
From Decision Procedures to Synthesis Procedures
(Invited Paper)

Ruzica Piskac
Yale University

Email: ruzica.piskac@yale.edu

Abstract—Software synthesis is a technique for automatically
generating code from a given specification. The goal of software
synthesis is to make software development easier while increasing
both the productivity of the programmer and the correctness
of the produced code. In this paper we present an approach
to synthesis that relies on the use of automated reasoning and
decision procedures. First we describe how to generalize decision
procedures into predictable and complete synthesis procedures.
Here completeness means that the procedure is guaranteed to
find code that satisfies the given specification. We illustrate the
process of turning a decision procedure into a synthesis procedure
using linear integer arithmetic as an example.

However, writing a complete specification can be a tedious task,
sometimes even harder than writing the code itself. To overcome
this problem, ideally the user could provide a few input-output
examples, and then the code should be automatically derived.
We outline how to broaden usability and applications of current
software synthesis techniques. We conclude with an outlook on
possible future research directions and applications of synthesis
procedures.

ACKNOWLEDGMENTS

This presentation is based on [16], [15], [25], [10], and the
author thanks to all her co-authors and acknowledges their
contributions. This paper contains some excerpts from the
original papers.

I. INTRODUCTION

Synthesis of software from specifications, discussed already
in [20], [19], [7], promises to make programmers more produc-
tive. Despite substantial recent progress [9], [27], [26], [32],
[29], synthesis is limited to small pieces of code. We expect
that this will continue to be the case for some time in the
future, for two reasons: 1) synthesis is algorithmically a diffi-
cult problem, and 2) synthesis requires detailed specifications,
which for large programs become difficult to write.

We therefore expect that practical applications of synthesis
lie either in its integration into the compilers of general-
purpose programming languages, or synthesis tools will need
to be able to derive programs from incomplete specification,
such as type constraints or input-output examples.

We first tackle the problem of integrating compilers and syn-
thesis. To make this integration feasible, our goal is to identify
well-defined classes of expressions and synthesis algorithms
guaranteed to succeed for these classes of expressions, just like
a compilation attempt succeeds for any well-formed program.
Our starting point for such synthesis algorithms are decision
procedures.

A decision procedure for satisfiability of a class of for-
mulas accepts a formula in its class and checks whether
the formula has a solution. On top of this basic function-
ality, many decision procedure implementations provide the
additional feature of generating a satisfying assignment (a
model) whenever the given formula is satisfiable. Such a
model-generation functionality has many uses, including better
error reporting in verification [21] and test-case generation
[1]. An important insight is that model generation facility
of decision procedures could also be used as an advanced
computation mechanism. Given a set of values for some of
the variables, a constraint solver can at run-time find the
values of the remaining variables such that a given constraint
holds. Two recent examples of integrating such a mechanism
into a programming language are the quotations of the F#
language [30] and a Scala library [14], both interfacing to
the Z3 satisfiability modulo theories (SMT) solver [5]. Such
mechanisms promise to bring the algorithmic improvements
of SMT solvers to declarative paradigms such as Constraint
Logic Programming [13]. However, they involve a possibly
unpredictable search at run-time, and require the deployment
of the entire decision procedure as a component of the run-
time system.

This paper describes an approach to synthesis which pro-
vides the benefits of the declarative approach in a more
controlled way: we aim to run a decision procedure at compile
time and use it to generate code. The generated code then
computes the desired values of variables at run-time. Such
code is thus specific to the desired constraint, and can be
more efficient. It does not require the decision procedure to
be present at run-time, and gives the developer static feedback
by checking the conditions under which the generated solution
will exist and be unique. We use the term synthesis for our
approach because it starts from an implicit specification, and
involves compile-time precomputation. Because it computes
a function that satisfies a given input/output relation, we call
our synthesis functional, in contrast to reactive synthesis ap-
proaches [23]. Finally, we call our approach complete because
it is guaranteed to work for all specification expressions from
a well-specified class.

We illustrate our approach by describing synthesis algo-
rithms for the domains of linear arithmetic. There are another
extensions such as collections of objects [17], [16] and bit-
vectors [28]. These synthesis algorithms are implemented
and deployed them as a compiler extension of the Scala
programming language [22]. We have found that using such

17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-1-5090-0461-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SYNASC.2015.78

3

constraints we were able to express a number of program
fragments in a more natural way, stating the invariants that the
program should satisfy as opposed to the computation details
of establishing these invariants.

However, writing a complete specification can be a tedious
task, sometimes even harder than writing the code itself. One
of the approaches to overcome this problem is so called
Programming by Example. Ideally the user could provide
a few input-output examples, and then the code should be
automatically derived. The Programming by Example (PBE)
paradigm [4], [18], [8] is a promising research direction
that can enable rich, easy data manipulation even for non-
programmers [9]. The success and impact of this line of work
is witnessed by the fact that some of this technology ships as
part of the popular Flash Fill feature in Microsoft Excel 2013.

We finish the paper with giving an overview of some on-
going work and describing possible future research directions
and applications of synthesis procedures.

