computes the desired values in de-
terministic polynomial time in the size of inputs and
outputs.

In the next several sections, we describe synthesis
procedures for several useful decidable logics over infinite
domains (numbers and data structures) and discuss the
efficiency improvements due to synthesis.

5 Synthesis for Linear Rational Arithmetic

We next consider synthesis for quantifier-free formulas of
linear arithmetic over rationals. In this theory, variables
range over rational numbers, terms are linear expressions
c0 + c1x1 + . . .+ cnxn, and the relations in the language
are < and =. Synthesis for this theory can be used to
synthesize exact fractional arithmetic computations (or
floating-point computations if we are willing to ignore
the rounding errors). It also serves as an introduction to
the more complex problem of integer arithmetic synthe-
sis that we describe in the following sections.

Given a quantifier-free formula, we can efficiently
transform it to negation-normal form. Furthermore, we
observe that ¬(t1 < t2) is equivalent to (t2 < t1)∨ (t1 =
t2) and that ¬(t1 = t2) is equivalent to (t1 < t2) ∨ (t2 <
t1). Therefore, there is no need to consider negations in
the formula. We can also normalize the equalities to the
form t = 0 and the inequalities to the form 0 < t.

5.1 Solving Conjunctions of Literals

Given the observations in Section 4.4, we consider
conjunctions of literals. The method follows Fourier-
Motzkin elimination [Sch98]. Consider the elimination
of a variable x.
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Equalities. If x occurs in an equality constraint t = 0,
then solve the constraint for x and rewrite it as x =
t′, where t′ does not contain x. Then simply apply the
one-point rule synthesis (Section 4.2). This step amounts
to Gaussian elimination. We follow this step whenever
possible, so we first eliminate those variables that occur
in some equalities and only then proceed to inequalities.

Inequalities. Next, suppose that x occurs only in strict
inequalities 0 < t. Depending on the sign of x in t, we
can rewrite these inequalities into ap < x or x < bq for
some terms ap, bq. Consider the more general case when
there is both at least one lower bound ap and at least
one upper bound bq. We can then define:

witn(x, F ) = (max
p
{ap}+ min

q
{bq})/2

As one would expect from quantifier elimination, the pre
corresponding to this case results from F by replacing
the conjunction of all inequalities containing x with the
conjunction ∧

p,q

ap < bq

In case there are no lower bounds ap, we define
witn(x, F ) = minq{bq}− 1; if there are no upper bounds
bq, we define witn(x, F ) = maxp{ap}+ 1.

Complexity of synthesis for conjunctions. We next ex-
amine the size of the generated code for linear ratio-
nal arithmetic. The elimination of input variables using
equalities is a polynomial-time transformation. Suppose
that after this elimination we are left with N inequalities
and V remaining input variables. The above inequality
elimination step for one variable replaces N inequalities
with (N/2)2 inequalities in the worst case. After elimi-
nating all output variables, an upper bound on the for-

mula increase is (N/2)2
V

. Therefore, the generated for-
mula can be in the worst case doubly exponential in the
number of output variables V . However, for a fixed V ,
the generated code size is a (possibly high-degree) poly-
nomial of the size of the input formula. Also, if there
are 4 or fewer inequalities in the original formula, the fi-
nal size is polynomial, regardless of V . Finally, note that
the synthesis time and the execution time of synthesized
code are polynomial in the size of the generated formula.

5.2 Disjunctions for Linear Rational Arithmetic

We next consider linear arithmetic constraints with dis-
junctions, which are constraints for which the satisfiabil-
ity is NP-complete. One way to lift synthesis for ratio-
nal arithmetic from conjunctions of literals to arbitrary
propositional combinations is to apply the disjunctive
normal form method of Section 4.4. We then obtain a
complexity that is one exponential higher in formula size
than the complexity of synthesis for conjunctions.

In the rest of this section we consider an alternative
to disjunctive normal form. This alternative synthesizes
code that can execute exponentially faster (even though
it is not smaller) compared to the disjunctive normal
form approach of Section 4.4.

The starting point of this method are quantifier elim-
ination techniques that avoid disjunctive normal form
transformation, e.g. [FR79], [Nip08], [BM07, Section
7.3]. To remove a variable from negation normal form,
this method finds relevant lower bounds ap and upper
bounds bq in the formula, then computes the values
mpq = (ap + bq)/2 and replaces a variable xi with the
values from the set {mpq}p,q extended with “sufficiently
small” and “sufficiently large” values [Nip08]. This quan-
tifier elimination method gives us a way to compute pre.

We next present how to extend this quantifier elimi-
nation method to synthesis, namely to the computation
of witn(x, F ). Consider a substitution in quantifier elim-
ination step that replaces variable xi with the term m.
We then extend this step to also attach to each literal
a special substitution syntactic form (xi 7→ m). When
using this process to eliminate one variable, the size of
the formula can increase quadratically. After eliminating
all output variables, we obtain a formula pre with addi-
tional annotations; the size of this formula is bounded

by n2
O(V )

where n is the original formula size. (Again,
although it is doubly exponential in V , it is not expo-
nential in n.)

We can therefore build a decision tree that evalu-
ates the values of all n2

O(V )

literals in pre. On each com-
plete path of this tree, we can, at synthesis time, de-
termine whether the truth values of literals imply that
pre is true. Indeed, such computation reduces to evaluat-
ing the truth value of a propositional formula in a given
assignment to all variables. In the cases when the liter-
als imply that pre holds, we use the attached substitu-
tion (xi 7→ m) in true literals to recover the synthesized
values of variables xi. Such decision tree has the depth

n2
O(V )

, because it tests the values of all literals in the re-
sult of quantifier elimination. For a constant number of
variables V , this tree represents a synthesized program
whose running time is polynomial in n. Thus, we have
shown that using basic methods of quantifier elimination
(without relying on detailed geometric facts about the
theory of linear rational arithmetic) we can synthesize
for each specification formula a polynomial-time func-
tion that maps the parameters to the desired values of
output variables.

6 Synthesis for Linear Integer Arithmetic

We next describe our main algorithm, which performs
synthesis for quantifier-free formulas of Presburger arith-
metic (integer linear arithmetic). In this theory variables
range over integers. Terms are linear expressions of the
form c0+c1x1+. . .+cnxn, n ≥ 0, ci is an integer constant
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and xi is an integer variable. Atoms are built using the
relations ≥, = and |. The atom c|t is interpreted as true
iff the integer constant c divides term t. We use a < b as
a shorthand for a ≤ b∧¬(a = b). We describe a synthesis
algorithm that works for conjunction of literals.

