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Today’s cloud services extensively rely on replication techniques to ensure availability and reliability. In

complex datacenter network architectures, however, seemingly independent replica servers may inadvertently

share deep dependencies (e.g., aggregation switches). Such unexpected common dependencies may potentially

result in correlated failures across the entire replication deployments, invalidating the efforts. Although

existing cloud management and diagnosis tools have been able to offer post-failure forensics, they, nevertheless,

typically lead to quite prolonged failure recovery time in the cloud-scale systems. In this paper, we propose a

novel language framework, named RepAudit, that manages to prevent correlated failure risks before service

outages occur, by allowing cloud administrators to proactively audit the replication deployments of interest.

In particular, RepAudit consists of three new components: 1) a declarative domain-specific language, RAL, for

cloud administrators to write auditing programs expressing diverse auditing tasks; 2) a high-performance

RAL auditing engine that generates the auditing results by accurately and efficiently analyzing the underlying

structures of the target replication deployments; and 3) an RAL-code generator that can automatically produce

complex RAL programs based on easily written specifications. Our evaluation result shows that RepAudit

uses 80× less lines of code than state-of-the-art efforts in expressing the auditing task of determining the

top-20 critical correlated-failure root causes. To the best of our knowledge, RepAudit is the first effort capable

of simultaneously offering expressive, accurate and efficient correlated failure auditing to the cloud-scale

replication systems.
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Fig. 1. An example for our target problem. Once the shared aggregation switch fails, the replicated states

(green boxes) would become unavailable simultaneously.

1 INTRODUCTION

Today’s cloud computing systems typically ensure availability and reliability through replication
techniques, i.e., replicating the important data and states across multiple nodes [Bessani et al.
2011; Bonvin et al. 2010]. However, complex multi-layered datacenter structures may unwittingly
introduce dependencies shared by seemingly independent infrastructure components, thus resulting
in unexpected correlated failures across the entire replication systems. Figure 1 illustrates a typical
scenario where correlated failures occur: suppose an administrator deploys a replication system on
two servers A and B. Unbeknownst to her, if servers A and B share a deep aggregation switch, Aдд,
a glitch of this common switch will result in correlated failures makingA and B become unavailable
simultaneously, causing the entire system to fail.
This example, while simplistic, nevertheless illustrates pervasive documented failures. In a

recent Rackspace outage report [Steven 2014], a glitch occurred on a core switch in the Rackspace
cloud caused multiple servers to be unaccessible, thus making customers fail to access their data
and backups in Rackspace. In another example, Amazon AWS reported that a connection glitch
occurred in Amazon Elastic Block Store (EBS) service for one of availability zones [The AWS Team
2012]. This failure resulted in Relational Database Storage (RDS) service and its backups failing
as well, due to their dependencies on EBS. A recent Microsoft service measurement study [Wu
et al. 2012] has revealed that service outages resulting from unexpected network-level common
dependencies account for the largest proportion (38%) among other types in Microsoft datacenters.
Furthermore, Gunawi et al. analyzed 242 public cloud outage events in news reports, and revealed
that 54 publicly-known outage events were caused by network component failures [Gunawi et al.
2016]. The problem of correlated failures was even discussed in a popular news magazine [Bradbury
2016] recently, where the reporters concluded, after the discussions with the most prominent
researchers in the area, that not enough work was done in this field.
For cloud administrators, discovering or avoiding such unexpected common dependencies has

been known as an important but challenging problem in current enterprise-scale datacenters [Ford
et al. 2010]. Many diagnostic and troubleshooting tools are proposed to localize such failures after
service outages occur [Bahl et al. 2007; Chen et al. 2017, 2016, 2008; Cohen et al. 2004; Kandula
et al. 2009; Kompella et al. 2005; Leners et al. 2011; Reynolds et al. 2006; Wu et al. 2014; Zhou et al.
2011a,b]. However, these post-failure forensics require significant human interventions, which
typically lead to quite prolonged failure recovery time [Wu et al. 2012]. Google has estimated that
the majority of failures in Google cloud are truly correlated, but their engineers usually spent many
hours on identifying the root causes due to the complexity of datacenter [Ford et al. 2010].
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We propose a fundamentally different approach to this dilemma. Rather than localizing or
diagnosing failures after they occurredÐwhich is too late, we aim to enable cloud administrators to
proactively understand and prevent correlated failure risks before the service outages occur.
In particular, this paper presents a novel framework, named RepAudit. RepAudit enables cloud