II. COMPLETE FUNCTIONAL SYNTHESIS

A. A Motivating Example

We first illustrate the use of a synthesis procedure for
integer linear arithmetic on the following example. Consider
the scenario: you are given a number of seconds (stored in
the variable totsec) and you need to to break it down into
hours, minutes, and leftover seconds. We specify this problem
as:
val (hrs, mns, scs) = choose((h: Int , m: Int , s: Int) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&
0 ≤ m && m ≤ 60 &&
0 ≤ s && s ≤ 60)

Our synthesize tool called Comfusy [15], succeeds, but in
addition to the code, it emits the following warning:

Synthesis predicate has multiple solutions
for variable assignment: totsec = 0

Solution 1: h = 0, m = 0, s = 0
Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds on m and s
are not strict. After correcting the error in the specification,
replacing m ≤ 60 with m < 60 and s ≤ 60 with s < 60, Com-
fusy emits no warnings and generates code corresponding to
the following:
val (hrs, mns, scs) = {

val loc1 = totsec div 3600
val num2 = totsec + ((−3600)∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600)∗ loc1) + (−60 ∗ loc2)
(loc1, loc2, loc3)
}
The absence of warnings guarantees that the solution always
exists and that it is unique. Note that, if the developer imposes
the constraint
val (hrs, mns, scs) = choose((h: Int , m: Int , s: Int) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤ h < 24 &&
0 ≤ m && m < 60 &&
0 ≤ s && s < 60)

our system emits the following warning:

Synthesis predicate is not satisfiable
for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions when
the totsec parameter is too large.

B. Synthesis Procedures

Preliminaries. Each of our algorithms works with a set of
formulas, Formulas, build from terms, whose set we denote
with Terms. Formulas denote truth values, whereas terms and
variables denote values from the domain (e.g. integers). We
denote the set of variables by Vars. FV(q) denotes the set of
free variables in a formula or a term q. If ~x = (x1, . . . , xn)
then ~xs denotes the set of variables {x1, . . . , xn}. If q is a
term or formula, ~x = (x1, . . . , xn) is a vector of variables and
~t = (t1, . . . , tn) is a vector of terms, then q[~x := ~t] denotes
the result of substituting in q the free variables x1, . . . , xn
with terms t1, . . . , tn, respectively. Given a substitution σ :
FV(F) → Terms, we write Fσ for the result of substituting
each x ∈ FV(F) with σ(x). Formulas are interpreted over
elements of a first-order structure D with a countable domain
D. We assume that for each e ∈ D there exists a ground term
ce whose interpretation in D is e; let C = {ce | e ∈ D}.
We further assume that if F ∈ Formulas then also F [x :=
ce] ∈ Formulas (the class of formulas is closed under partial
grounding with constants).

The choose programming language construct. We inte-
grate into a programming language a construct of the form

~r = choose(~x ⇒ F) (1)

Here F is a formula (typically represented as a boolean-valued
programming language expressions) and ~x ⇒ F denotes a
function from ~x to the value of F . Two kinds of variables
can appear within F : output variables ~x and parameters ~a.
The parameters ~a are program variables that are in scope at
the point where choose occurs; their values will be known
when the statement is executed. In the motivating example,
the parameter was the variable totsec). Output variables
~x denote values that need to be computed so that F becomes
true, and they will be assigned to ~r as a result of the invocation
of choose.

Just like an interpreter can be considered as a baseline
implementation for a compiler, deploying a decision procedure
at run-time can be considered as a baseline for our approach.
Such dynamic invocation approach is flexible and useful.
However, there are important performance and predictability
advantages of an alternative compilation approach. Our goal is
therefore to explore a compilation approach where a modified
decision procedure is invoked at compile time, converting the
formula into a solved form.

4

Definition II.1 (Synthesis Procedure). We denote an invoca-
tion of a synthesis procedure by J~x, F K = (pre, ~Ψ). A synthesis
procedure takes as input a formula F and a vector of variables
~x and outputs a pair of

1) a precondition formula pre with FV(pre) ⊆ FV(F) \ ~xs
2) a tuple of terms ~Ψ with FV(~Ψ) ⊆ FV(F) \ ~xs

such that the following two implications are valid:

(∃~x.F) → pre

pre → F [~x := ~Ψ]

Observation II.2. Because another implication always holds:

F [~x := ~Ψ]→ ∃~x.F

the above definition implies that the three formulas are all
equivalent: (∃~x.F), pre, F [~x := ~Ψ]. Consequently, if we can
define a function witn where for witn(~x, F) = ~Ψ we have
FV(~Ψ) ⊆ FV(F) \ ~xs and ∃~x.F implies F [~x := ~Ψ], then we
can define a synthesis procedure by

J~x, F K = (F [~x := witn(~x, F)],witn(~x, F))

Our tool emits the terms ~Ψ in compiler intermediate rep-
resentation; the standard compiler then processes them along
with the rest of the code. We identify the syntax tree of ~Ψ
with its meaning as a function from the parameters ~a to the
output variables ~x. The overall compile-time processing of the
choose statement (1) involves the following:

1) emit a non-feasibility warning if the formula ¬pre is
satisfiable, reporting the counterexample for which the
synthesis problem has no solutions;