Pre-processing. We first apply the following pre-
processing steps to eliminate negations and divisibility
constraints. We remove negations by transforming a for-
mula into its negation-normal form and translating neg-
ative literals into equivalent positive ones: ¬(t1 ≥ t2) is
equivalent to t2 ≥ t1 + 1 and ¬(t1 = t2) is equivalent to
(t1 ≥ t2 + 1)∨ (t2 ≥ t1 + 1). We also normalize equalities
into the form t = 0 and inequalities into the form t ≥ 0.

We transform divisibility constraints of a form c|t
into equalities by adding a fresh variable q. The value
obtained for the fresh variable q is ignored in the final
synthesized program:

Jx, (c|t) ∧ F K =
let (pre, (Ψ, Ψn+1)) = J(x, q), t = c q ∧ F K
in (pre,Ψ)

The negation of divisibility ¬(c|t) can be handled in a
similar way by introducing two fresh variables q and r:

Jx,¬(c|t) ∧ F K =

let F ′ ≡ t+ r = c q ∧ 1 ≤ r ≤ c− 1 ∧ F
(pre, (Ψ, Ψn+1, Ψn+2)) = J(x, q, r), F ′K

in (pre,Ψ)

In the rest of this section we assume the input formula
F to have no negation or divisibility constraints (these
constructs can, however, appear in the generated code
and precondition).

6.1 Solving Equality Constraints for Synthesis

Because equality constraints are suitable for determinis-
tic elimination of output variables, our procedure groups
all equalities from a conjunction and solves them first,
one by one. Let E be one such equation, so the entire for-
mula is of the form E ∧F . Let y be the output variables
that appear in E.

Given an output variable y1 and E of the form
cy1+t = 0 for c 6= 0, a simple way to solve it would be to
impose the precondition c|t, use the witness y1 = −t/c
in synthesized code, and substitute −t/c instead of y1 in
the remaining formula. However, to keep the equations
within linear integer arithmetic, this would require mul-
tiplying the remaining equations and disequations in F
by c, potentially increasing the sizes of coefficients sub-
stantially.

We instead perform synthesis based on one of the
improved algorithms for solving integer equations. This
algorithm avoids the multiplication of the remaining con-
straints by simultaneously replacing all n output vari-
ables y in E with n− 1 fresh output variables λ. Using

J , K :
⋃
n

(
Varsn × Formulas→ Formulas× Termsn

)
J(y,x), E ∧ F K =
let (preY ,ΨY ,λ) = eqSyn(y, E)

F ′ = simplify(F [y := ΨY ])

(pre, (Ψλ,ΨX)) = J(λ,x), F ′K
preY 0 = preY [λ := Ψλ,x := ΨX ]

ΨY 0 = ΨY [λ := Ψλ,x := ΨX ]
in

(preY 0 ∧ pre, (ΨY 0,ΨX))

eqSyn:
⋃
n

Varsn×Formulas→ Formulas×Termsn×Varsn−1

eqSyn(y1, t+ γ1y1 = 0) = ((γ1|t), −t/γ1, ())

eqSyn(y1, . . . , yn, t+Σn
j=1γjyj=0) = (for t = Σm

i=1βibi)

let d = gcd(β1, . . . , βm, γ1, . . . , γn)

if (d > 1) eqSyn(y1, . . . , yn, t/d+Σn
j=1(γj/d)yj=0)

else let (s1, . . . , sn−1) = linearSet(γ1, . . . , γn)
(w1, . . . , wn) = partSol(t, γ1, . . . , γn)
pre = (gcd(γ1, . . . , γn)|t)
λ1, . . . , λn−1 − fresh variable names
Ψ = (w1, . . . , wn) + λ1s1 + . . .+ λn−1sn−1

in (pre,Ψ,λ)

Fig. 2. Algorithm for Synthesis Based on Integer Equations

this algorithm we obtain the synthesis procedure in Fig-
ure 2. An invocation of eqSyn(y, F ) is similar to Jy, F K
but returns a triple (pre,Ψ,λ), which in addition to the
precondition pre and the witness term tuple Ψ also has
the fresh variables λ.

6.1.1 The eqSyn Synthesis Algorithm

Consider the application of eqSyn in Figure 2 to the
equation Σm

i=1βibi + Σn
j=1γjyj = 0. If there is only

one output variable, y1, we directly eliminate it from
the equation. Assume therefore n > 1. Let d =
gcd(β1, . . . , βm, γ1, . . . , γn). If d > 1 we can divide all
coefficients by d, so assume d = 1.

Our goal is to derive an alternative definition of the
set K = {y | Σm

i=1βibi +Σn
j=1γjyj = 0} which will allow

a simple and effective computation of elements in K.
Note that the set K describes the set of all solutions of
a Presburger arithmetic formula.

Recall that a semilinear set [GS64] is a finite union
of linear sets. Given an integer vector b and a finite
set of integer vectors S, a linear set is a set {x | x =
b + s1 + . . . + sn; si ∈ S;n ≥ 0}. Ginsburg and Spanier
[GS64,GS66] showed that the set of all solutions of a
Presburger arithmetic formula is always a semilinear set,
which implies that K is semilinear. However, we cannot
apply this result directly because the values of parame-
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ter variables are not known until run-time. Instead, we
proceed in the following steps, as shown in Figure 2:

1. obtain a linear set representation of the set

SH = {y |
n∑
j=1

γjyj = 0}

of solutions for the homogeneous part using the func-
tion linearSet (defined in Section 6.1.2 to compute
s1, . . . , sn−1 such that

SH = {y | ∃λ1, . . . , λn−1 ∈ Z. y =

n−1∑
i=1

λisi}

2. find one particular solution, that is, use the function
partSol (defined in Section 6.1.3) to find a vector of
terms w (containing the parameters bi) such that
t+
∑n
j=1 γjwj = 0 for all values of parameters bi.

3. return as the solution w +
n−1∑
i=1

λisi

To see that the algorithm is correct, fix the values of
parameters and let γ = (γ1, . . . , γn). From linearity we
have t+ γ · (w +

∑
j λjsj) = t− t+ 0 = 0, which means

that each w +
∑
j λjsj is a solution. Conversely, if y

is a solution of the equation then γ(y − w) = 0, so
y −w ∈ SH , which means y −w =

∑n
i=1 λisi for some

λi. Therefore, the set of all solutions of t+
∑n
j=1 γjwj = 0

is the set {w +
∑n−1
i=1 λisi | λi ∈ Z}. It remains to define

linearSet to find si and partSol to find w.

6.1.2 Computing a Linear Set for a Homogeneous
Equation

This section describes our version of the algorithm
linearSet(γ1, . . . , γn) that computes the set of solutions
of an equation Σn

i=1γiyi = 0. A related algorithm is a
component of the Omega test [Pug92]. We define

linearSet(γ1, . . . , γn) = (s1, . . . , sn−1)

where sj = (K1j , . . . ,Knj) and the integers Kij are com-
puted as follows:

– if i < j, Kij = 0 (the matrix K is lower triangular)

– Kjj =
gcd((γk)k≥j+1)

gcd((γk)k≥j)
– for each index j, 1 ≤ j ≤ n − 1, we compute Kij as

follows. Consider the equation

γjKjj +

n∑
i=j+1

γiuij = 0

and find any solution. That is, compute

(K(j+1)j , . . . ,Knj) = partSol(−γjKjj , γj+1, . . . , γn)

where partSol is given in Section 6.1.3.