administrators to easily express heterogeneous auditing tasks, such as ranking all the components
underlying the given replication deployment based on their relative importance, or calculating
the failure probability. Additionally, RepAudit can also suggest to the administrator which servers
should be selected so that the replication deployment has the lowest correlated failure risks. Using
RepAudit, the cloud administrator can better understand the correlated failure risk situations, before
service outages occur.

Building a practical and usable RepAudit, nevertheless, requires addressing several key challenges.
First, it is non-trivial for administrators to express auditing tasks for diverse purposes. Currently
administrators either write analysis scripts manually [Huang et al. 2015], which is error-prone and
tedious, or they adapt some of existing tools to meet specific purposes, e.g., INDaaS [Zhai et al. 2014].
These efforts, unfortunately, are not only ad hoc and difficult to support heterogeneous auditing
tasks, but also need administrators to understand complex underlying structures of replication
systems. To address this issue, we propose a declarative domain-specific auditing language, RAL,
which is intuitive for administrators to express their auditing tasks by writing, but it is also abstract
enough to hide the details of system underlying structures. Our evaluation result shows that
RepAudit uses 80× less lines of code than state-of-the-art efforts [Zhai et al. 2014] in expressing the
auditing task of determining the top-20 critical correlated-failure root causes.

Inside the auditing engine, the underlying structural dependency information is modeled as fault
graph [Zhai et al. 2014]. A fault graph is a data structure representing a system as a Directed Acyclic
Graph (DAG) with logical gates. For the modern datacenter networks with tens or hundreds of
thousands of communication components, it is challenging to develop efficient analysis algorithms.
To solve this issue, we propose a collection of novel and scalable fault graph analysis algorithms,
which are heavily relying on modern SAT solvers. We use a reduction of fault graph analysis to the
weighted partial MaxSAT (WP-MaxSAT) problem [Alviano et al. 2015]. Specifically, we model a
fault graph into a Boolean formula and assign failure probability of each component in the fault
graph as the weight of the corresponding variable in the Boolean formula. Because a WP-MaxSAT
solver can efficiently compute the top-k satisfiable assignments with the maximum weights (i.e.,
highest failure probabilities in our case), such a reduction significantly speeds up the fault graph
analysis with guaranteed accuracy. We employ these analysis algorithms as primitives of the RAL
auditing engine, thus enabling RepAudit to offer cloud administrators efficient and accurate auditing
capabilities even in a cloud-scale replication system. For example, our evaluation results show that
RepAudit can determine the top-20 critical correlated failure root causes in a replication system
containing 30,528 devices within 13 minutes.

Finally, once administrators notice their replication systems have correlated failure risks, asking
them to manually improve the deployments can be again difficult and error-prone. We equip
RepAudit with a novel RAL-code generator that enables administrators to easily write specifica-
tions for conveying their improvement goals to RepAudit, and then the RAL-code generator can
automatically produce the corresponding RAL programs that suggest new deployment plans. With
such deployment plans in hand, the administrators can make the decision on whether they want to
improve their deployments accordingly.
In summary, this paper makes the following contributions:

• RepAudit is the first practical a framework that allows cloud administrators to conveniently
express their auditing tasks.
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• RepAudit offers a new declarative domain-specific language, RAL (Sec. 4).

• We construct the primitives of RAL by leveraging weighted partial MaxSAT solver, which
significantly benefits both accuracy and efficiency of RepAudit’s auditing engine (Sec. 5).

• RepAudit offers an automatic RAL-code generator that can output complex auditing programs
satisfying easily-written specifications (Sec. 6).

• We implement a RepAudit prototype (Sec. 7), and evaluate its expressiveness, accuracy and
efficiency based on large-scale datasets (Sec. 8).