2) emit a non-uniqueness warning if the formula

F ∧ F [~x := ~y] ∧ ~x 6= ~y

is satisfiable, reporting the values of all free variables
as a counterexample showing that there are at least two
solutions;

3) as the compiled code, emit the code that behaves as
assert(pre); ~r = ~Ψ

III. SYNTHESIS FOR LINEAR INTEGER ARITHMETIC

We now describe a synthesis algorithm for linear integer
arithmetic, which performs synthesis for quantifier-free for-
mulas of Presburger arithmetic (integer linear arithmetic). In
this theory variables range over integers. Terms are linear
expressions of the form c0+c1x1+ . . .+cnxn, n ≥ 0, ci is an
integer constant and xi is an integer variable. Atoms are built
using the relations ≥, = and |. The atom c|t is interpreted as
true iff the integer constant c divides term t. We use a < b
as a shorthand for a ≤ b ∧ ¬(a = b). We describe a synthesis
algorithm that works for conjunction of literals. An extension
to other Boolean combinations can be done using a general
approach described in [16].

Pre-processing. We first apply the following pre-processing
steps to eliminate negations and divisibility constraints. We
remove negations by transforming a formula into its negation-
normal form and translating negative literals into equivalent

positive ones: ¬(t1 ≥ t2) is equivalent to t2 ≥ t1 + 1 and
¬(t1 = t2) is equivalent to (t1 ≥ t2 + 1) ∨ (t2 ≥ t1 + 1). We
also normalize equalities into the form t = 0 and inequalities
into the form t ≥ 0.

We transform divisibility constraints of a form c|t into
equalities by adding a fresh variable q. The value obtained
for the fresh variable q is ignored in the final synthesized
program:

J~x, (c|t) ∧ F K = (pre, ~Ψ),

where (pre, (~Ψ,Ψn+1)) = J(~x, q), t = c q ∧ F K

The negation of divisibility ¬(c|t) can be handled in a similar
way by introducing two fresh variables q and r:

J~x,¬(c|t) ∧ F K = (pre, ~Ψ),
where

F ′ ≡ t+ r = c q ∧ 1 ≤ r ≤ c− 1 ∧ F
(pre, (~Ψ,Ψn+1,Ψn+2)) = J(~x, q, r), F ′K

In the rest of this section we assume the input formula F to
have no negation or divisibility constraints (these constructs
can, however, appear in the generated code and precondition).

J , K :
⋃
n

(
Varsn × Formulas→ Formulas× Termsn

)
J(~y, ~x), E ∧ F K = (preY ∧ pre, (~ΨY 0, ~ΨX)),

where
(preY , ~ΨY , ~λ) = eqSyn(~y,E)

F ′ = simplify(F [~y := ~ΨY])

(pre, (~Ψλ, ~ΨX)) = J(~λ, ~x), F ′K
~ΨY 0 = ~ΨY [~λ := ~Ψλ]

eqSyn:
⋃
n
Varsn×Formulas→ Formulas×Termsn×Varsn−1

eqSyn(y1,Σ
m
i=1βibi + γ1y1 = 0) =

(γ1|(Σmi=1βibi), −(Σmi=1βibi)/γ1, ())

eqSyn(y1, . . . , yn,Σ
m
i=1βibi + Σnj=1γjyj=0) =

eqSyn(y1, . . . , yn, t/d+ Σnj=1(γj/d)yj=0),
where

t = Σmi=1βibi
d = gcd(β1, . . . , βm, γ1, . . . , γn)
d > 1

eqSyn(y1, . . . , yn,Σ
m
i=1βibi + Σnj=1γjyj=0) = (pre, ~Ψ, ~λ),

where
(~s1, . . . , ~sn−1) = linearSet(γ1, . . . , γn)
(w1, . . . , wn) = particularSol(Σmi=1βibi, γ1, . . . , γn)
pre ≡ gcd(γ1, . . . , γn)|(Σmi=1βibi)
λ1, . . . , λn−1 − fresh variable names
~Ψ = (w1, . . . , wn) + λ1~s1 + . . .+ λn−1~sn−1

Fig. 1. Algorithm for Synthesis Based on Integer Equations

5

A. Solving Equality Constraints for Synthesis

Because equality constraints are suitable for deterministic
elimination of output variables, our procedure groups all
equalities from a conjunction and solves them first, one by
one. Let E be one such equation, so the entire formula is of
the form E ∧ F . Let ~y be the output variables that appear in
E.

Given an output variable y1 and E of the form cy1 + t = 0
for c 6= 0, a simple way to solve it would be to impose the
precondition c|t, use the witness y1 = −t/c in synthesized
code, and substitute −t/c instead of y1 in the remaining
formula. However, to keep the equations within linear inte-
ger arithmetic, this would require multiplying the remaining
equations and disequations in F by c, potentially increasing
the sizes of coefficients substantially.

We instead perform synthesis based on one of the improved
algorithms for solving integer equations. This algorithm avoids
the multiplication of the remaining constraints by simulta-
neously replacing all n output variables ~y in E with n − 1
fresh output variables ~λ. Using this algorithm we obtain the
synthesis procedure in Figure 1. An invocation of eqSyn(~y, F)
is similar to J~y, F K but returns a triple (pre, ~Ψ, ~λ), which in
addition to the precondition pre and the witness term tuple ~Ψ
also has the fresh variables ~λ.