Let SH = {y | Σn
i=1γiyi = 0} and let

SL = {λ1s1 + . . .+ λnsn | λ1, . . . , λn ∈ Z} =λ1
K11

...
Kn1

+ . . .+ λn−1

K1(n−1)
...

Kn(n−1)


∣∣∣∣∣∣∣λi ∈ Z


We claim SH = SL.

First we show that each vector sj belongs to
SH . Indeed, by definition of Kij we have γjKjj +∑n
i=j+1 γiKij = 0. This means precisely that sj ∈ SH ,

by definition of sj and SH . Next, observe that SH is
closed under linear combinations. Because SL is the set
of linear combinations of vectors sj , we have SL ⊆ SH .

To prove that the converse also holds, let y ∈
SH . We will show that the triangular system of equa-
tions

∑n−1
i=1 λisi = y has some solution λ1, . . . , λn−1.

We start by showing that we can find λ1. Let G1 =
gcd((γk)k≥1). From y ∈ SH we have Σn

i=1γiyi = 0,
that is, G1(Σn

i=1βiyi) = 0 for βi = γi/G1. This im-
plies β1y1 + Σn

i=2βiyi = 0 and gcd((βk)k≥1) = 1. Let
G2 = gcd((βk)k≥2). From β1y1 + Σn

i=2βiyi = 0 we then

obtain β1y1 +G2(Σn
i=2β

′

iyi) = 0 for β′i = βi/G2. There-

fore y1 = −G2(Σn
i=2β

′

iyi)/β1. Because gcd(β1, G2) = 1

we have β1|Σn
i=2β

′

iyi so we can define the integer λ1 =

−Σn
i=2β

′

iyi/β1 and we have y1 = λ1G2. Moreover, note
that

G2 = gcd((βk)k≥2) = gcd((γk)k≥2)/G1 = K11

Therefore, y1 = λ1K11, which ensures that the first equa-
tion is satisfied.

Consider now a new vector z = y−λ1s1. Because y ∈
SH and and s1 ∈ SH also z ∈ SH . Moreover, note that
the first component of z is 0. We repeat the described
procedure on z and s2. This way we derive the value for
an integer α2 and a new vector that has 0 as the first
two components.

We continue with the described procedure un-
til we obtain a vector u ∈ SH that has all com-
ponents set to 0 except for the last two. From
u ∈ SH we have γn−1un−1 + γnun = 0. Letting
βn−1 = γn−1/ gcd(γn−1, γn) and βn = γn/ gcd(γn−1, γn)
we conclude that βn−1un−1 + βnun = 0, so
un−1/βn is an integer and we let λn−1 = un−1/βn.
By definitions of βi it follows λn−1 = un−1 ·
gcd(γn−1, γn)/γn. Next, observe that sn−1 has the form
(0, . . . , 0, γn/ gcd(γn−1, γn),−γn−1/ gcd(γn−1, γn)). It is
then easy to verify that u = λn−1sn−1.

This procedure shows that every element of SH can
be represented as a linear combination of vectors sj ,
which shows SH ⊆ SL and concludes the proof.

6.1.3 Finding a Particular Solution of an Equation

We finally describe the partSol function to find a solution
(as a vector of terms) for an equation t+Σn

i=1γiui = 0.
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We use the Extended Euclidean algorithm [CLRS01,
Figure 31.1] that, given the integers a1 and a2, finds
their greatest common divisor d and two integers w1

and w2 such that a1w1 + a2w2 = d. Our algorithm gen-
eralizes the Extended Euclidean Algorithm to arbitrary
number of variables and uses it to find a solution of an
equation with parameters. We chose the algorithm pre-
sented here because of its simplicity. Other algorithms
for finding a solution of an equation t + Σn

i=1γiui = 0
can be found in [Ban88,FH96]. They also run in polyno-
mial time. [Ban88] additionally allows bounded inequal-
ity constraints, whereas [FH96] guarantees that the re-
turned numbers are no larger than the largest of the
input coefficients divided by 2.

The equation t + Σn
i=1γiui = 0 has a solution iff

gcd((γk)k≥1)|t, and the result of partSol is guaranteed
to be correct under this condition. Our synthesis proce-
dure ensures that when the results of this algorithm are
used, the condition gcd((γk)k≥1)|t is satisfied.

We start with the base case where there are only
two variables, t + γ1u1 + γ2u2 = 0. By the Extended
Euclidean Algorithm let v1 and v2 be integers such that
γ1v1 + γ2v2 = gcd(γ1, γ2). If d = gcd(γ1, γ2) and r = t/d
one solution is the pair of terms (−v1r,−v2r):

partSol(t, γ1, γ2) =
let (d, v1, v2) = ExtendedEuclid(γ1, γ2)

r = t/d
in (−v1r,−v2r)

If there are more than two variables, we observe that
Σn
i=2γiui is a multiple of gcd((γk)k≥2). We introduce

the new variable u′ and find a solution of the equa-
tion t+ γ1u1 + gcd((γk)k≥2) · u′ = 0 as described above.
This way we obtain terms (w1, w

′) for (u1, w
′). To derive

values of u2, . . . , un we solve the equation Σn
i=2γiui =

gcd((γk)k≥2) ·w′. Given that the initial equation was as-
sumed to have a solution, the new equation can also be
showed to have a solution. Moreover, it has one variable
less, so we can solve it recursively:

partSol(t, γ1, . . . , γn) =
let

(w1, w
′) = partSol(t, γ1, gcd((γk)k≥2))

(w2, . . . , wn) = partSol(− gcd((γk)k≥2)w′, γ2, . . . , γn)
in (w1, . . . , wn)

Example. We demonstrate the process of eliminating
equations on an example. Consider the translation

J(x, y, z), 2a− b+ 3x+ 4y + 8z = 0 ∧ 5x+ 4z ≤ 2y − bK

To eliminate an equation from the formula and to re-
duce a number of output variables, we first invoke
eqSyn((x, y, z), 2a − b + 3x + 4y + 8z = 0). It works in
two phases. In the first phase, it computes the linear set
describing a set of solutions of the homogeneous equal-
ity 3x + 4y + 8z = 0. Using the algorithm described in

Section 6.1.2, it returns:

SL =

λ1
 4
−3
0

+ λ2

 0
2
−1

∣∣∣∣∣∣λ1, λ2 ∈ Z


The second phase computes a witness vector w and a
precondition formula. Applying the procedure described
in Section 6.1.1 results in the vector w = (2a−b, b−2a, 0)
and the formula 1|2a−b. Finally, we compute the output
of eqSyn applied to 2a − b + 3x + 4y + 8z = 0: it is a
triple consisting of

1. a precondition 1|2a− b
2. a list of terms denoting witnesses for (x, y, z):

Ψ1 = 2a− b+ 4λ1
Ψ2 = b− 2a− 3λ1 + 2λ2
Ψ3 = −λ2

3. a list of fresh variables (λ1, λ2).