2 MOTIVATING EXAMPLES

In this section, we present four examples to illustrate how can RepAudit be applied in practice.
All the examples are coming from real-world cloud failure and management events [Gill et al.
2011; Gunawi et al. 2016]. In order to highlight the use of RAL and clarify how RAL can help the
administrators, we simplify these scenarios and their corresponding datacenter network topology.
This simplified replication deployment with only two replica servers is given in Figure 2a. More
realistic examples are given in Sec. 8.

Example 1: Finding and ranking of risk component groups.A risk component group [Kaminow
and Koch 1997; Zhai et al. 2014], or RCG, is a set of components whose simultaneous failures can
cause the failure of the entire replication deployment. For example in Figure 1, {Agg} and {Sw1,
Sw2} are two RCGs. One of the main concerns for the cloud administrator is to find such potential
RCGs, and understand which ones are the most critical [Ford et al. 2010; Zhai et al. 2014]. Once
understanding potential RCGs, the cloud administrator can easier decide if the current deployment
is acceptable or should it be changed.
Given the replication deployment shown in Figure 2a, to get the information on critical RCGs,

the cloud administrator writes the following auditing program in RAL language:

let s1 = Server("172.28.228.21");

let s2 = Server("172.28.228.22");

let rep = [s1, s2];

let ft = FaultGraph(rep);

let list = RankRCG(ft, 2, SIZE);

print(list);

The first two lines specify which replica servers the administrator is interested in. In RAL, we
can specify replica servers using their IP addresses, but we also support other ways, e.g., using
server identifiers. The variable rep is a list of servers representing the target replication deployment.
If this list is large, RAL also supports the use of the ellipsis operator, as in example [s1,...,s9].
FaultGraph(rep) is a command that builds a data structure, called fault graph [Kaminow and
Koch 1997; Zhai et al. 2014]. This fault graph contains all the components and their dependencies
underlying servers S1 and S2, as depicted in Figure 2b. We detail more about fault graph in Sec. 3.
The administrator cannot observe a fault graph directly due to its size. Instead, the administrator
calls RankRCG(ft, 2, SIZE) that takes the generated fault graph as input and ranks RCGs. In this
call, the administrator asks for two highest ranked critical RCGs and the results should be ranked
based on their sizes (specified by SIZE). The above program outputs the following ranking list.

1. {Core-Router-1["75.142.33.98"]}

2. {Agg-Switch-1["10.0.0.1"], Agg-Switch-2["10.0.0.2"]}

This ranking shows to the cloud administrator that the most critical RCG is {Core-Router-1}.
Identifying RCGs with fewer componentsÐespecially any of size 1, indicating no redundancyÐcan
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(a) An example datacenter network topology.

Green boxes are used to denote replica data.

  

Replication deployment fails

+

Path1 fails

+

Agg1 fails Core1 fails Agg2 fails

AND gate: a failure propagates upwards, only if all of the subsidiary components fail.

OR gate: a failure propagates upwards, if any of the subsidiary components fails.+

+ +

Agg1 fails Core1 fails Agg2 fails

Server2 failsServer1 fails

Path2 fails Path1 fails Path2 fails

(b) An example fault graph. This fault graph models our exam-

ple replication deployment.

Fig. 2. Our motivating example. This example represents a two-way replication deployment, which means

cloud administrator replicates each data across two servers (called replica servers).

point to areas of the system that require a closer manual inspection. While size-based ranking
does not distinguish which potential component failures are more likely to happen, there is also
ranking based on failure probabilities. This option is working under the assumption that failure
probabilities of components could be obtained [Gill et al. 2011]. To do that the administrator is
using parameter PROB instead of SIZE.

For the Rackspace outage example [Steven 2014] described in Sec. 1, a glitch occurred on a core
switch in Rackspace, disabling many replica servers. If the Rackspace administrators had applied
the above method, they would have noticed that this switch is a critical RCG.

Example 2: Computing the failure probabilities of the target replication deployments.