1) The eqSyn Synthesis Algorithm: Consider the appli-
cation of eqSyn in Figure 1 to the equation Σmi=1βibi +
Σnj=1γjyj = 0. If there is only one output variable, y1,
we directly eliminate it from the equation. Assume therefore
n > 1. Let d = gcd(β1, . . . , βm, γ1, . . . , γn). If d > 1 we can
divide all coefficients by d, so assume d = 1.

Our goal is to derive an alternative definition of the set
K = {~y | Σmi=1βibi + Σnj=1γjyj = 0} which will allow a
simple and effective computation of elements in K. Note that
the set K describes the set of all solutions of a Presburger
arithmetic formula.

Here is an overview of an algorithm that describes all the
solutions of a formula:

1) obtain a linear set representation of the set

SH = {~y |
n∑
j=1

γjyj = 0}

of solutions for the homogeneous part using the func-
tion linearSet (defined in Theorem III.1) to compute
~s1, . . . , ~sn−1 such that

SH = {~y | ∃λ1, . . . , λn−1 ∈ Z. ~y =
n−1∑
i=1

λi~si}

2) find one particular solution, that is, use the function
particularSol (defined in Figure 2) to find a vector
of terms ~w (containing the parameters bi) such that
t+
∑n
j=1 γjwj = 0 for all values of parameters bi.

3) return as the solution ~w +

n−1∑
i=1

λi~si

To see that the algorithm is correct, fix the values of parameters
and let ~γ = (γ1, . . . , γn). From linearity we have t+~γ · (~w+∑
j λj~sj) = t−t+0 = 0, which means that each ~w+

∑
j λj~sj

is a solution. Conversely, if ~y is a solution of the equation
then ~γ(~y − ~w) = 0, so ~y − ~w ∈ SH , which means ~y − ~w =∑n
i=1 λi~si for some λi. Therefore, the set of all solutions of

t +
∑n
j=1 γjwj = 0 is the set {~w +

∑n−1
i=1 λi~si | λi ∈ Z}. It

remains to define linearSet to find ~si and particularSol to find
~w.

2) Computing a Linear Set for a Homogeneous Equa-
tion: This section describes our version of the algorithm
linearSet(γ1, . . . , γn) that computes the set of solutions of an
equation Σni=1γiyi = 0. A related algorithm is a component
of the Omega test [24].

Theorem III.1. Let γ1, . . . , γn ∈ Z be integer coefficients.
The set of all solutions of Σni=1γiyi = 0 is described with:

linearSet(γ1, . . . , γn) = (~s1, . . . , ~sn−1)

where ~sj = (K1j , . . . ,Knj) and the integers Kij are com-
puted as follows:
• if i < j, Kij = 0 (the matrix K is lower triangular)

• Kjj =
gcd((γk)k≥j+1)

gcd((γk)k≥j)
• for each index j, 1 ≤ j ≤ n − 1, we compute Kij as

follows. Consider the equation

γjKjj +
n∑

i=j+1

γiuij = 0

and find any solution. That is, compute

(K(j+1)j , . . . ,Knj) = particularSol(−γjKjj , γj+1, . . . , γn)

where particularSol is given in Figure 2.

Proof. Let SH = {~y | Σni=1γiyi = 0} and let

SL = {λ1~s1 + . . .+ λn~sn | λ1, . . . , λn ∈ Z} =λ1
K11

...
Kn1

+ . . .+ λn−1

K1(n−1)
...

Kn(n−1)

∣∣∣∣∣∣∣λi ∈ Z

We claim SH = SL.
First we show that each vector ~sj belongs to SH . Indeed, by

definition of Kij we have γjKjj +
∑n
i=j+1 γiKij = 0. This

means precisely that ~sj ∈ SH , by definition of ~sj and SH .
Next, observe that SH is closed under linear combinations.
Because SL is the set of linear combinations of vectors ~sj ,
we have SL ⊆ SH .

To prove that the converse also holds, let ~y ∈ SH . We will
show that the triangular system of equations

∑n−1
i=1 λi~si = ~y

has some solution λ1, . . . , λn−1. We start by showing that we
can find λ1. Let G1 = gcd((γk)k≥1). From ~y ∈ SH we have
Σni=1γiyi = 0, that is, G1(Σni=1βiyi) = 0 for βi = γi/G1.
This implies β1y1 + Σni=2βiyi = 0 and gcd((βk)k≥1) = 1.
Let G2 = gcd((βk)k≥2). From β1y1 + Σni=2βiyi = 0 we then

6

obtain β1y1 + G2(Σni=2β
′

iyi) = 0 for β′i = βi/G2. Therefore
y1 = −G2(Σni=2β

′

iyi)/β1. Because gcd(β1, G2) = 1 we have
β1|Σni=2β

′

iyi so we can define the integer λ1 = −Σni=2β
′

iyi/β1
and we have y1 = λ1G2. Moreover, note that

G2 = gcd((βk)k≥2) = gcd((γk)k≥2)/G1 = K11

Therefore, y1 = λ1K11, which ensures that the first equation
is satisfied.