We then replace each occurrence of x, y and z by the
corresponding terms in the rest of the formula. This re-
sults in a new formula 7a− 3b+ 13λ1 ≤ 4λ2. It has the
same input variables, but the output variables are now
λ1 and λ2. To find a solution for the initial problem, we
let

(preX , (Φ1, Φ2)) = J(λ1, λ2), 7a− 3b+ 13λ1 ≤ 4λ2K

Since 1|2a − b is a valid formula, we do not add it to
the final precondition. Therefore, the final result has the
form

(preX , (2a− b+ 4Φ1, b− 2a− 3Φ1 + 2Φ2,−Φ2))

6.2 Solving Inequality Constraints for Synthesis

In the following, we assume that all equalities are al-
ready processed and that a formula is a conjunction of
inequalities. Dealing with inequalities in the integer case
is similar to the case of rational arithmetic: we process
variables one by one and proceed further with the re-
sulting formula.

Let x be an output variable that we are processing.
Every conjunct can be rewritten in one of the two fol-
lowing forms:

[Lower Bound] Ai ≤ αix
[Upper Bound] βjx ≤ Bj

As for rational arithmetic, x should be a value which
is greater than all lower bounds and smaller than all
upper bounds. However, this time we also need to enforce
that x must be an integer. Let a = maxi dAi/αie and
b = minj bBj/βjc. If b is defined (i.e. at least one upper
bound exists), we use b as the witness for x, otherwise
we use a.
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The corresponding formula with which we proceed is
a conjunction stating that each lower bound is smaller
than every upper bound:∧

i,j

dAi/αie ≤ bBj/βjc (2)

Because of the division, floor, and ceiling operators, the
above formula is not in integer linear arithmetic. How-
ever, in the absence of output variables, it can be evalu-
ated using standard programming language constructs.
On the other hand, if the terms Ai and Bj contain out-
put variables, we convert the formula into an equivalent
linear integer arithmetic formula as follows.

With lcm we denote the least common multiple. Let
L = lcmi,j(αi, βj). We introduce new integer linear
arithmetic terms A′i = L

αi
Ai and B′j = L

βj
Bj . Using these

terms we derive an equivalent integer linear arithmetic
formula:

dAi/αie ≤ bBj/βjc ⇔ dA′i/Le ≤
⌊
B′j/L

⌋
⇔

A′i
L
≤
B′j −B′j mod L

L
⇔ B′j mod L ≤ B′j −A′i

⇔ B′j = L · lj + kj ∧ kj ≤ B′j −A′i
Formula (2) is then equivalent to∧

j

(B′j = L · lj + kj ∧
∧
i

(kj ≤ B′j −A′i))

We still cannot simply apply the synthesizer on that for-
mula. Let {1, . . . , J} be a range of j indices. The newly
derived formula contains J equalities and 2 ·J new vari-
ables. The process of eliminating equalities as described
in Section 6.1 will at the end result in a new formula
which contains J new output variables and this way we
cannot assure termination. Therefore, this is not a suit-
able approach.

However, we observe that the value of kj is always
bounded: kj ∈ {0, . . . , L − 1}. Thus, if the value of kj
were known, we would have a formula with only J new
variables and J additional equations. The equation elim-
ination procedure described before would then result in
a formula that has one variable less than the original
starting formula, and that would guarantee termination
of the approach.

Since the value of each kj variable is always bounded,
there are finitely many (J · L) possible instantiations of
kj variables. Therefore, we need to check for each instan-
tiation of all kj variables whether it leads to a solution.
As soon as a solution is found, we stop and proceed with
the obtained values of output variables. If no solution is
found, we raise an exception, because the original for-
mula has no integer solution. This leads to a translation
schema that contains J ·L conditional expression. In our
implementation we generate this code as a loop with
constant bounds.

We finish the description of the synthesizer with an
example that illustrates the above algorithm.

Example. Consider the formula 2y−b ≤ 3x+a∧2x−a ≤
4y+b where x and y are output variables and a and b are
input variables. If the resulting formula d2y − b− a/3e ≤
b4y + a+ b/2c has a solution, then the synthesizer emits
the value of x to be b4y + a+ b/2c. This newly derived
formula has only one output variable y, but it is not an
integer linear arithmetic formula. It is converted to an
equivalent integer linear arithmetic formula (4y+a+b) ·
3 = 6l+ k ∧ k ≤ 8y+ 5a+ 5b, which has three variables:
y, k and l. The value of k is bounded: 0 ≤ k ≤ 5, so we
treat it as a parameter. We start with elimination of the
equality: it results in the precondition 6|3a+ 3b− k, the
list of terms l = (3a+ 3b− k)/6 + 2α, y = α and a new
variable: α. Using this, the inequality becomes k − 5a−
5b ≤ 8α. Because α is the only output variable, we can
compute it as d(k − 5a− 5b)/8e. The synthesizer finally
outputs the following code, which computes values of the
initial output variables x and y:

val kFound = false

for k = 0 to 5 do {
val v1 = 3 ∗ a + 3 ∗ b − k

if (v1 mod 6 == 0) {
val alpha = ((k − 5 ∗ a − 5 ∗ b)/8).ceiling

val l = (v1 / 6) + 2 ∗ alpha

val y = alpha

val kFound = true

break } }
if (kFound)

val x = ((4 ∗ y + a + b)/2).floor

else

throw new Exception(”No solution exists ”)

The precondition formula is ∃k. 0 ≤ k ≤ 5 ∧ 6|3a +
3b−k, which our synthesizer emits as a loop that checks
6|3a+ 3b− k for k ∈ {0, . . . , 5} and throws an exception
if the precondition is false.

6.3 Disjunctions in Presburger Arithmetic

We can again lift synthesis for conjunctions to synthe-
sis for arbitrary propositional combinations by applying
the method of Section 4.4. We also obtain a complex-
ity that is one exponential higher than the complexity
of synthesis from the previous section. Approaches that
avoid disjunctive normal form can be used in this case
as well [Nip08,FR79,Wei97].

6.4 Optimizations used in the Implementation

In this section we describe some optimizations and
heuristics that we use in our implementation. Using some
of them, we obtained a speedup of several orders of mag-
nitude.