The administrators should be able to estimate the failure probabilities of their replication deploy-
ments [Ford et al. 2010; Nath et al. 2006]. To do that they should know the failure probabilities of
individual infrastructure components in datacenters, which can be successfully extracted via daily
log information [Gill et al. 2011]. RepAudit introduces a primitive FailProb() to achieve this goal.
Note that even though all the components’ failure probabilities are known, efficiently computing
the entire deployment’s failure probability is challenging, because different servers depend on
multiple overlapping network components that may have deep and complex dependencies layer
by layer. Details on how to efficiently compute the failure probability are given in Sec. 5.3. The
following program computes the failure probability for replication deployment given in Figure 2a.

let s1 = Server("172.28.228.21");

let s2 = Server("172.28.228.22");

let rep = [s1, s2];

let ft = FaultGraph(rep);

let prob = FailProb(ft);

print(prob);

If we assume the failure probability of every device in the Figure 2a network topology is 0.2,
then the above program returns that the failure probability of the target replication deployment is
0.232. Clearly, such a high failure probability is not acceptable in a practical scenarios. Thus, the
administrator can submit a RAL-program to rank individual devices by quantifying their relative
importance. The following program: let list = RankNode(ft); print(list); returns the list:
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1. Core-Router-1 ["75.142.33.98"]

2. Agg-Switch-1 ["10.0.0.1"]

2. Agg-Switch-2 ["10.0.0.2"]

The returned result indicates that the most critical device in the given scenario is Core-Router-
1. Note that RankNode() is different from RankRCG(). Each item in the ranking list represents a
component in the target replication deployment, and its failure may not cause the outage of the
entire replication deployment.

Example 3: Exploring better replica server options bymanipulating a fault graph. Previous
examples showed that the current servers S1 and S2 do not offer a desired reliability of a replication
deployment. To enhance the reliability, the administrator wants to replicate the data on one more
server. She can easily find the best candidate by writing the following RAL program:

let s1 = Server("172.28.228.21");

let s2 = Server("172.28.228.22");

let s3 = Server("172.28.228.23");

let s4 = Server("172.28.228.24");

let s5 = Server("172.28.228.25");

let candList = [s3, ... , s5];

let i = 0;

while (i != len(candList)){

let newRep = [s1, s2, candList[i]];

let ft = FaultGraph(newRep);

let prob = FailProb(ft);

print("Using" + candList[i] + prob);

++i;

}

Example 4: Recommending candidate servers for the most independent replication. Our
last scenario shows: given a set of alternative servers, how can the administrator ask RepAudit to
łrecommendž a replication deployment whose servers have the lowest underlying correlations in the
given set. We call such a replication deployment as the most independent replication deployment
for the given set of servers. More formally, given a set of n servers andm (m < n), our goal is to
find the most independentm-way replication. In RAL, we offer a primitive RecRep(), to compute
the most independent replication deployment by taking as input a list of (candidate) servers and
the number of replicas. In our motivating example, the administrator writes the following RAL
program (for n = 4 andm = 2):

let s1 = Server("172.28.228.21");

let s2 = Server("172.28.228.22");

let s3 = Server("172.28.228.23");

let s4 = Server("172.28.228.24");

let serverList = [s1, s2, s3, s4];

let num_replica = 2;

let list = RecRep(serverList, num_replica);

print(list);
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Fig. 3. An overview of the RepAudit framework.

The RepAudit system outputs the following list of servers. Note that the server groups with the
same ranking have the same correlated failure risks.

1. {Server-1["172.28.228.21"],Server-4["172.28.228.24"]}

1. {Server-2["172.28.228.22"],Server-4["172.28.228.24"]}

1. {Server-3["172.28.228.23"],Server-4["172.28.228.24"]}

4. {Server-1["172.28.228.21"],Server-2["172.28.228.22"]}

5. {Server-1["172.28.228.21"],Server-3["172.28.228.23"]}

5. {Server-2["172.28.228.22"],Server-3["172.28.228.23"]}

The final remark is that the primitives of RepAudit do not necessarily rely on whether failure
probabilities can be obtained, because all the primitives support the RCG size-based metric as their
default measure.

3 FRAMEWORK OVERVIEW

Figure 3 depicts the RepAudit framework overview and a typical workflow of RepAudit. RepAudit
has three main components: an auditing language, an auditing engine and an automatic RAL-code
generator. In a typical RepAudit workflow, the cloud administrator uses our proposed language, RAL
(described in Sec. 4), to write a program expressing an auditing task. Alternatively, the administrator
may leverage the RAL-code generator to automatically generate an auditing program (in Sec. 6).