Consider now a new vector ~z = ~y−λ1~s1. Because ~y ∈ SH
and and ~s1 ∈ SH also ~z ∈ SH . Moreover, note that the first
component of ~z is 0. We repeat the described procedure on ~z
and ~s2. This way we derive the value for an integer α2 and a
new vector that has 0 as the first two components.

We continue with the described procedure until we obtain
a vector ~u ∈ SH that has all components set to 0 except
for the last two. From ~u ∈ SH we have γn−1un−1 +
γnun = 0. Letting βn−1 = γn−1/ gcd(γn−1, γn) and βn =
γn/ gcd(γn−1, γn) we conclude that βn−1un−1 + βnun = 0,
so un−1/βn is an integer and we let λn−1 = un−1/βn. By
definitions of βi it follows λn−1 = un−1 · gcd(γn−1, γn)/γn.
Next, observe the special form of the vector ~sn−1: ~sn−1 has the
form (0, . . . , 0, γn/ gcd(γn−1, γn),−γn−1/ gcd(γn−1, γn)). It
is then easy to verify that ~u = λn−1~sn−1.

This procedure shows that every element of SH can be
represented as a linear combination of vectors ~sj , which shows
SH ⊆ SL and concludes the proof.

3) Finding a Particular Solution of an Equation: We finally
describe the particularSol function to find a solution (as a
vector of terms) for an equation t + Σni=1γiui = 0. We use
the Extended Euclidean algorithm (for a detailed description
see for example, [3, Figure 31.1]). Given the integers a1
and a2, the Extended Euclidean algorithm finds their greatest
common divisor d and two integers w1 and w2 such that
a1w1 + a2w2 = d. Our algorithm generalizes the Extended
Euclidean Algorithm to arbitrary number of variables and uses
it to find a solution of an equation with parameters. We chose
the algorithm presented here because of its simplicity. Other al-
gorithms for finding a solution of an equation t+Σni=1γiui = 0
can be found in [2], [6]. They also run in polynomial time. [2]
additionally allows bounded inequality constraints, whereas
[6] guarantees that the returned numbers are no larger than
the largest of the input coefficients divided by 2.

The equation t + Σni=1γiui = 0 has a solution iff
gcd((γk)k≥1)|t, and the result of particularSol is guaranteed
to be correct under this condition. Our synthesis procedure
ensures that when the results of this algorithm are used, the
condition gcd((γk)k≥1)|t is satisfied.

We start with the base case where there are only two
variables, t + γ1u1 + γ2u2 = 0. By the Extended Euclidean
Algorithm let v1 and v2 be integers such that γ1v1 + γ2v2 =
gcd(γ1, γ2). With d we denote d = gcd(γ1, γ2) and let

r = t/d. Then one solution is the pair of terms (−v1r,−v2r):

particularSol2(t, γ1, γ2) = (−v1r,−v2r),
where

(d, v1, v2) = ExtendedEuclid(γ1, γ2)
r = t/d

If there are more than two variables, we observe that Σni=2γiui
is a multiple of gcd((γk)k≥2). We introduce the new variable
u′ and find a solution of the equation t+γ1u1+gcd((γk)k≥2)·
u′ = 0 as described above. This way we obtain terms (w1, w

′)
for (u1, w

′). To derive values of u2, . . . , un we solve the
equation Σni=2γiui = gcd((γk)k≥2) ·w′. Given that the initial
equation was assumed to have a solution, the new equation
can also be showed to have a solution. Moreover, it has one
variable less, so we can solve it recursively:

particularSol(t, γ1, . . . , γn) = (w1, . . . , wn),
where

(w1, w
′) = particularSol2(t, γ1, gcd((γk)k≥2))

(w2, . . . , wn) =
particularSol(− gcd((γk)k≥2)w′, γ2, . . . , γn)

Fig. 2. Algorithm for Computing one Solution of the Equation

Example. We demonstrate the process of eliminating
equations on an example. Consider the following synthesis
problem

J(x, y, z), 2a− b+ 3x+ 4y + 8z = 0 ∧ 5x+ 4z ≤ 2y − bK

To eliminate an equation from the formula and to re-
duce a number of output variables, we first invoke
eqSyn((x, y, z), 2a − b + 3x + 4y + 8z = 0), which works
in two phases. In the first phase, we compute the linear set
describing a set of solutions of the homogeneous equality
3x + 4y + 8z = 0. Applying Theorem III.1, the resulting set
SL is:

SL =

λ1
 4
−3
0

+ λ2

 0
2
−1

∣∣∣∣∣∣λ1, λ2 ∈ Z

The second phase computes a witness vector ~w and a pre-
condition formula. Applying the procedure described in Sec-
tion III-A1 results in the vector ~w = (2a − b, b − 2a, 0) and
the formula 1|2a−b. Finally, we compute the output of eqSyn
applied to 2a− b+ 3x+ 4y+ 8z = 0: it is a triple consisting
of

1) a precondition 1|2a− b
2) a list of terms denoting witnesses for (x, y, z):

Ψ1 = 2a− b+ 4λ1
Ψ2 = b− 2a− 3λ1 + 2λ2
Ψ3 = −λ2

3) a list of fresh variables (λ1, λ2).
We then replace each occurrence of x, y and z by the corre-
sponding terms in the rest of the formula. This results in a