Merging inequalities.Whenever two inequalities t1 ≤ t2
and t2 ≤ t1 appear in a conjunction, we substitute them
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with an equality t1 = t2. This makes the process of vari-
able elimination more efficient.

Heuristic for choosing the right equality for elimination.
When there are several equalities in a formula, we choose
to eliminate an equality for which the least common mul-
tiple of all the coefficients is the smallest. We observed
that this reduces the number of integers to iterate over.

Some optimizations on modulo operations.When pro-
cessing inequalities, as described in Section 6.2, as soon
as we introduce the modulo operator, we face a po-
tentially longer processing time. This is because find-
ing the suitable value of the remainder in equation B′j
mod L ≤ B′j−A′i requires invoking a loop. While search-
ing for a witness, we might need to test all possible L
values. Therefore, we try not to introduce the modulo
operator in the first place. This is possible in several
cases. One of them is when either αi = 1 or bj = 1. In
that case, if for example αi = 1, an equivalent integer
arithmetic formula is easily derived:

dAi/αie ≤ bBj/βjc ⇔ Ai ≤ bBj/βjc ⇔ βjAi ≤ Bj

Another example where we do not introduce the modulo
operator is when A′i−B′j evaluates to a number N such
that N > L. In that case, it is clear that B′jmod L ≤
B′j−A′i is a valid formula and thus the returned formula
is true.

Finally, we describe an optimization that leads to a
reduction in the number of loop executions. This is possi-
ble when there exists an integer N such that B′j = N ·Tj
and L = N · L1. (Unless L = βj , this is almost al-
ways the case.) In the case where N exists, then kj also
has to be a multiple of N . Putting this together, an
equivalent formula of B′jmod L ≤ B′j − A′i is the for-
mula Tjmod L1 = kj ∧N · kj ≤ B′j −A′i. This reduces
the number of loop iterations by at least a factor of N .

7 Synthesis Algorithm for Parameterized
Presburger Arithmetic

In addition to handling the case when the specification
formula is an integer linear arithmetic formula of both
parameters and output variables, we have generalized
our synthesizer to the case when the coefficients of the
output variables are not only integers, but can be any
arithmetic expression over the input variables. This ex-
tension allows us to write e.g. the offset decomposition
program from Section 2 with statically unknown dimen-
sions dimX, dimY, dimZ. As a slightly simpler example,
consider the following invocation:

val (valueX, valueY) = choose((x: Int, y: Int ) ⇒
(offset == x + dim ∗ y && 0 ≤ x && x < dim ))

Here offset and dim are input variables, whereas x and
y are output variables. Note that dim∗y is not a linear

term. However, at run-time we know the exact value of
dim, so the term will become linear. Our synthesizer can
handle such cases as well through a generalization of the
algorithm in Section 6.

Given the problem above, we first eliminate the
equality offset = x + dim ∗ y and we obtain the new
problem consisting of two inequalities: dim ∗ t ≤ offset ∧
offset− dim + 1 ≤ dim ∗ t. The variable t is a freshly in-
troduced integer variable and it is also the only output
variable. At this point, the synthesizer needs to divide
a term by the variable dim. In general it thus needs to
generate code that distinguishes the cases when dim is
positive, negative, or zero. In this particular example,
due to the constraint 0 ≤ x < dim, only one case applies.
The synthesizer returns the following precondition:

pre ≡ d(offset− dim + 1)/dime ≤ boffset/dimc

It can easily be verified that this is a valid formula for
all positive values of dim. The synthesizer also returns
the code that computes the values for x and y:

val t = (offset /dim).floor

val valueY = t

val valueX = offset − dim ∗ t

Our general algorithm for handling parametrized
Presburger arithmetic follows the algorithm described in
Section 6. The main difference is that instead of manip-
ulating known integer coefficients, it manipulates arbi-
trary arithmetic expressions as coefficients. It therefore
needs to postpone to run-time certain decisions that in-
volve coefficients. The key observation that makes this
algorithm possible is that many compile-time decisions
depend not on the particular values of the coefficients,
but only on their sign (positive, negative, or zero). In the
presence of a coefficient that depends on a parameter,
the synthesizer therefore generates code with multiple
branches that cover the different cases of the sign.

As an illustration, consider using synthesis to com-
pute, when it exists, the positive integer ratio x between
two integers a and b:

val x = choose((x: Int ) ⇒ a ∗ x == b && x ≥ 0)

In this example, the synthesizer needs to distinguish be-
tween the cases where a, which is used as a coefficient, is
zero, negative and positive: when a is zero, it computes
as a precondition

pre0 ≡ b = 0

when a is negative, the precondition is

pre	 ≡ −b ≥ 0 ∧ a|b

and similarly, when a is positive

pre⊕ ≡ b ≥ 0 ∧ a|b

In fact, when the positive and negative cases differ only
by a sign, our synthesized factors this out by using the
expression a

|a| for the sign of a (note that since the case
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where a is zero is treated before, there is no risk of a
division by zero). The generated code for computing x
is:

if (a == 0 && b == 0) {
0

} else if (−(a/Math.abs(a)) ∗ b ≥ 0 && b % a == 0) {
b / a

} else {
throw new Exception(”No solution exists ”)

}

(Note that when both a and b are zero, any value for x
is valid, 0 is just the option picked by the synthesizer.)

The coefficients of the invocation of the Extended
Euclidean algorithm generally also become known only
at run-time, so the generated code invokes this algorithm
as a library function. The situation is analogous for the
gcd function. The following example illustrates this sit-
uation:

choose((x: Int ) ⇒ 6∗x + a∗y = b

On this example, our synthesizer produces the following
code:

if (b % gcd(6,a) == 0) {
val t1 = gcd(6,a)

val t2 = −b / t1

val (t3, t4) = coeffs(1, 6/t1, a/t1)

(t2 ∗ t3, t2 ∗ t4)

} else {
throw new Exception(”No solution exists ”)

}

In this code, gcd computes the greatest common divisor,
and (a,b) = coeffs(1,c,d) computes a and b such that a*c
+ b*d + 1 == 0 holds. Note that there are no tests on
the signs of a and b, because the precondition and the
code are the same in all cases (we define gcd(x,0) to be
x).

Finally, note that the running time of the programs
in this case is not uniform with respect to the values of
all parameters. In particular, the upper bounds of the
generated for loops in Section 6.2 can now be a func-
tion of parameters. Nevertheless, for each value of the
parameter, the generated code terminates.

8 Synthesis for Sets with Size Constraints

In this section we define a logic of sets with cardinality
constraints and describe a synthesis procedure for it. The
logic we consider is BAPA (Boolean Algebra with Pres-
burger Arithmetic). It supports the standard operators
union, intersection, complement, subset, and equality.
In addition, it supports the size operator on sets, as well
as integer linear arithmetic constraints over these sizes.
Its syntax is shown in Figure 3. Decision procedures for
BAPA were considered in a number of scenarios [FV59,

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F
A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | (K|T )

B ::= x | ∅ | U | B1 ∪B2 | B1 ∩B2 | Bc

T ::= k | K | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 3. A Logic of Sets and Size Constraints (BAPA)

Zar04,Zar05,KNR06,KR07]. As in the previous sections,
we consider the problem (1)

r = choose(x⇒ F (x,a))

where the components of vectors a,x, r are either set or
integer variables and F is a BAPA formula.

