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Abstract—Firewalls are widely deployed to manage enterprise
networks. Because enterprise-scale firewalls contain hundreds
or thousands of rules, ensuring the correctness of firewalls
– that the rules in the firewalls meet the specifications of
their administrators – is an important but challenging problem.
Although existing firewall diagnosis and verification techniques
can identify potentially faulty rules, they offer administrators
little or no help with automatically fixing faulty rules. This
paper presents FireMason, the first effort that offers automated
repair by example for firewalls. Once an administrator observes
undesired behavior in a firewall, she may provide input/output
examples that comply with the intended behaviors. Based on
the examples, FireMason automatically synthesizes new firewall
rules for the existing firewall. This new firewall correctly handles
packets specified by the examples, while maintaining the rest of
the behaviors of the original firewall. Through a conversion of
the firewalls to SMT formulas, we offer formal guarantees that
the change is correct. Our evaluation results from real-world case
studies show that FireMason can efficiently find repairs.

I. INTRODUCTION

Firewalls play an important role in today’s individual and
enterprise-scale networks. A typical firewall is responsible
for managing all incoming and outgoing traffic between an
internal network and the rest of the Internet by accepting,
forwarding, or dropping packets based on a set of rules specified
by its administrators. Because of the central role firewalls
play in networks, small changes can propagate unintended
consequences throughout the networks. This is especially true
in increasingly large and complex enterprise networks.

A single line in a firewall could, for example, allow anyone to
access production services, and therefore it is critical to ensure
the correctness of firewall rules. Broadly speaking, a firewall
is correct if the rules of that firewall meet the specification
of its administrator. There have been many efforts that aim to
check the correctness of firewall rules through techniques such
as firewall analysis [23], [30], verification [22], and root-cause
troubleshooting [26], [31], [34]. For instance, systems like
Margrave [26] and Fang [23] build an event tree recording
states of an observed error, and backtrack through it to find
the root causes.

While existing tools can identify the cause of an error,
administrators still have to manually find an effective repair to
the firewall so that it meets the specification. We propose the
first framework, called FireMason, that not only detects errors
in firewall behaviors, but also automatically repairs the firewall.
Specifically, a user provides a list of examples of packet routing
(e.g., all packets with a certain source IP address should be
dropped) to describe what the firewall should do. The current
firewall might or might not route the packets as specified in the
examples. Given the complexity of enterprise-scale networks,

finding such a repair requires considerable expertise on the
part of the administrator. To the best of our knowledge, there
is no existing effort that automates firewall repair.

The main challenge of firewall repair is to show that a
generated firewall is indeed repaired and that new rules do
not change the routing of packets which are not described
by the given examples. We employ an SMT solver for this
task. In a nutshell, FireMason translates a given firewall
into a sequence of first-order logic formulas falling into the
EUF+LIA logic [25], thus allowing us to use an SMT solver for
reasoning about the firewalls. By using SMT solvers, FireMason
provides formal guarantees that the repaired firewalls satisfy
two important properties:
• Those packets described in the examples will be routed

in the repaired firewall, as specified.
• All other packets will be routed by the repaired firewall

exactly as they were in the original firewall.
Taken together, these two properties allow administrators
confidence that the repairs had the intended effect.

Previous work has modeled firewalls using less expressive
logics. For example, Zhang et al. [34] use SAT and QBF
formulas, while Margrave [26], uses first-order relational logic
(specifically, through the use of KodKod [30]). By using our
formalism we are able to check some important and widely
used, but previously out-of-scope, properties. In particular, the
ability to reason about linear integer arithmetic with an SMT
solver is invaluable in handling rate limits. Rate limits, which
are frequently used in all modern firewalls, put a restriction
on the number of packets matched in a given amount of time.
Using SMT solvers we are able to efficiently reason about
limiting rules. Due to the complexity of modeling limits, no
previous work has considered firewalls with such rules. Such
rules say, for example, that we can only accept 6 packets per
minute from a certain IP address. As before, the user provides a
list of examples, but with relative times. This requires reasoning
about the priorities and permissions of each firewall entry, as
well as the temporal patterns of the incoming packets.

Furthermore, FireMason is also a stand-alone verification
tool, that can either prove that a given specification holds, or
produce counterexamples.

We evaluated our tool using real-world firewall issues, and
observed that FireMason is able to efficiently generate correct
firewalls meeting administrators’ examples, without introducing
any new problems. In addition, our evaluations show that
FireMason scales well to enterprise-scale networks.

In summary, this paper makes the following contributions.
We developed a formalism to model firewalls and their behavior.
This formalism allows us to use SMT solvers. By using them we
can easily prove formal guarantees for verification and repair,



thus making FireMason the first work capable of automatically
repairing firewalls based on easily specified examples. This
allows administrators to conveniently specify their desired
behaviors, and automate the repair process. Additionally, by
using SMT solvers we can efficiently reason about limit rules,
which were not considered by any of existing tools. Finally,
we built a workable system that scales well with real-world
examples and larger-scale datasets.

II. PRELIMINARIES

Repair by Example. In this paper, we introduce the repair
by example paradigm, which repairs faulty code so that it
satisfies the given examples. In some ways, this resembles the
programming by example paradigm [14], [21]. However, in
programming by examples, the output is code which generalizes
the given input examples. On the other hand, in the repairing
by example paradigm the input is both an existing program
and a set of examples. The goal is to adjust the input program
to satisfy the examples, but otherwise to have a minimal
effect on the programs behavior. This allows a user to easily
specify instances of faulty behavior, but have confidence that
the program will continue to function as it did before. With
repair by example, it is important that the effect of the changes
is constrained, whereas in programming by example there is
no such restriction.