7

new formula 7a − 3b + 13λ1 ≤ 4λ2, that has the same input
variables, but the output variables are now λ1 and λ2. To find
a solution for the initial problem, we let

(preX , (Φ1,Φ2)) = J(λ1, λ2), 7a− 3b+ 13λ1 ≤ 4λ2K

Since 1|2a− b is a valid formula, we do not add it to the final
precondition. Therefore, the final result has the form

(preX , (2a− b+ 4Φ1, b− 2a− 3Φ1 + 2Φ2,−Φ2))

B. Solving Inequality Constraints for Synthesis

In the following, we assume that all equalities are already
processed and that a formula is a conjunction of inequalities.
Dealing with inequalities in the integer case is similar to the
case of rational arithmetic: we process variables one by one
and proceed further with the resulting formula.

Let x be an output variable that we are processing. Every
conjunct can be rewritten in one of the two following forms:

[Lower Bound] Ai ≤ αix
[Upper Bound] βjx ≤ Bj

As for rational arithmetic, x should be a value which is greater
than all lower bounds and smaller than all upper bounds.
However, this time we also need to enforce that x must be
an integer. Let a = maxi dAi/αie and b = minj bBj/βjc. If
b is defined (i.e. at least one upper bound exists), we use b as
the witness for x, otherwise we use a.

The corresponding formula with which we proceed is a
conjunction stating that each lower bound is smaller than every
upper bound: ∧

i,j

dAi/αie ≤ bBj/βjc (2)

Because of the division, floor, and ceiling operators, the above
formula is not in integer linear arithmetic. However, in the
absence of output variables, it can be evaluated using standard
programming language constructs. On the other hand, if the
terms Ai and Bj contain output variables, we convert the
formula into an equivalent linear integer arithmetic formula
as follows.

With lcm we denote the least common multiple. Let L =
lcmi,j(αi, βj). We introduce new integer linear arithmetic
terms A′i = L

αi
Ai and B′j = L

βj
Bj . Using these terms we

derive an equivalent integer linear arithmetic formula:

dAi/αie ≤ bBj/βjc ⇔ dA′i/Le ≤
⌊
B′j/L

⌋
⇔

A′i
L
≤
B′j −B′j mod L

L
⇔ B′j mod L ≤ B′j −A′i

⇔ B′j = L · lj + kj ∧ kj ≤ B′j −A′i
Formula (2) is then equivalent to∧

j

(B′j = L · lj + kj ∧
∧
i

(kj ≤ B′j −A′i))

Although this formula belongs to linear integer arithmetic, we
still cannot simply apply the synthesizer on that formula. Let
{1, . . . , J} be a range of j indices. The newly derived formula

contains J equalities and 2 · J new variables. The process
of eliminating equalities as described in Section III-A will
at the end result in a new formula which contains J new
output variables and this way we cannot assure termination.
Therefore, this is not a suitable approach.

However, we observe that the value of kj is always bounded:
kj ∈ {0, . . . , L − 1}. Thus, if the value of kj were known,
we would have a formula with only J new variables and
J additional equations. The equation elimination procedure
described before would then result in a formula that has one
variable less than the original starting formula, and that would
guarantee termination of the approach.

Since the value of each kj variable is always bounded,
there are finitely many (J · L) possible instantiations of kj
variables. Therefore, we need to check for each instantiation
of all kj variables whether it leads to a solution. As soon as
a solution is found, the generated code stops and proceeds
with the obtained values of output variables. If no solution
is found, we raise an exception, because the original formula
has no integer solution. This leads to a translation schema that
contains J · L conditional expression. In our implementation
we generate this code as a loop with constant bounds.

We finish the description of the synthesizer with an example
that illustrates the above algorithm.

a) Example.: Consider the formula 2y − b ≤ 3x + a ∧
2x−a ≤ 4y+b where x and y are output variables and a and b
are input variables. If the resulting formula d2y − b− a/3e ≤
b4y + a+ b/2c has a solution, then the synthesizer emits the
value of x to be b4y + a+ b/2c. This newly derived formula
has only one output variable y, but it is not an integer linear
arithmetic formula. It is converted to an equivalent integer
linear arithmetic formula (4y + a + b) · 3 = 6l + k ∧ k ≤
8y+5a+5b, which has three variables: y, k and l. The value of
k is bounded: 0 ≤ k ≤ 5, so we treat it as a parameter. We start
with elimination of the equality: it results in the precondition
6|3a+3b−k, the list of terms l = (3a+3b−k)/6+2α, y = α
and a new variable: α. Using this, the inequality becomes
k − 5a − 5b ≤ 8α. Because α is the only output variable,
we can compute it as d(k − 5a − 5b)/8e. The synthesizer
finally outputs the following code, which computes values of
the initial output variables x and y:

val kFound = false
for k = 0 to 5 do {

val v1 = 3 ∗ a + 3 ∗ b − k
if (v1 mod 6 == 0){

val alpha = ((k − 5 ∗ a − 5 ∗ b)/8) . ceiling
val l = (v1 / 6) + 2 ∗ alpha
val y = alpha
val kFound = true
break } }

if (kFound)
val x = ((4 ∗ y + a + b)/2) . floor

else
throw new Exception(”No solution exists”)

The precondition formula is ∃k. 0 ≤ k ≤ 5 ∧ 6|3a+ 3b− k,

8

which our synthesizer emits as a loop that checks 6|3a+3b−k
for k ∈ {0, . . . , 5} and throws an exception if the precondition
is false.