Figure 4 describes our BAPA synthesis procedure
that returns a precondition predicate pre(a) and a solved
form Ψ. The procedure is based on the quantifier elimi-
nation algorithm presented in [KNR06], which reduces a
BAPA formula to an equisatisfiable integer linear arith-
metic formula. The algorithm eliminates set variables
in two phases. In the first phase all set expressions are
rewritten as unions of disjoint Venn regions. The second
phase introduces a fresh integer variable for the cardi-
nality of each Venn region. It thus reduces the entire
formula to an integer linear arithmetic formula. The in-
put variables in this integer arithmetic formula are the
integer input variables from the original formula, as well
as fresh integer variables denoting cardinalities of Venn
regions of the input set variables. Note that all values of
those input variables are known from the program. The
output variables are the original integer output variables
and freshly introduced integer variables denoting cardi-
nalities of Venn regions that are contained in the output
set variables.

We can therefore build a synthesizer for BAPA on top
of the synthesizer for integer linear arithmetic described
in Section 6. The integer arithmetic synthesizer outputs
the precondition predicate pre and emits the code for
computing values of the new output variables. The gen-
erated code can use the returned integer values to recon-
struct a model for the original formula. Notice that the
precondition predicate pre will be a Presburger arith-
metic formula with the terms built using the original
integer input variables and the cardinalities of Venn re-
gions of the original input set variables. As an example,
if i is an integer input variable and a and b are set input
variables then the precondition predicate might be the
following formula pre(i, a, b) = |a ∩ b| < i ∧ |a| ≤ |b|.

In the last step of the BAPA synthesis algorithm,
when outputting code, we use functions fresh and take.
The function take takes as arguments an integer k and
a set S, and returns a subset of S of size k. The func-
tion fresh(k) is invoked when k fresh elements need to
be generated. These functions are used only in the code
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INPUT: a formula F (X,Y,k, l) in the logic de-
fined in Figure 3 with input variables X1,
. . . , Xn, k1, . . . , km and output variables
Y1, . . . , Ys, l1, . . . , lt, where Xi and Yj are
set variables, ki and lj are integer variables

OUTPUT: code that computes values for the output
variables from the input variables

1. Apply the first steps towards a Presburger arithmetic for-
mula:
(a) Replace each atom S1 = S2 with S1 ⊆ S2 ∧ S2 ⊆ S1

(b) Replace each atom S1 ⊆ S2 with |S1 ∩ Sc2| = 0
2. Introduce the Venn regions of sets Xi’s and Yj ’s: let u be

a binary word of the length n + m. The set variable Ru
represents a Venn region where each ’1’ stands for a set
and ’0’ stands for a complement. To illustrate, if n = 2,
m = 1 and u = 001, then R001 = Xc

1 ∩Xc
2 ∩ Y1. Rewrite

each set expression as a disjoint union of corresponding
Venn regions.

3. Create a Presburger arithmetic formula: an integer vari-
able hu denotes the cardinality of the Venn region Ru.
Use the fact that |S1 ∪ S2| = |S1|+ |S2| iff S1 and S2 are
disjoint to rewrite the whole formula as the Presburger
arithmetic formula. We denote the resulting formula by
F1(hu,k, l).

4. Create a Presburger arithmetic formula that corresponds
to quantifier elimination: let v be a binary word of length
n. A set variable Pv denotes a Venn region of input set
variables, which means that |Pv| is a known value. Cre-
ate a formula that expresses each |Pv| as a sum of cor-
responding hu’s. Define the formula F2(hu, |Pv|) as the
conjunction of all those formulas.

5. Create code that computes values of output vectors.
First invoke the linear arithmetic synthesizer described
in Section 6 to generate the code corresponding to:
val (hun, ln) =

choose((hu, l) ⇒ F1(hu, k, l) ∧F2(hu, |Pv|))

Invoking the synthesizer returns code that computes ex-
pressions for the integer output variables ln and for the
variables hun. For each set output variable Yi, do the
following: let Si be a set containing already known or de-
fined set variables, let Tj be a Venn region of Si∪Yi that
is contained in Yi. Each Tj region is contained in the big-
ger Venn region Uj which is a Venn region of sets in Yi.
For each Tj do: take all Ru that belong to Tj and let dj
be the sum of all corresponding hun. Based on the value
of dj , output the following code:
– if Tj ⊆ ∩S∈SiS

c and dj > 0, output the assignment
Kj = fresh(dj)

– if dj = 0, output the assignment Kj = ∅
– if dj = |Uj |, output the assignment Kj = Uj
– otherwise output the assignment Kj = take(dj , Uj)

Finally, construct Yi as a union of all Kj sets: Yi = ∪jKj

Fig. 4. Algorithm for synthesizing a function Ψ such that F [x :=
Ψ(a)] holds, where F has the syntax of Figure 3

that computes output values of set variables (the linear
integer arithmetic synthesizer already produces the code
to compute the values of integer output variables). The
set-valued output variables are computed one by one.
Given an output set variable Yi, the code that effectively
computes the value of Yi is emitted in several steps. With
Si we denote a set containing set variables occurring in
the original formula whose values are already known.
Initially, Si contains only the input set variables. Our
goal is to describe the construction of Yi in terms of sets
that are already in Si. We start by computing the Venn
regions for Yi and all the sets in Si in order to define Yi
as a union of those Venn regions. Therefore we are inter-
ested only in those Venn regions that are subset of Yi.
Let Tj be one such a Venn region. It can be represented
as Tj = Yi ∩ Uj where Uj has a form Uj = ∩S∈Si

S(c)

and S(c) denotes either S or Sc. On the other hand, Tj
can also be represented as a disjoint union of the orig-
inal Ru Venn regions. Those Ru are Venn regions that
were constructed in the beginning of the algorithm for
all input and output set variables. As the linear integer
arithmetic synthesizer outputs the code that computes
the values hu, where hu = |Ru|, we can effectively com-
pute the size of each Tj . If Tj = Ru1

∪ . . .∪Ruk
, then the

size of Tj is |Tj | = dj =
∑k
l=1 hul

. Note that dj is easily
computed from the linear integer arithmetic synthesizer
and based on the value of dj we define a set Kj as Kj =
take(dj , Uj). Finally, we emit the code that defines Yi
as a finite union of Kj ’s: Yi = ∪jKj .