ACL-Based Firewalls. We focus on one of the most represen-
tative types of firewalls, Access Control List-based firewalls (or
ACL-based firewalls). ACL-based firewalls, such as iptables [4],
Juniper [18], and Cisco firewalls [13], are widely used in
practice. A typical ACL-based firewall contains an ordered list
of rules, each of which has criteria and an action. A criterion
describes which preconditions need to hold for the action to
take place (e.g., dropping or accepting a packet) [28]. When
a network packet is received by an ACL-based firewall, the
packet is evaluated against all the rules according to the order in
which they appear. After the firewall finds the first rule whose
criteria is satisfied by the packet, it performs the corresponding
action. The criteria in a rule may refer to properties of the
packet that is currently being processed, or to information
tracked by the firewall. For instance

iptables -A INPUT -p 16 -s 123.23.12.1 -j DROP

has criteria denoting packets with a protocol of 16 and a source
IP address of 123.23.12.1, and an action specifying those
packets should be dropped.

Actions are either terminating or non-terminating. Termi-
nating actions end the packet’s traversal (for example, once a
packet is accepted or dropped, it no longer needs to check more
rules in the ACL). Non-terminating actions (such as printing
to a log file) allow a packet to continue traversing the ACL
rules and finding a match for more rules. An action might also
refer to another ACL, which then needs to be used to evaluate
the packet. We refer to this as a jump to a different ACL.

The ACL jumps can not form a loop. That is, if ACL A1

contains a jump to ACL A2, there can be no jumps from A2

back to A1. However, suppose a packet is evaluated against
all rules in an ACL A2 and does not match any rule with

a terminating action. The packet will then continue being
evaluated at the next rule in A1. If the packet started in A1,
and the packet does not match any rule in A1 with a terminating
action, the packet will be routed according to the policy of A1.
The policy is the default action on packets that start in a given
ACL, and must be to either accept or drop the packet [9].

Rate Limiting Rules. When an administrator wants to restrict
the amount of packets matching a certain rule, a rate limit can
be specified for that rule. We call a firewall with such rules a
rate limiting firewall. In many firewalls, including iptables [9],
Juniper [18], and Cisco [13] firewalls, a limit is a criterion
that specifies how frequently a rule can be matched. A limit
is implemented as a counter l, and allows a match of a rule
only if l > 0. A limit has two parameters: an average rate of
packets per some time unit, ra, and a burst limit, b. Whereas
other criteria are based solely on evaluating a single packet, a
limit requires the firewall to maintain its counter, and hence
warrants special consideration.

Firewalls use the token bucket algorithm [29] to determine if
a packet should be dropped or further processed. The counter
l decrements when a packet matches the rule, and increments
every 1/ra time units. The counter can never exceed the burst
limit b. The next example shows how limits work in practice.

Example. Suppose that we set a limit on incoming packets,
with ra = 1 packet / second and b = 5 packets. The firewall
is initialized with l = b = 5. If we do not exceed the limit,
we will accept incoming packets. If we do exceed it, we will
drop them. Suppose in the first, third, and fourth seconds after
initialization, we receive 1 packet, 3 packets, and 4 packets,
respectively. We receive no packets during the second second.

At the end of the first second, l = 5 − 1 = 4, since 1
packet arrives. At the beginning of the second second, l will be
incremented back to 5. The counter l will not be incremented
at the beginning of the third second, since if it was incremented
it would exceed the burst limit. However, since 3 packets arrive
during the third second, by the end of the third second l = 2.
At the beginning of the fourth second, l is incremented again
to 3. During the fourth second, 4 packets arrive. The first 3 will
be accepted, but will result in the counter being decremented,
to l = 3− 3 = 0. Since l = 0 when the fourth packet arrives,
that packet can not match the limit. Therefore, it is dropped.

III. MOTIVATING EXAMPLES

Stateless Example. We start to demonstrate the functionality
of FireMason with a problem inspired by a StackExchange
post [1], shown in Figure 1. An administrator is maintaining
firewall rules written in iptables [4], one of the most represen-
tative firewall script languages. The firewall initially contained
rules labeled R1 to R5.

If the administrator wants to block TCP requests coming
from the IP address 172.168.14.6, she may try expressing
that as a rule and putting it at the end of the current firewall,
cf. rule R6 in Figure 1. Such an action is very common in
enterprise-scale firewall management, because administrators
prefer appending a new rule to the existing rules [20].

FireMason can be used as a standard firewall analysis tool.
To test her changes, the administrator can execute the query:



R1
R2
R3
R4
R5
R6

FireMason

(a) Original Firewall

.... ....
iptables -A INPUT -p udp -–dport 80 -j ACCEPT
iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
iptables -A INPUT -p tcp -s 172.168.14.6 -j DROP
iptables -A INPUT -m state –-state RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT

(b) Example

(c) Repaired Firewall

repair(INPUT, protocol = 6,
source_ip = 172.168.14.6 => DROP)

.... ....
iptables -A INPUT -p udp -–dport 80 -j ACCEPT
iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
iptables -A INPUT -m state –-state RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p tcp -s 172.168.14.6 -j DROP

Figure 1: An example of a firewall repair problem.

verify(INPUT, protocol = tcp,
source_ip = 172.168.14.6 => DROP)

FireMason reports to the administrator that the specification
is violated, and gives an example of a packet that will be
incorrectly routed (For example, a TCP packet with the SYN
flag set, a source ip address of 172.168.14.6, and a destination
port of 22. Such a packet would be accepted by R3 or R4).

Knowing that her repair does not work as intended, the
administrator can also use FireMason as a repair tool. She
provides an example of what should be changed in the firewall
and invokes FireMason as shown in Figure 1 (b).