The auditing engine (described in Sec. 5) parses the RAL program and executes the RAL primitives
on the underlying structures of the cloud system. We use the well-known techniques from the
systems area research to construct formal description of that system: fault graph and dependency
information database (DepDB).

A fault graph.We use a fault graph to model and reason about the independence of replication
deployments. The name ła fault graphž, is used in the system literature [Kaminow and Koch 1997;
Zhai et al. 2014], while in formal reasoning research a fault graph corresponds to a monotone circuit
[Alon and Boppana 1987]. An example of a fault graph is given in Figure 2b. The fault graph has
two types of nodes: failure events and logic gates. Failure event nodes in any given fault graph can
be grouped into three categories: a top event, many basic events, and multiple intermediate events. In
particular, for event nodes which do not have child nodes, we call them as basic events, e.g., łAgg1
failsž and łCore1 failsž in Figure 2b. The root node in a fault graph is called top event. Any fault
graph’s root node is the target replication deployment, and the root node is connected by an AND
gate to multiple nodes representing servers. The rest of nodes are intermediate event nodes.

If a failure event occurs (or not), it outputs a 1 (or 0) to its higher-layer logic gate. The fault graph
has two types of logic gates, AND and OR, which are used to depict different logic relationships
among components’ failures. For an OR gate, if any of its subsidiary components fails, a failure
propagates upwards; for an AND gate, only if all of its subsidiary components fail, the gate
propagates a failure upwards. Because the root node in a fault graph represents the target replication
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Network dependencies of S1, S2 and S3:

<src="S1" dst="Internet" route="Agg1,Core1"/>

<src="S1" dst="Internet" route="Agg2,Core1"/>

<src="S2" dst="Internet" route="Agg1,Core1"/>

<src="S2" dst="Internet" route="Agg2,Core1"/>

<src="S3" dst="Internet" route="Agg3,Core2"/>

<src="S1" dst="S2" route="Agg1"/>

<src="S1" dst="S2" route="Agg2"/>

<src="S1" dst="S2" route="Agg1,Core1,Agg2"/>

Fig. 4. An example for the dependency information on the topology in Figure 2a.

deployment failure event, the fault graph’s root node should be connected by an AND gate to
multiple nodes representing servers holding replicas.

In addition, every node in a fault graph is allowed to be assigned a weight, which is expressing
the failure probability of the associated event.

The dependency information database (DepDB). RepAudit aims to help administrators to ana-
lyze, detect and reduce correlated failure risks, and thus RepAudit heavily relies on dependency data
describing underlying structures of real cloud systems. We build upon the fact that many automatic
dependency acquisition tools have been developed and deployed in today’s cloud providers [Aguil-
era et al. 2003; Bahl et al. 2007; Barham et al. 2004; Chen et al. 2004, 2008; Dunagan et al. 2004;
Kandula et al. 2005, 2009; Kompella et al. 2005; Peddycord III et al. 2012; Zhai et al. 2014].
In our prototype, we employ NSDMiner [Natarajan et al. 2012; Peddycord III et al. 2012] to

automatically collect network dependencies. NSDMiner is a traffic-based network data collector,
which discovers network dependencies by analyzing network traffic flows collected from network
devices or individual packets. We choose NSDMiner, because it does not need to install any extra
agents or software on hosts and can get more accurate results than other representative network
dependency collectors, e.g., Sherlock [Bahl et al. 2007] and Orion [Chen et al. 2008].

We store all the acquired dependency information needed for RepAudit. Next, we transform the
collected information to a formal description, as illustrated in Figure 4. Every network path depen-
dency information in DepDB has a uniform representation: <src="S" dst="D" route="x,y,z"/>,
which describes a route from the source S to the destination D through network components x, y,
and z, such as routers and/or switches.
This way RepAudit does not need to collect any dependency information from the underlying

target servicesÐit extracts all needed information from the DepDB.

4 AUDITING LANGUAGE: RAL

We propose and develop RAL, a domain-specific language that allows cloud administrators to
express their auditing tasks. In principle, RAL is a strong and dynamic typed query language, which
is interpreted by RepAudit’s auditing engine (cf. Sec. 5), without any compilation involved.