Based of the values of dj , we can introduce further
simplifications. If dj = 0, none of elements of Uj con-
tributes to Yi and thus Kj = ∅. On the other hand, if
dj = |Uj |, applying a simple rule S = take(|S|, S) re-
sults in Kj = Uj . A special case is when Uj = ∩S∈SiS

c.
If in this case it also holds that dj > 0, we need to take
dj elements that are not contained in any of the already
known sets, i.e. we need to generate fresh dj elements.
For this purpose we invoke the command fresh.

Partitioning a Set. We illustrate the BAPA synthesis
algorithm through an example. Consider the following
invocation of the choose function that generalizes the
example in Section 2.

val (setA, setB) = choose((a: Set[ O], b: Set[ O]) ⇒
(−maxDiff ≤ a.size − b.size && a.size − b.size ≤ maxDiff

&& a union b == bigSet && a intersect b == empty

))

This example combines integer and set variables. Given
a set bigSet, the goal is to divide it into two partition.
The previously defined integer variable maxDiff specifies
the maximum amount by which the sizes of the two par-
titions may differ. We apply the algorithm from Figure 4
step-by-step to illustrate how it works. After completing
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Step 3, we obtain the formula

F1(hu) ≡ h100 = h110 = h010 = h001 = h111 = 0

∧ -maxDiff ≤ h101 − h011 ∧ h101 − h011 ≤ maxDiff

We simplify the formula obtained in Step 4 using the
constraints from Step 3 and obtain the formula

F2(hu) ≡ |bigSet| = h101 + h011 ∧ |bigSetc| = h000

Now we call the linear arithmetic synthesizer on the for-
mula F1(hu) ∧ F2(hu). The only two variables whose
values we need to find are h101 and h011. The synthe-
sizer first eliminates the equation |bigSet| = h101 +h011:
a fresh new integer variable k is introduced such that
h101 = k and h011 = |bigSet| − k. This way there is only
one output variable: k. Variable k has to be a solution
of the following two inequalities: |bigSet| − maxDiff ≤
2k∧ 2k ≤ |bigSet|+ maxDiff. This results in the precon-
dition

pre ≡
⌈
|bigSet| −maxDiff

2

⌉
≤
⌊
|bigSet|+ maxDiff

2

⌋
Note that pre is defined entirely in terms of the input
variables and can be easily checked at run-time. The
synthesizer outputs the following code, which computes
values for the output variables:

val k = ((bigSet. size + maxDiff)/2).floor

val h101 = k

val h011 = bigSet.size − k

val setA = take(h101, bigSet)

val setB = take(h011, bigSet −− setA)

In the code above, ‘--’ denotes the set difference oper-
ator. The synthesized code first computes the size k of
one of the partitions, as approximately one half of the
size of bigSet. It then selects k elements from bigSet to
form setA, and selects bigSet.size−k of the remaining
elements for setB.

9 Implementation and Experience

Comfusy tool. We have implemented our synthesis pro-
cedures as a Scala compiler extension, which we call
Comfusy.1 We chose Scala because it supports higher-
order functions that make the concept of a choose func-
tion natural, and extensible pattern matching in the
form of extractors [EOW07]. Moreover, the compiler
supports plugins that work as additional compilation
phases, so our extension is seamlessly integrated into
compilation process (see Figure 5). We used an off-the-
shelf decision procedure [dB08] to handle the compile-
time checks (we could, in principle, also use our synthe-
sis procedure for compile-time checks because synthesis
subsumes satisfiability checking).

1 Our implementation source code and binaries are available
from the URL http://lara.epfl.ch/w/comfusy.

scalac w/ plugin w/ checks

SecondsToTime 3.05 3.2 3.25
FastExponentiation 3.1 3.15 3.25
ScaleWeights 3.1 3.4 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.3 3.5 3.5
SplitBalanced 3.3 3.9 4.0
Coordinates 3.2 4.2 −−
All 5.75 6.35 6.75

Fig. 6. Measurement of compile times: without applying synthesis
(scalac), with synthesis but with no call to Z3 (w/ plugin) and with
both synthesis and compile-time checks activated (w/ checks). All
times are in seconds.

Our plugin supports the synthesis of integer values
through the choose function constrained by linear arith-
metic predicates (including predicates in parameterized
linear arithmetic), as well as the synthesis of set values
constrained by predicates of the logic described in Sec-
tion 8. Additionally, it can synthesize code for pattern-
matching expressions on integers such as the ones pre-
sented in Section 2.

Compilation times. Figure 6 shows the compile times
for a set of benchmarks, with and without our plugin.
Without the plugin, the code is of no use (the choose
function, when not rewritten, just throws an exception),
but the difference between the timings indicates how
much time is spent generating the synthesized code. We
also measure how much time is used for the compile-time
checks for satisfiability and uniqueness. The examples
SecondsToTime, FastExponentiation, SplitBalanced and
Coordinates were presented in Section 2. ScaleWeights
computes solutions to a puzzle, PrimeHeuristic contains
a long pattern-matching expression where every pattern
is checked for reachability, and SetConstraints is a vari-
ant of SplitBalanced. There is no measurement for Coor-
dinates with compile-time checks, because the formulas
to check are in an undecidable fragment, as the orig-
inal formula is in parameterized linear arithmetic. We
also measured the times with all benchmarks placed in a
single file, as an attempt to balance out the time taken
by the Scala compiler to start up. Our numbers show
that the additional time required for the code synthesis
is minimal. Moreover, note that the code we tested con-
tained almost exclusively calls to the synthesizer. The
increase in compilation time in practice would thus be
lower for code that mixes standard Scala with selected
choose construct invocations.

Execution times of generated code. In our experience,
the execution time of the synthesized code is similar to
equivalent hand-written code. Our experience so far was
restricted to small examples, not because of performance
problems but rather because this is the intended way of
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Comfusy scalac

scala class..
code generation

parsing,
name analysis,
type-checking

optimization,

Fig. 5. Interaction of Comfusy with scalac, the Scala compiler. Comfusy takes as an input the abstract syntax tree of a Scala program
and rewrites calls to choose to syntax trees representing the synthesized function.

using the tool: to synthesize code blocks as opposed to
entire procedures or algorithms.

Code size. An older version of Comfusy generated if-
then-else statements that correspond to large disjunc-
tions that appear in quantifier elimination algorithms. In
certain cases, this led to formulas of large size. We have
improved this by generating code that executes about as
fast but uses a “for” loop instead of disjunctions. This
eliminated the problems with code size, and enabled syn-
thesis for parametric coefficients, discussed above.

10 Related Work

Early work on synthesis [MW71,MW80] focused on syn-
thesis using expressive and undecidable logics, such as
first-order logic and logic containing the induction prin-
ciple. Consequently, while it can synthesize interesting
programs containing recursion, it cannot provide com-
pleteness and termination guarantees as synthesis based
on decision procedures.