IV. FURTHER APPLICATIONS OF SOFTWARE SYNTHESIS

We have seen that developing a complete functional syn-
thesis procedure, even for well-understood logic, such as
Presburger arithmetic, is non- trivial task. In addition, even
when there are synthesis procedures, writing a complete speci-
fication is not always feasible. We outline here two approaches
to deriving a specification: programming by example and
inferring the specification from type constraints.

A. Programming by Example

Instead of writing code, the user provides a list of rele-
vant examples and the synthesis tool automatically generates
a program. In this way, the examples can be seen as an
easily readable and understandable specification. However,
even if the synthesized program satisfies all the provided
examples, it still might not correspond to the user’s intentions.
Examples are, by nature, an incomplete specification. The
programming by example paradigm is suitable for interactive
and incremental synthesis approach. If the user is not happy
with the returned program, she provides more examples, thus
refining her specification, and a synthesis tool automatically
synthesizes a program that satisfies all the given examples.

To be able to understand a programming by example better,
we developed a working tool called StriSynth [10]. To avoid
unnecessary language and implementation details, we restrict
ourselves to the synthesis of a small, yet still real world and
useful, programs. We achieve this by focusing on the synthesis
of scripts.

Many tedious and repetitive tasks, including file manipula-
tions and organizing data, can easily be automated by writing a
program in some scripting language. However, such languages
usually require a good knowledge of regular expressions,
and often their syntax does not correspond to modern high
level programming languages. Additionally, small errors in
the scripts can lead to malicious behavior, such as data loss.
Consider, for instance an attempt at removing all backup
emacs files with the command rm * ∼. For these reasons,
many end-users search for help on on-line forums when they
need to write some script. We analyzed on-line forums and
mailing lists, and noticed that when a non-expert user seeks for
help in writing a script, she usually provides a few illustrative
examples that convey her intentions about what this script is
supposed to do.

The following example is from a StackOverflow post1,
where the users discuss complex and challenging regular
expressions. The user asked for a script that will create a
link from every item in a directory. To better illustrate her
intentions, the user provided two examples: for given files

Document1.docx
Document2.docx

1http://stackoverflow.com/q/800813/2137996

the script should output
Document1
Document2

Following a discussion of the forum users a following script
can do the required task using the popular sed tool:

sed/\(ˆ[a-zA-Z0-9]+\)\.\([a-z]+\)/
\<a href\=\’\1\.\2\’ \>\1\<\/a\>/g

While it was very easy to express the initial intentions of the
user by providing examples, the resulting script is arguably
less readable, even for such a simple problem. Furthermore,
small changes might require an entirely new regular expression
to be written.

Using our tool StriSynth, it is enough to provide one good
illustrative example, such as:

"a.doc" ==> "a"

and the tool learns a correct script.
We conducted a performance study on a preliminary version

of the tool [10]. We collected 60 real world tasks, from
various forums and mailing-lists. By testing our tool on those
benchmarks, we showed that in most cases, the user only
needs to provide a few examples (one or two) and StriSynth
generates the required script. The synthesis process took less
than one second in most cases.

B. Program Synthesis from Type Constraints

In our previous work we established the theoretical founda-
tion for type-driven synthesis, and developed a tool called In-
Synth [11], [12]. InSynth is a tool that automatically generates
code snippets from specifications implicitly given in the form
of type constraints, similarly as in the case of auto-completion
of code. By invoking InSynth, the user asks our tool to suggest
a list of suitable code fragments for the given program point.
InSynth displays a ranked list of suggested code snippets for
that program point and the user can chose the best solution.
In practical evaluation, our technique scales to programs with
thousands of visible declarations in scope and succeeds in 0.5
seconds to suggest program expressions of interest.

Finding a code snippet of the right type is closely related to
the type inhabitation problem [31] where we ask whether for a
type environment and some calculus, there exists an inhabitant
of a given type. As providing the correct answer fast is a very
important requirement, we introduce a succinct representation
for type judgments that merges types into equivalence classes
to reduce the search space. Furthermore, it is not enough
to provide a code fragment of the correct type - we should
also be able to guess what the user had in mind. For this
purpose we introduce a ranking of solutions based on a weight
function. Moreover, the weight function is used to direct the
search for type inhabitants. The weight function is defined
on all the symbols appearing in the program, and it is based
on the proximity to the program point at which InSynth was
invoked. Additionally, the weight is also partially derived from
a corpus of code. We have found our system to be useful for
synthesizing code fragments for common programming tasks,

9

and we believe it is a good platform for exploring software
synthesis techniques.

C. Program Repair through Program Synthesis

In our on-going work we extend the theoretical foundations
of type-driven synthesis to type-driven program repair. We
implemented an algorithm that automatically repairs code
expressions based on the provided almost-correct code [25]. At
the core of our algorithm is a graph construction that expresses
the relationships between the language’s types and methods.