RAL syntax. Figure 5 shows the RAL’s expressions, which include global variable д, constant
value c , list l and query primitive q. The expressions do not have side effect. Constant values in
RAL are either real numbers or strings. Lists we sometimes also denote as [] and [e1, . . . ,en]. Query
primitives in RAL enable various auditing purposes. These primitives are typically designed for
analyzing the underlying structures of target replication deployments. Server(e) and Switch(e)

are used to return a server node instance and a switch node instance according to the IP address
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e ::= д | c | l⟨e⟩ | q | e1 op e2 Expression
c ::= i | str Real number or string
l⟨e⟩ ::= nil | e :: l List
q ::= Server(e ) Initializing server node

| Switch(e ) Initializing switch node
| FaultGraph(e ) Generating fault graph
| RankRCG(e1,e2,metric ) Ranking RCGs
| RankNode(e,metric ) Ranking devices
| FailProb(e ) Failure probability
| RecRep(e1,e2) Recommending replication
| AddPath(e1,e2) Adding path
| · · ·

metric ::= SIZE | PROB Ranking metric

Fig. 5. Expression of RAL

e , respectively. FaultGraph(e) generates a fault graph that represents the replication deployment
consisting of the input server list e . RankRCG(e1, e2, metric) and RankNode(e, metric) rank RCGs
and individual device nodes within the given fault graph (i.e., e1 and e) according to the ranking
metric parameters, respectively. FailProb(e) computes the failure probability of a replication
deployment represented by fault graph e . RecRep(e1, e2) takes an candidate server list e1, and
returns a list containing e2 server nodes, which means given e1 alternative servers, using these e2
servers to hold replicas would offer a replication deployment with the lowest correlated failure
risk. AddPath(e1,e2) can be used to automatically add a network path e2 to fault graph e1. Note that
making the query primitives accurate and scalable is very challenging in practice, because they
typically need to analyze a large-scale and complex fault graph. Sec. 5 details the primitive design.
Statements in RAL include assignments to global variables, output instructions, and structured

control commands (e.g., branching and loops). While function calls are not supported in our current
design, they can easily to be added in the future work.

S ::= let д = e Assignment
| print(e ) Output
| S1; S2 | if(e ){S1} else{S2} | while(e ){S }

Query evaluation. In order to represent the auditing result in RAL, i.e., the return values of query
primitives, we introduce the abstract query value.

v ∈ aval Abstract query value
::= c | node | l⟨v⟩ Constant value or node or list

node := leaf i | inner r l⟨node⟩ Abstract node
r ::= AND | OR Logical relation

The query results consist of constant value, abstract network node (or abstract node), and list.
The abstract node can be used to represent the underlying topology structures of replication
deployments of interest. An abstract node n is either a leaf node (leaf i ), where i is the failure
probability of the node, or an inner node (inner r l⟨node⟩), where l⟨node⟩ represents the list of
lower-level child nodes of the node n and r is the logical relation among these child nodes. The AND
relation means that only if all of lower-level child nodes fail, the node n fails, while OR indicates
that the failure of any lower-level child nodes would make the node n fail. In principle, a leaf node
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τ (д) = v

Γ,τ ⊢ д ↓ v

e = c | nil

Γ,τ ⊢ e ↓ e

Γ,τ ⊢ e ↓ v1 Γ,τ ⊢ l ↓ v2

Γ,τ ⊢ e :: l ↓ v1 :: v2

Γ,τ ⊢ e ↓ str Γ(str ) = node

Γ,τ ⊢ Server(e ) ↓ node

Γ,τ ⊢ e ↓ str Γ(str ) = node

Γ,τ ⊢ Switch(e ) ↓ node

Γ,τ ⊢ e1 ↓ i1 Γ,τ ⊢ e2 ↓ i2

Γ,τ ⊢ e1 op e2 ↓ i1 op i2

Fig. 6. Selected rules of expression evaluation.

represents basic event in fault graph, and an inner node corresponds to either an intermediate
event or a root event in fault graph. The replication deployment topology shown in Figure 2b can
be represented as the following abstract nodes (we omitted the tail nil in the list construction).