FireMason returns a repaired firewall, Figure 1 (c), to the
administrator. The new rule is positioned close to similar
rules, namely, those rules related to the TCP protocol. This
positioning is very important. While one may argue that directly
appending a rule to the top of firewall can also make the firewall
behave correctly (in terms of functionality), such a way would,
unfortunately, destroy the structure and organization of the
firewall. Much like traditional code, keeping the firewall rules
organized is important to facilitate later understanding and
maintaining. Most importantly though, the rule is positioned so
any packet matching the example is guaranteed to be dropped.
R1 specifies a protocol other than TCP, and so never matches
the example. The example could match R2, but R2 drops any
matching packet anyway.
Rate Limiting Example.We next show how an administrator
can use FireMason to add/repair rate limiting rules. To the
best of our knowledge no existing firewall analysis tools can
address this problem. Suppose an administrator wants to allow
TCP connections with the SYN flag set once every 10 seconds
(a task inspired by a forum post on StackExchange [6].) To
do this, the administrator may provide a sequence of example
packets and relative times, in seconds:
repair(INPUT, SYN, time = 0 => ACCEPT;

INPUT, SYN, time = 5 => DROP;
INPUT, SYN, time = 10 => ACCEPT)

As a result FireMason creates and inserts two new rules:
iptables -A INPUT -m limit --limit 6/minute \
--limit-burst 1 -p tcp --tcp-flags SYN SYN -j ACCEPT
iptables -A INPUT -p tcp --tcp-flags SYN SYN -j DROP

Repair Algorithm

Rule Set

Correctness Checking

Rate Limiting
Examples

Stateless
Examples

Rate Limiting
Rules Generation

OK/Counterexamples

Consistency Checking

Verification

Example(s)/Specification(s)Original Firewall

Repaired Firewall

Figure 2: The workflow overview of FireMason.

This limit satisfies the administrator’s requirement. Only one
TCP SYN packet can be received every 10 seconds.

IV. SYSTEM DESIGN

Figure 2 shows the overview of FireMason’s workflow.
FireMason takes as input a firewall and a user command, which
can be either a verification command or a repair command and
contains a list of examples.

FireMason first translates the firewall and examples into a
set of formulas belonging to a fragment of first-order logic.
The translation (described in Sec. IV-A) produces two sets of
EUF+LIA formulas [25], which means we can use an SMT
solver to reason about firewalls.

The verification process (described in Sec. IV-B) checks
if the rules specified in the examples are violated by the
new firewall. If there are such rules, FireMason reports
counterexamples to the user.

The repair process first checks consistency of the input
examples and reports to the user if they are contradictory
(Sec. IV-D). This also allows us to detect sets of examples
that can be used to generate rate limiting rules. FireMason
creates any needed rate limiting rules to handle provided
examples. (Sec. IV-F). FireMason next runs the repair algorithm
(Sec. IV-G). Finally, FireMason adds the rules to the firewall
(Appendix, Sec. IV-C), checks if there are redundant rules in
the newly generated firewall (Sec. IV-H), and outputs a correct
firewall.

A. Encoding Firewalls and Examples as FOL Formulas

Translating Examples. FireMason starts with a list of exam-
ples provided by the user, either for a verification or a repair
process. Those examples are expressed using the grammar:

comm := verify({(acl, rule)}+) | repair({(acl, rule)}+)

rule := precon+ ⇒ action

precon := protocol = INT | source ip = IP ADDRESS

| destination port = INT | . . . | not precon

action := ACCEPT | DROP

acl := STRING \\ ACL Name



We represent every example by a tuple (a, r, t), where a is
the name of the ACL to which the rule r applies, and t is the
time given in the example. If no time was given, we set t = ∅.
This tuple is then used in FireMason’s algorithms. For instance,
the example repair(protocol = 16, time = 5 ⇒ ACCEPT) is
translated to (INPUT,protocol = 16⇒ ACCEPT, 5).

Translating Firewall scripts. Broadly speaking, FireMason
describes a firewalls behavior with a sequence of first-order
logic formulas. The translation results in formulas that are
amenable for reasoning with a SMT solver. Such encoding
has two benefits: the computational burden of checking
consistencies or finding redundant rules is done by a solver. In
addition, we can easily formalize that the repaired firewall is
indeed repaired and that only packets described by the examples
will be treated differently and according to the specification.

While the majority of the rules could be easily translated to
first-order formulas, one obstacle is when the firewall contains
jumps. This becomes an issue especially when the ACL also
uses limits. Consider, for example, an ACL that has at least
two jumps to an ACL A1. Let us assume that the ACL A1 has
some limit rules. If a packet has to go through both the jumps,
then when it reaches the limit in A1 the second time, the limit
in A1 will have counted the packet twice.

We introduce a data structure, called a FirewallMap, which
simplifies modeling of jumps and limits. A FirewallMap M
maps unique IDs (we use natural numbers) to tuples of ACL
names and lists of the ACLs rules. A rule is modeled as an
implication, where a set of criteria implies an action. Possible
actions are ACCEPT, DROP, and GO(a). GO is parameterized
by a natural number a, and represents a jump to the ACL with
ID a. In the FirewallMapM there is at most one GO referring
to a particular ACL ID. Every rule in M is assigned a tuple
(a, r), where a is an ID of the ACL where the rule appears
and r is an ID of the rule in that ACL. This way there exists
a single unique path through the FirewallMap to reach any
individual rule. Without this property, it would be significantly
more difficult to correctly model the order in which rules must
be checked. Any ACL jumped to from more than one place in
the original firewall is duplicated and assigned multiple IDs.
The ACL mapped to by each of these IDs is identical, except
any GOs in them must also have different IDs. We refer to
these duplicated ACLs as equivalent to each other.

Language for Encoding Firewall Behavior into Formulas.
We now describe a first-order language that we use to
model firewalls and packets. Most of these predicates take
a FirewallMap M as an argument. One can think of M as a
firewall script.

Table I lists a selection of those predicates, functions, and
their meanings. FireMason uses these functions and predicates
to encode the firewall. For example, if rule r in ACL a in a
FirewallMapM had criteria specifying that it matched a packet
p with protocol 17 and destination port 8, then FireMason
translates that as follows:

matches criteria(M, p, a, r)

⇔ (protocol(p) = 17 ∧ destination port(p) = 8)

Table II shows some axioms describing general relationships
between the predicates and functions, and encoding actual
firewall behavior. All formulas in the table are implicitly univer-
sally quantified, with additional guards 0 ≤ p < max packets
and valid rule(M, a, r). Since the sets of values for M, p, a,
and r are finite, these formulas (as well as the definitions of
reaches end, reaches return, reaches exit, and matches rule
from Table I) can be finitely instantiated. Thus, no universal
quantifiers are needed, and we encode the firewalls in the
decidable EUF+LIA logic [25].