As an illustration, a programmer might expect the Java code
BufferedReader br = new BufferedReader(”file.txt”) ;

to open a file called “file.txt”. However, this code will not
compile since BufferedReader accepts only a Reader
interface implementation as an argument.

We developed a tool called Winston [25] which automat-
ically repairs code expressions based on the hinted structure
of the ill-typed code - we call such an input expression, a
backbone expression. Winston finds well typed expressions
that are as close as possible to the given (potentially) ill-typed
expression.

Additionally, Winston can also be seen as a synthesis tool.
In the light of the program repair, the synthesis aspect of
Winston can be considered as a repair of the empty expression.
A user does not need to provide a backbone expression –
it is sufficient to declare a variable of an arbitrary type.
Based on that type Winston can synthesize corresponding code
fragments. The synthesized code has the given type and it can
contain user defined values, as well as methods from the API.

At the core of Winston’s algorithm is a graph construction
that expresses the relationships between the language’s types
and methods.

V. CONCLUSIONS

In the software synthesis research there was an amazing
progress from initial attempts to automatically generate simple
sorting algorithms, to a methodology which found their way
towards the millions of users. We believe that the success
of synthesis tools is closely linked to advances and major
improvements that we have witnessed in the last decade in
the field of automated reasoning and SMT solvers. We have
shown in this paper how to extend a decision procedure into
a synthesis procedure. There is no general method and each
such extension for some logic requires a deep understand
of its decision procedure. In order for synthesis to scale we
described several approaches where the user does not need to
write down a complete specification, but the specification is
automatically inferred through an interaction with the user.

REFERENCES

[1] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven
compositional symbolic execution. In Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[2] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, Norwell, MA, USA, 1988.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff
Stein. Introduction to Algorithms (Second Edition). MIT Press and
McGraw-Hill, 2001.

[4] A. Cypher and D.C. Halbert. Watch what I Do: Programming by
Demonstration. MIT Press, 1993.

[5] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

[6] David Ford and George Havas. A new algorithm and refined bounds for
extended gcd computation. In ANTS, pages 145–150, 1996.

[7] Cordell Green. Application of theorem proving to problem solving. In
Proc. Int’l. Joint Conf. Artificial Intelligence, pages 219–239. Morgan
Kaufmann, 1969.

[8] Sumit Gulwani. Synthesis from examples: Interaction models and
algorithms. 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2012. Invited talk paper.

[9] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data
manipulation using examples. Commun. ACM, 55(8):97–105, 2012.

[10] Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac.
Strisynth: Synthesis for live programming. In 37th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 2, pages 701–704, 2015.

[11] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Com-
plete completion using types and weights. In PLDI, pages 27–38, 2013.

[12] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive synthesis
of code snippets. In CAV, pages 418–423, 2011.

[13] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A
survey. J. Log. Program., 19/20:503–581, 1994.

[14] Ali Köksal, Viktor Kuncak, and Philippe Suter. Scala to the power
of z3: Integrating smt and programming. In Nikolaj Bjørner and
Viorica Sofronie-Stokkermans, editors, Automated Deduction – CADE-
23, volume 6803 of Lecture Notes in Computer Science, pages 400–406.
Springer Berlin / Heidelberg, 2011.

[15] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Comfusy: A tool for complete functional synthesis. In CAV, pages 430–
433, 2010.

[16] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Complete functional synthesis. In PLDI, 2010.

[17] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
Software synthesis procedures. Commun. ACM, 55(2):103–111, 2012.

[18] H. Lieberman. Your Wish Is My Command: Programming by Example.
Morgan Kaufmann, 2001.

[19] Zohar Manna and Richard Waldinger. A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980.

[20] Zohar Manna and Richard J. Waldinger. Toward automatic program
synthesis. Commun. ACM, 14(3):151–165, 1971.

[21] Michał Moskal. Satisfiability Modulo Software. PhD thesis, University
of Wrocław, 2009.

[22] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala:
a comprehensive step-by-step guide. Artima Press, 2008.

[23] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL
’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 179–190, New York, NY,
USA, 1989. ACM.

[24] William Pugh. A practical algorithm for exact array dependence
analysis. Commun. ACM, 35(8):102–114, 1992.

[25] Alex Reinking and Ruzica Piskac. A type-directed approach to program
repair. In Proceedings of the 27th International Conference on Computer
Aided Verification CAV 2015, San Francisco, USA, July 18-24, 2015.,
2015.

[26] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodı́k.
Sketching concurrent data structures. In PLDI, 2008.

[27] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A.
Seshia, and Vijay A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, 2006.

[28] Andrej Spielmann and Viktor Kuncak. Synthesis for unbounded bit-
vector arithmetic. In Automated Reasoning - 6th International Joint
Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceed-
ings, pages 499–513, 2012.

[29] Saurabh Srivastava, Sumit Gulwani, and Jeff Foster. From program
verification to program synthesis. In POPL, 2010.

[30] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#. Apress,
2007.

[31] Pawel Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic
approach). In TLCA, 1997.

[32] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Inferring synchroniza-
tion under limited observability. In TACAS, 2009.

10