Recent work on synthesis [SGF10] resolves some of
these difficulties by decoupling the problem of inferring
program control structure and the problem of synthe-
sizing the computation along the control edges. Further-
more, the work leverages verification techniques that use
both approximation and lattice theoretic search along
with decision procedures. As such, it is more ambitious
and aims to synthesize entire algorithms. By nature, it
cannot be both terminating and complete over the space
of all programs that satisfy an input/output specifica-
tion (thus the approach of specifying program resource
bounds). In contrast, we focus on synthesis of program
fragments with very specific control structure dictated
by the nature of the decidable logical fragment.

Our work further differs from the past ones in 1) us-
ing decision procedures to guarantee the computation of
synthesized functions whenever a synthesized function
exists, 2) bounds on the running times of the synthe-
sis algorithm and the synthesized code size and running
time, and 3) deployment of synthesis in well-delimited
pieces of code of a general-purpose programming lan-
guage.

Program sketching has demonstrated the practicality
of program synthesis by focusing its use on particular

domains [SLTB+06,SLAT+07,SLJB08]. The algorithms
employed in sketching are typically focused on appropri-
ately guided search over the syntax tree of the synthe-
sized program. Search techniques have also been applied
to automatically derived concurrent garbage collection
algorithms [VYBR07]. In contrast, our synthesis uses the
mathematical structure of a decidable theory to explore
the space of all functions that satisfy the specification.
This enables our approach to achieve completeness with-
out putting any a priori bound on the syntax tree size.
Indeed, some of the algorithms we describe can gener-
ate fairly large yet efficient programs. We expect that
our techniques could be fruitfully integrated into search-
based frameworks.

Synthesis of reactive systems generates programs
that run forever and interact with the environment.
However, known complete algorithms for reactive syn-
thesis work with finite-state systems [PR89] or timed
systems [AMP95]. Such techniques have applications to
control the behavior of hardware and embedded systems
or concurrent programs [VYY09]. These techniques usu-
ally take specifications in a fragment of temporal logic
[PPS06] and have resulted in tools that can synthesize
useful hardware components [JGWB07,JB06]. Our work
examines non-reactive programs, but supports infinite
data without any approximation, and incorporates the
algorithms into a compiler for a general-purpose pro-
gramming language.

Computing optimal bounds on the size and running
time of the synthesized code for Presburger Arithmetic
is beyond the scope of this paper. Relevant results in
the area of decision procedures are automata-based de-
cision procedures [BJW05,Kla03], the bounds on quanti-
fier elimination [Wei97] and results on integer program-
ming in fixed dimensions [ES08].

Automata-based decision procedures, such as those
implemented in the MONA tool [KM01] could be used
to synthesize efficient (even if large) code from expres-
sive specifications. The work on graph types [KS93] pro-
poses to synthesize fields given by definitions in monadic
second-order logic. Automata have also been applied to
the synthesis of efficient code for pattern-matching ex-
pressions [SRR95].

Synthesis of constraints for rational arithmetic has
been previously applied to automatically construct ab-
stract transfer functions in abstract interpretation of lin-
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ear constraints over rationals [Mon09]. Our results ap-
ply this technique to integer linear arithmetic and con-
straints on sets. More generally, we observe that such
synthesis is useful as a general-purpose programming
construct.

Our approach can be viewed as sharing some of the
goals of partial evaluation [JGS93]. However, we do not
need to employ general-purpose partial evaluation tech-
niques (which typically provide linear speedup), because
we have the knowledge of a particular decision proce-
dure. We use this knowledge to devise a synthesis al-
gorithm that, given formula F , generates the code cor-
responding to the invocation of this particular decision
procedure. This synthesis process checks the uniqueness
and the existence of the solutions, emitting appropri-
ate warnings. Moreover, the synthesized code can have
reduced complexity compared to invoking the decision
procedure at run time, especially when the number of
variables to synthesize is bounded.

11 Conclusions

We have presented the general idea of turning decision
procedures into synthesis procedures. We have explored
in greater detail how to do this transformation for the-
ories admitting quantifier elimination, in particular lin-
ear arithmetic. Important complexity questions arise in
synthesis, such as the best possible size of synthesized
code, time to perform synthesis, and the worst-case run-
ning time of the synthesized code over all inputs. We
have also illustrated that synthesis procedures can be
built even for cases for which the underlying parameter-
ized satisfiability problem is undecidable (such as integer
multiplication), as long as the problem becomes decid-
able by the time the parameters are fixed. We have also
transformed a BAPA decision procedure into a synthe-
sis procedure, illustrating in the process how to layer
multiple synthesis procedures one on top of the other.

We believe that integer arithmetic and constraints on
sets already make our approach interesting to program-
mers. The usefulness of the proposed approach can be
further supported in at least two ways:

1. by developing synthesis procedures for modular (bit-
vector) arithmetic, which faithfully models the ma-
chine representation of integers commonly found in
programming languages. Bit-vector arithmetic by
virtue of its reducibility to boolean satisfiability ad-
mits quantifier-elimination, but it is likely such a
direct approach would not be the most produc-
tive one. Rather, one should look into adapting re-
cent automata-theoretic approaches [HJK10] or tech-
niques for solving quantified bit-vectors formulas
[WHd10].

2. by incorporating synthesis procedures based on addi-
tional decidable constraints over data structures. For

example, more control over the desired solutions for
sets could be provided using decision procedures for
ordered collections that we have recently identified
[KPS10]. In the example of partitioning a set, such
support would allow us to specify that all elements
of one partition are smaller than all elements of the
second partition.

Another useful class of data structures are algebraic data
types; synthesis based on algebraic data generalizes pat-
tern matching on algebraic data types with equality and
inequality constraints. The starting point for such ex-
tensions are decision procedures for algebraic data types
and their extensions [Opp78,BST07,SDK10]. Our ap-
proach can also be applied to imperative data structures
[KS93]. This idea would benefit from recent advances
from more efficient decision procedures based on local
theory extensions [Jac10], including [WPK09,MN05].

Given the range of logics for which we can obtain
synthesis procedures, it is important to realize that we
can also combine synthesis procedures similarly to the
way in which we can combine decision procedures. We
gave one example of such combination in this paper, by
describing our BAPA synthesis procedure built on top of
a synthesis procedure for integer arithmetic. Other com-
bination approaches are possible building on the body
of work in decision procedure combinations [GHN+04,
WPK09].

We have pointed out that synthesis can be viewed
as a powerful programming language extension. Such an
extension can be seamlessly introduced into popular pro-
gramming languages as a new kind of expression and a
new pattern matching construct. It is our hope that the
availability of synthesis constructs will shift the way we
think about program development. Program properties
and assertions can stop being part of the dreaded “an-
notation overhead”, but rather become a cost-effective
way to build programs with the desired functionality.
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