Modeling Limits. Limits have two attributes: an average rate
ra in packets per time unit, and a burst limit of b packets.
Each limit also uses a counter to decide if a packet can match
the rule. Intuitively, it may seem one could easily model the
behavior of a limit using linear integer arithmetic. However,
ra might not be an integer when the units are converted to
seconds. For example, 31 packets per minute is .516 packets
per second. Therefore, we introduce a new sub variable, which
represents the time unit used by the limit, converted to seconds.
For example, a limit with an average rate of 31 packets per
minute and a burst of 10 will be assigned ra = 31, sub = 60,
and b = 600 in the formula. Essentially, this corresponds to
multiplying the whole formula by sub, to reduce the problem to
integers. ra is now 31 tokens per second, we have a maximum
of 600 tokens, and we require 60 tokens to send a single packet.

To have a correct counter of the number of packets, in our
model we assign to each limit from the firewall two integer IDs,
a main ID i and a secondary ID j. Limits for the same rule in
equivalent ACLs all have the same main ID. The secondary IDs
start from 0, and they increase every time a packet could meet
that limit. We define two functions, counter pre(M, i, j, p)
and counter post(M, i, j, p), parameterized by the limit’s
main and secondary IDs, and the packet ids. They are used
to track the value of the counter at any given point in
time. counter pre(M, i, j, p) is the value of counter (i, j)
immediately before packet p reaches the rule containing that
limit. counter post(M, i, j, p) is the value of that counter
immediately after. To check if a limit will allow a packet
to match, we check if counter pre(M, i, j, p) ≥ sub.

The SMT formulas related to computation of limits are given
in Table III Note that, since we multiply ra and ∆t(p), we
must know one of their values for this formula to be in LIA.
Fortunately, when reading a limit from an existing firewall
script we know ra. In Sec. IV-F we explain how ∆t(p) is
known in advance from the examples, so we can obtain ra
from the SMT solver.

B. Firewall Verification

Since firewalls are not annotated with standard specifications,
systems for verifying firewalls, such as Margrave [26], verify
firewalls against user provided queries. When performing
the verification process, FireMason also checks if the given
examples violate the firewall rules.

We first explain the verification process for examples without
time (limit) constraints. Given an example, e = (n, c⇒ act, ∅),
and a firewall M, we verify e against M by showing that the
following formula F is valid:



Table I: Partial list of predicates and functions used to model firewalls.

Predicate Meaning of the predicate
valid acl(M, a) There exists an ACL with ID a in FirewallMap M
valid rule(M, a, r) valid acl(M, a) and there exists a rule with ID r in a
matches criteria(M, p, a, r) Packet p satisfies the criteria of rule r in ACL a in FirewallMap M
reaches(M, p, a, r) Packet p reaches rule r in ACL a in FirewallMap M
starting acl(M, a) Returns true if ACL a is not jumped to from some other ACL
is go(act) Returns whether the action act is GO(a) for some arbitrary a
reaches end(M, p, a) reaches(M, p, a, acl length(M, a))
reaches return(M, p, a) reaches(M, p, a, r) ∧ rule action(M, a, r) == RETURN
reaches exit(M, p, a) reaches end(M, p, a)∨ reaches return(M, p, a)
matches rule(M, p, a, r) matches criteria(M, p, a, r)∧ reaches(M, p, a, r)
matches example(p, e) Packet p matches the criteria of an example e

protocol(p) The protocol of packet p
acl length(M, a) Returns the number of rules in ACL a
max packets Returns the maximum number of packets to be considered
terminates with(M, p) Returns if the FirewallMap M would ACCEPT or DROP packet p
rule action(M, a, r) Returns the action of rule r in ACL a in FirewallMap M
insert rule(M, R, a, r) Returns FirewallMap M, but with rule R inserted in ACL a as rule r
equivalent(M, n) Returns the set of IDs in FirewallMap M for the ACL named n
go acl(act) For act = GO(a) returns a, otherwise -1

Table II: Formulas to model a firewall, and packets that firewall is processing.

a1 6= a2 ∧ reaches(M, p, a1, 0) ∧ starting acl(M, a1) ∧ starting acl(M, a2) =⇒ ¬reaches(M, p, a2, 0)
reaches(M, p, a, r) ∧ ¬matches criteria(M, p, a, r) =⇒ reaches(M, p, a, r + 1)
reaches(M, p, a, r + 1) =⇒ reaches(M, p, a, r)

matches rule(M, p, a, r) ∧ is go(rule action(M, a, r)) ≡ reaches(M, p, go acl(rule action(M, a, r)), 0)
matches rule(M, p, a, r) ∧ is go(rule action(M, a, r)) =⇒ reaches exit(M, p, go acl(rule action(M, a, r))) = reaches(M, p, a, r + 1)
reaches(M, p, a, r) ∧ ¬is go(rule action(M, a, r)) ∧ rule action(M, a, r) 6= RETURN ∧ ¬terminating(M, a, r) =⇒ reaches(M, p, a, r + 1)
reaches return(M, p, a) =⇒ ¬reaches(M, p, a, r + 1)
matches rule(M, p, a, r) ∧ terminating(rule action(M, p, a, r)) =⇒ ¬reaches(M, p, a, r + 1)
matches rule(M, p, a, r) ∧ terminating(rule action(M, p, a, r)) =⇒ terminates with(M, p) = rule action(M, p, a, r)
reaches end(M, p, a, r) ∧ starting acl(M, a) =⇒ terminates with(M, p) = policy(M, a)

Table III: Logical formulas related to limits, all variables are implicitly universally quantified with additional constraints that
rule r in ACL a has a limit with main ID i and secondary ID j, and 0 ≤ p < max packets. We use j max(i) to denote the
maximum secondary ID for the limit with main ID i.

∀p.p ≥ 1 =⇒ arrival time(p) ≥ arrival time(p− 1)

∆t(p) =

{
arrival time(p)− arrival time(p− 1) if 1 ≤ p < max packets

0 otherwise

counter pre(M, i, j, p) =


counter post(M, i, j − 1, p) if j ≥ 1

min(counter post(M, i, j max(i), p− 1) + ra ∗∆t(p), b) if p ≥ 1 and j = 0

b otherwise

counter post(M, i, j, p) =

{
counter pre(M, i, j, p)− sub if counter pre(i, j, p) ≥ sub ∧matches rule(M, p, a, r)

counter pre(M, i, j, p) otherwise

∀p, a. a ∈ equivalent(M, n) ∧ reaches(M, p, a, 0)

∧matches example(p, e)⇒ terminates with(M, p) = act

Formula F states that every packet arriving to ACL n and
satisfying criteria c terminates with action a. Note that when
negated, the formula is only existentially quantified.

To verify a list of examples with times, ek = (nk, ck ⇒
actk, tk), for 0 ≤ k ≤ N we apply a similar procedure. After
setting up all packets with appropriate times, the verification
condition states that at least one packet does not terminate as
desired (expressed already in the negated form):

∀k∃a.0 ≤ k ≤ N ∧ a ∈ equivalent(M, nk)

∧ reaches(M, pk, ak, 0) ∧matches example(pk, ek)

∧ (
∨

0≤j≤N

terminates with(M, pj) 6= actj)

C. Adding Rules

Here we outline how to create rules from the provided
examples. We describe in more detail how to create rate
limiting rules in Sec. IV-F. We first focus on stateless rules.
We use the repair algorithm, Algorithm 2 in Sec. IV-G,
to assign each rule a position. After positions are assigned,
it is straightforward to add the rules to the firewall. We
simply copy the old rules from the original firewall, convert
the new rules from our internal language to the iptables
language, and insert them at the appropriate positions. For
example, the tuple (INPUT, protocol = 6, source_ip
= 1.2.3.4 => ACCEPT, ∅) would become iptables
-A INPUT -p 6 -s 1.2.3.4 -j ACCEPT.



D. Consistency Checking

The purpose of consistency checking is both to let the
administrator know whether the provided examples contradict
each other, and to detect when to invoke the algorithm for
addressing limits. Consider the two examples below:

repair(INPUT, protocol = 17 => ACCEPT),
repair(INPUT, source_ip = 1.1.0.0/16 => DROP)

If a packet with protocol = 17 and a source IP address
of 1.1.1.1 enters the INPUT ACL, it is not clear whether
such a packet should be accepted or dropped. We consider
these examples rule inconsistent.

Formally, we say two examples, (n1, c1 ⇒ act1, t1) and
(n2, c2 ⇒ act2, t2) are rule inconsistent if n1 = n2, c1 ∧ c2 is
satisfiable by a single packet, and act1 6= act2. We find the
contradictory examples by using an SMT solver and we inform
the administrator about ambiguities. Note that this definition
makes no reference to time, and handling of rule inconsistent
examples with different times will be covered in Sec IV-F.

E. Formal Guarantees for Repaired Firewalls

FireMason offers two guarantees on the behavior of repaired
firewalls. The first guarantee is the packets or sequences of
packets described by the examples are correctly routed in the
repaired firewall. The second guarantee is that the changes have
a minimal effect; that is, that the routing of every packet not
described by the examples is the same as it was in the original
firewall. Together, these guarantees allow an administrator to
be confident that the repairs had the intended effect, and only
the intended effect.

Here we give formulas which can be used by an SMT solver
to check if the formal guarantees hold.

For given examples of the form ek = (nk, critk ⇒ actk, ∅),
for 0 ≤ k < N , the first guarantee can be written with
Formula (1),

∀k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)∧ (1)
matches example(k, ek) ∧ reaches(M′, k, a, 0)

=⇒ terminates with(M′, k) = actk

Now suppose we have examples with relative times, ek =
(nk, critk ⇒ actk, tk). Without loss of generality, assume that
for k1 < k2, we have tk1 < tk2 . In this case we ensure that
packets arriving at the appropriate times, with the appropriate
criteria, are correctly routed, given that no other packets
matching the examples criteria are processed before their arrival.
Formally, we write:

∀k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk) (2)∧
0≤m≤k

(
arrival time(m) = tm ∧matches example(m, em)

∧ reaches(M,m, a, 0)
) ∧
m′>k

nonexample(M,m′, k)

=⇒ terminates with(M, k) = actk

where we use the predicate nonexample to determine if the
packet p either does not correspond to or arrives after the last
relevant example.

nonexample(M, p, e) =

∀k, a.0 ≤ k < e ∧ a ∈ equivalent(M, nk) =⇒
te < arrival time(p) ∨ ¬reaches(M, p, a, 0)

∨
( ∧
0≤m≤k

¬matches example(p, em)
)

The second guarantee, that the changes we make are minimal,
is stated as Formula (3):
∀p.terminates with(M, p) = terminates with(M′, p) (3)

∨
(
∃k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)

∧matches example(p, ek) ∧ reaches(M, k, a, 0)
)

F. Rate Limiting Rules Generation

Algorithm 1: Limit Generating Algorithm
input : E, the list of examples, all with relative times,

optional parameters minRulesAndLimits and
minTotalSub (both default to ∅)

output : r a list of rules
1 E′ ← [];
2 foreach (n, r, t) ∈ E do
3 r2 ← r, with a limit template, consisting of symbolic

values for ra, b, sub, and useLimit, and a Boolean
enableRule added to the criteria

4 E′.append((n, r2, t));

5 sortByNameByTime(E′);
6 if minRulesAndLimits 6= ∅ and minTotalSub 6= ∅ then
7 Assert rulesAndLimits < minRulesAndLimits

∨(rulesAndLimits = minRulesAndLimits ∧ totalSub <
minTotalSub)

8 Convert E′ to SMT formulas, create formulas defining
score and totalSub, run SMT Solver;

9 sat← getSat;
10 if sat = UNSAT then
11 r ← getRulesFromModel(model);
12 return r;

13 else
14 model ← getModel;
15 (rulesAndLimits, totalSub)← getScore(model);
16 call this recursively, to lexicographically minimize

(rulesAndLimits, totalSub);

After the consistency checking, some examples may have
to be resolved via rate limiting. Specifically, this is required
for rules that are rule inconsistent, but have relative times.
Algorithm 1 generates rate limiting rules satisfying these
examples. Our algorithm takes a list of rule inconsistent
examples, E, each with a time. It returns an ordered list of



satisfying rules, which are later inserted into the firewall using
Algorithm 2.

Recall that we may express an example as consisting of
an ACL name, a rule, and a time. We create E′ from E,
by adding two criteria to each examples rule. The first is a
limit template, which uses variables in place of actual integers
for ra, b, and sub. It also has a Boolean variable useLimit,
which enables and disables the limit. The second criterion is a
Boolean, enableRule. Packets can match the rule if and only
if enableRule is true. We will use this template with an SMT
solver to search for the solution that requires the fewest limits
and rules.

We sort E′ into distinct groups according to which ACL
the rules are meant to be added to, and then sort each group
by ascending time, at line 5. We extract the rules from E′

into lists (ACLs) to form a templated FirewallMap M. This
allows us to convert to an SMT formula, using exactly the
same formulas and logic as in Sec. IV-A.

For each original example, ep = (np, cp ⇒ actp, tp), we
pick a ∈ equivalent(M, np)and assert that the packet with ID
p matches the requirements of that example:

arrival time(p) ∧matches example(p, ep) (4)
∧ reaches(M, p, a, 0) ∧ terminates with(M, p) = actp

For all the pairs 0 ≤ r, q < length(E′), r 6= q, we check if
cr ∧ ¬cq is satisfiable by a single packet. For each pair which
is, we assert:

¬matches example(r, eq) (5)

The SMT solver can then find values for each ra, b, sub,
u, and enableRule that guide the packets as required by the
examples. Formula (4) ensures that the found solution satisfies
the requirements of the examples sequence. Formula (5) ensures
that the SMT solver does not make assumptions about packets
criteria that the user likely does not intend. For example, if
the administrator provided the examples:

repair(
INPUT, protocol = 17, time = 0 => ACCEPT;
INPUT, protocol = 17, time = 5 => DROP;
INPUT, source_ip = 1.1.0.0/16, time = 10 => ACCEPT;
INPUT, source_ip = 1.1.0.0/16, time = 15 => DROP)

Formula (5) would prevent the SMT solver finding a solution
that required any of the packets satisfying protocol = 17
AND source_ip = 1.1.0.0/16.

Such a model is always possible to find. One valid solution
is to set all the enableRule to true, all the bursts to 1, and all
the rates and subs such that the limit recharging even once
takes longer than the total time between the first and last packet
arriving. Then, each packet will be sorted according to the rule
that came from its modified example.

To make our solution capable of handling more general
cases, we assign a lexicographic score to our formula. The
first value is calculated by adding the number of limits and the
number of non-ignored rules, which we call rulesAndLimits.
The second value is the sum of the limit’s sub values, which we
call totalSub. We aim to make this score as small as possible.
This can be done by repeatedly asserting there exists a formula

Algorithm 2: Rule Adding Repair Algorithm
input : E, the list of examples; M, a FirewallMap
output : a FirewallMap with a rule for each e ∈ E added

1 foreach (n, newR, t) ∈ E do
2 a′ ← ACL id of an arbitrary representation of the

ACL n in M;
3 res ← SAT ;
4 maxR← acl length(a′)− 1;
5 while res = SAT do
6 Pick r′ ≤ maxR , using a similarity measure to

newR;
7 M’ ← insertRule(M, newR, a′, r′) ;
8 res ← SMTCheckCorrectness(M, M’, e);
9 if res = SAT then

10 maxR ← r′− 1;

11 M ← M’

with a better score. If (minRulesAndLimits, minTotalSub) is the
current best score, we assert:

rulesAndLimits < minRulesAndLimits ∨ (rulesAndLimits =

minRulesAndLimits ∧ totalSub < minTotalSub)

When the SMT solver returns UNSAT, we can guarantee we
found the solution which minimizes the number of rules plus
the number of limits used.

There are two small potential problems with this approach,
and luckily, both have straightforward solutions. First, recall
from Sec. IV-A that the model involves the value of ra∗∆t(p),
but to stay in the theory of LIA, we must avoid multiplying
two variables. In that section, there was an assumption that
the value of ra was known, whereas here it clearly is not.
Fortunately, while we do not know the value of ra, we can
precompute, and fix as a constant, the time difference between
neighboring packets, ∆t(p).

Second, some firewalls languages constrain the value of sub
to a fixed list of possible values s1, . . . sv . This can be handled
through one additional assertion per sub value, ∨vu=1sub = su.
This occasionally leads to cases where there is no valid way
to generate the limits, but such cases can be detected when
the first call to the SMT solver is UNSAT.

G. Repair Algorithms

Given the formulas representing the target firewall and
examples, we need to run a repair algorithm to generate a
correct firewall based on the examples. We will first consider
rule insertion for non-rule inconsistent examples. Then, we
will explain how this same algorithm can be used to insert
the rate limiting rules found by Algorithm 1. Suppose we
have N non-rule inconsistent examples, e1 = (n1, r1 =
(c1 ⇒ act1), t1), ..., eN = (nN , rN , tN ). Given a firewall
represented by a FirewallMap M, our goal is to to find a new
FirewallMap M′ which ensures all the examples are satisfied,
but that guarantees all non-described packets maintain the same
behavior. We also wantM′ to be well organized, meaning that



“similar rules” all appear together. Our procedure (omitted due
to space restrictions) to decide the similarity assigns a score
based on the number and kinds of criteria used in the rules,
but could be replaced by any desired scoring algorithm.

Consider the kth example, 1 ≤ k ≤ N . We express the
desired condition with respect to example ek by instantiating k
in Formulas 1 and 3. We then show that Algorithm 2 outputs
a firewall which satisfies this condition. For each example
ei = (ni, ri, ti), we take some a′ ∈ equivalent(M, ni) and
find the ID r′ of the existing rule most similar to ri in ACL
a′. Next we set M′ =M, and run insert rule(M′, ri, a′, r′)
to insert ri in all ACLs equivalent to a′ at position r′ in M′.

We convert both M and M′ to SMT formulas, and use
an SMT solver to check that Formulas 1 and 3 are valid. To
do this, we must eliminate the two universal quantifiers that
remain after instantiating k. There are only a finite number of
values that a may attain - namely, it can only be the values
in equivalent to name(M, a′). Using this observation, we can
easily eliminate the universal quantifier using finite instantiation.
Once the formula is only universally quantified by p, we negate
it, and try to show that its negation is unsatisfiable.

If the SMT solver does find the formula to be unsatisfiable,
we know that the original formula was valid, i.e. the firewall
satisfies the considered example. However, if the formula is
satisfiable, we search for a different place to insert the rule,
that comes before rule r′ in ACL a′. We do not consider any
rule after this rule, as any route along whichM andM′ could
incorrectly diverge would also exist if the new rule was inserted
after a′. Also note that the condition is guaranteed to hold if
the new rule is inserted as rule 0 in ACL a′; and although this
placement is often not ideal for the structure of the firewall, it
does guarantee termination.

When rules are from consistent examples, we can insert
them in any order. By definition, two consistent examples
cannot describe any of the same packets, so it does not matter
which corresponding rule comes before the other in the firewall.
However, the rules found by Algorithm 1 are rule inconsistent.
In this case, insertion of the rules must be done in reverse
order of the corresponding example’s times. This ensures that
the inconsistent rules have the same relative order in E′ (from
Sec. IV-F) as inM′, and thus we can expect the same behavior
from the examples in both E′ and M′.

H. Redundant Rule Detection

The final step in repairing the firewall is removing redundant
rules – that is, rules which cannot be matched by any packet.
Thanks to the SMT model, this is straightforward.

As before, the firewall is converted to an SMT formula.
Then, for each ACL name and rule ID, n and r, respectively,
check that there exists a packet that matches the rule, or some
equivalent rule by asserting

∃a′.a′ ∈ equivalent(M, n) ∧matches rule(M, p, a′, r)

If this call returns SAT, then clearly there exists some packet
that matches the rule, and the rule is therefore not redundant.
If it returns UNSAT, then there was no packet that matched
the rule, and it is therefore redundant. In this case, it can be

commented out. This does involve a large number of calls to
the SMT solver, but these calls tend to be fast.

V. IMPLEMENTATION AND EVALUATION

FireMason is developed in Haskell and fully implements
the design described in Sec. IV. The default firewall language
that we support is the iptables language [4], but the framework
can be easily extended to other firewall languages, such as
Juniper [18] and Cisco firewalls [13]. The syntax of these
languages varies, but the semantics are largely the same.
Therefore, only the translation step (essentially a parser) needs
to be rewritten for a particular language, which means that
FireMason can easily be adapted to repair firewalls written
in other languages. As an SMT solver we used Microsoft’s
Z3 [24]. The source code for our implementation is available
at https://github.com/BillHallahan/FireMason.

The evaluation was conducted with an Intel Xeon Quad Core
HT 3.7 GHz.

Scalability evaluation. We evaluated the scalability of Fire-
Mason with regard to real-world network sizes by using three
examples as specification, and varying the number of rules in
the target firewall between 100 and 500. These firewalls were
randomly generated. As shown in Figure 3, FireMason scales
well to large-scale firewalls.

One might expect the rate limiting rules insertion to be
slower than the non rate limiting rules insertion, due to the
additional runtime of Algorithm 1. However, Algorithm 1’s
runtime depends only on the number of examples, and not
on the number of rules in the original firewall, its runtime is
constant across the rate limiting tests. In the rate limiting case
our three examples result in only two rules to insert, whereas
in the non rate limiting case, we insert three rules. Thus, the
additional runtime is due to Algorithm 2.

We also evaluated the performance of FireMason for different
numbers of provided examples, as shown in Table V. In the
stateless case this scales linearly. In the rate limiting case,
the time required increases rather sharply as the number of
examples generating a single limit increases. However, this is
not a major concern, as we have found that a small number of
examples is typically sufficient to find an appropriate limit.

Case study: Repairing real-world firewalls. To demonstrate
that FireMason can repair real-world firewalls, we found fire-
wall repair problems on Server Fault [7] and Stack Overflow [8].
We recreated each scenario, and generated corrected firewalls
using FireMason.

Table IV presents five such problems. We list the examples
which an administrator may provide to clarify how the firewall
should be repaired and present the resulting repairs to the
firewall. We also include the running time, the number of calls
to the SMT solver, and the number of rules in the original
iptables script.

We manually checked the correctness of each result and
compared them to the repairs suggested on the forums. We
found that the output returned by FireMason not only fixed the
problems, but also avoided any side effects. Furthermore, we
manually confirmed the “minimality” of the repairs, in terms
of the impact on the firewalls overall behavior. In some cases,

https://github.com/BillHallahan/FireMason


Table IV: Case study: Sampled firewall repair problems and our solutions.

Case Study 1 [1] An administrator appended a rule iptables -A INPUT -s 73.143.129.38 -j DROP, but can still receive packets from 73.143.129.38.
Input example repair(INPUT, source_ip = 73.143.129.38 => DROP)

Results 1. Remove the appended rule, and insert a new rule iptables -A INPUT -s 73.143.129.38/32 -j DROP in front of an original rule
iptables -A INPUT -i lo -j ACCEPT.

Original Rule Count 11
Repair Time .109 s

SMT Solver calls 26
Case Study 2 [2] An administrator wants to allow SSH access from the IP address 71.82.93.101, but does not know how.
Input examples 1. repair(INPUT, protocol = 22, source_ip = 71.82.93.101 => ACCEPT),

2. repair(INPUT, protocol = 22, not source_ip = 71.82.93.101 => DROP)
Results Insert new rules iptables -I INPUT 0 -p 22 -s 71.82.93.101/32 -j ACCEPT and iptables -I INPUT 0 -p 22 ! -s

71.82.93.101/32 -j DROP in front of an original rule iptables -I INPUT -p icmp --icmp-type time-exceeded -j ACCEPT.
Original Rule Count 11

Repair Time .088 s
SMT Solver calls 23
Case Study 3 [3] An administrator is trying to limit the number of inbound SSH packets, but it just seems to lock her out.
Input examples 1. repair(INPUT, protocol = 22, time = 0 => ACCEPT),

2. repair(INPUT, protocol = 22, time = 20 => ACCEPT),
3. repair(INPUT, protocol = 22, time = 30 => ACCEPT),
4. ... ... (In total, this repair uses 8 examples, we cannot list all the examples due to limited space)

Results Insert new rules iptables -A INPUT -m limit --limit 2/minute --limit-burst 4 -p 22 -j ACCEPT and
iptables -A INPUT -p 22 -j DROP at the beginning of the original firewall.

Original Rule Count 9
Repair Time 21.10 s

SMT Solver calls 44
Case Study 4 [6] A server is attacked by TCP SYN flooding, so the administrator wants a limit on SYN packets per second.
Input examples 1. repair(INPUT : source_ip = 192.132.209.0/24, SYN, time = 10 => ACCEPT),

2. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 11 => ACCEPT),
3. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 12 => ACCEPT),
4. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 13 => DROP),
5. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 19 => DROP),
6. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 21 => ACCEPT)

Results Append two new rules, iptables -I INPUT 0 -s 192.132.209.0/24 -p 6 --tcp-flags
SYN -j DROP and iptables -I INPUT 0 -m limit --limit 6/minute --limit-burst
3 -s 192.132.209.0/24 -p 6 --tcp-flags SYN SYN -j ACCEPT, to the original firewall.

Original Rule Count 11
Repair Time 6.046 s

SMT Solver calls 42
Case Study 5 [5] An administrator has the IP address 192.168.1.99, and wants to SSH to the IP address 192.168.1.15. She appended a rule iptables

-A INPUT -p tcp -i eth0 --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT but still cannot SSH 192.168.1.15.
Input example 1. repair(OUTPUT, protocol = , destination_ip = 192.168.1.15 => ACCEPT),

2. repair(INPUT, source_ip = 192.168.1.15 => ACCEPT)
Results Insert two new rules iptables -A INPUT -s 192.168.1.15/32 -j ACCEPT and iptables -A OUTPUT -d 192.168.1.15/32

in front of the fourth and fifth rules in the original firewall, respectively.
Original Rule Count 4

Repair Time .054 s
SMT Solver calls 14

Table V: Scalability for number of examples (when inserting
into a firewall with 100 rules).

Number of examples Stateless Time (s) Rate Limiting Time
3 3.567 2.177
6 4.545 2.004
9 5.804 36.37

FireMason outputs a different solution from the posted solution.
After manual comparison, we found that both solutions work
correctly, but FireMason’s output required adding fewer new
rules.

Interestingly, the case studies involving rate limits took
significantly longer than those only involving stateless examples.
This is not at odds with the results of the scalability evaluation.
As shown in table V, for a small number of examples, rate
limit rule generation is generally faster, whereas for a larger
number of examples, stateless rule generation is faster.

VI. RELATED WORK

This section presents existing efforts on firewall analysis,
verification and generation, and discusses why these efforts are
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Figure 3: Scalability for number of rules.

not helpful to our target.

Firewall synthesis. Zhang et al. [34] proposed a symbolic
firewall synthesis approach such that the synthesized firewall
has the same behavior as a given firewall, but with the
smallest possible number of rules. As this approach focuses on
automatically simplifying redundant rules, rather than repairing
an observed error, it is not applicable to our goal.

As software defined networks (SDN) have become increas-



ingly popular, automatic programming approaches for SDN
have been proposed [27], [33]. Yuan et al. [33] proposed an
automatic SDN policy generation approach, named NetEgg,
based on a scenario-based programming technique. NetEgg can
only generate a new policy, it can not account for the effect of
a new policy on existing policies in the network. Furthermore,
NetEgg can not synthesize rate limiting rules.
Firewall analysis and verification. Mayer et al. [23] devel-
oped the first systematic firewall analysis engine, Fang, to
analyze diverse properties of firewalls. Fang and its sequel
Lumeta [31] allow checking the correctness of firewall con-
figurations by sending their analysis engines queries. Other
efforts [10], [16] propose packet-filter based schemes to detect
conflicting or violated rules. Frantzen et al. [17] and Kamara
et al. [19] proposed different data-flow based approaches to
analyze vulnerability risks in firewalls. Wool [32] conducted a
case study on understanding and classifying the configuration
errors of firewalls.

The Margrave firewall verification tool [26] encodes firewall
rules and queries into first-order logic. It uses KodKod [30]
to search for finite state models. Compared with another
firewall verification tool, NoD [22], Margrave cannot produce
all differences between policies in a compact way, and does
not scale for large firewall rule sets.
Firewall testing. El-Atawy et al. [15] proposed targeting test
packets for better fault coverage. Al-Shaer et al. [11] developed
a system-wide framework to generate targeted packets and
obtain good coverage during firewall testing. Brucker et al. [12]
proposed a formal firewall conformance testing approach,
which uses Isabelle/HOL to generate test-cases from constraint
satisfaction problems.

VII. CONCLUSION

In this paper, we have presented FireMason, an automatic
tool for formally verifying and repairing firewalls. To this
end, we use a first-order intermediary language to model
firewalls, which allows us use of an SMT solver to obtain
formal guarantees on the correctness of verification and repair.
We showed that FireMason not only generates correctly repairs
real-world firewall scripts, but also is able to scale to large-scale
firewalls. We hope that this work will inspire more reasoning
about firewalls in the formal methods community.
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