S1 = inner AND (Path1 :: Path2)
S2 = inner AND (Path1 :: Path2)
Path1 = inner OR (Agg1 :: Core1)
Path2 = inner OR (Core1 :: Agg2)
Agg1 = leaf 0.5
Agg2 = leaf 0.5
· · ·

Thus, all the abstract nodes can be evaluated as a mono-circuit [Alon and Boppana 1987] contain-
ing one or more leaf nodes. We write monoCircuit to denote the function that takes an abstract
node and returns a mono-circuit formula containing all the leaf nodes underlying this node.

n = leaf _

monoCircuit(n) = n

n = inner AND l f =
∧

∀n′∈l

monoCircuit(n′)

monoCircuit(n) = f

n = inner OR l f =
∨

∀n′∈l

monoCircuit(n′)

monoCircuit(n) = f

For example, transforming the abstract node S1 to the mono-circuit formula gives us:

monoCircuit(S1) = (Agg1 ∨ Core1) ∧ (Core1 ∨ Agg2)

The semantics of the query primitives are defined in terms of this monoCircuit function. Because
expressions have no side effects, we fix a finite map Γ from IP address to abstract node and a finite
map τ from global variable to abstract query value. We use Γ,τ ⊢ e ↓ v to denote the expression
evaluation, which takes the IP table Γ, global environment τ and returns an abstract query value
v : aval. Figure 6 shows selected expression evaluation rules.

We now detail the definition of several non-trivial queries’ evaluations as examples. The evalua-
tion of FaultGraph(e ) adds an AND dependency over the nodes list e and introduces a new abstract
node, which does not exist in the original topological structure. This newly introduced abstract
node represents the replication deployment upon e . The replication deployment shown in Figure 2b
is represented as (inner AND (S1 :: S2)), where the AND gate indicates that the replicated deployment
will fail only if all the replicated server nodes fail.
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Γ,τ ⊢ e ↓ l⟨node⟩

Γ,τ ⊢ FaultGraph(e ) ↓ (inner AND ⟨node⟩)

Since we have introduced this abstract node and its corresponding node graph representing the
target replication deployment, the evaluation of the query expressions can be defined as the opera-
tions over this node graph. Take the query RankRCG as an example.Wewrite RCG(monoCircuit(n),l⟨leaf⟩) =
True to denote that the leaf node list l is a RCG of the abstract node n, which means the failure of
all the nodes in l will lead to the failure of the node n.

c ∈ l⟨leaf⟩

RCG(c,l⟨leaf⟩) = True

v = RCG(c1,l ) ∧ RCG(c2,l )

RCG(c1 ∧ c2,l⟨leaf⟩) = v

v = RCG(c1,l ) ∨ RCG(c2,l )

RCG(c1 ∨ c2,l⟨leaf⟩) = v

For the fault graph shown in Figure 2b, we have:

RCG (monoCircuit(S1),Agg1) = False

RCG (monoCircuit(S1),Agg1 :: Core1) = True

Therefore, with the ranking metric SIZE, RankRCG will return a list of minimal RCG. The minimal
RCG is defined as a list of leaf node and removing any of them will make the list fail to form the
RCG (more definitions in Sec. 5.2). For instance, (Core1 :: nil) is a minimal RCG of the node S1.

Γ,τ ⊢ e1 ↓ n Γ,τ ⊢ e2 ↓ i c = monoCircuit(n)

v = l⟨l⟨leaf⟩⟩ size (v ) = i ∀l ∈ v,RCG(c,l ) = True ∀l ∈ v,∀x ∈ l ,RCG(c,l/x ) = False

Γ,τ ⊢ RankRCG(e1,e2,SIZE) ↓ v

Among these query primitives, the AddPath(e1,e2) is special in the sense that it will change the
abstract node e1 in the IP table Γ by introducing a new abstract path node as a child of e1. The
abstract path node does not exists in the original topology network and is an inner node having a
list of leaf child nodes e2 associated with OR.

Γ,τ ⊢ e1 ↓ n Γ,τ ⊢ e2 ↓ l⟨leaf⟩

n = inner AND l ′ p = inner OR l n′ = inner AND (l ′ :: p) Γ′ = Γ[n ← n′]

Γ′,τ ⊢ AddPath(e1,e2) ↓ n
′

Note that the AddPath query requires that the target node e1 is an inner node with AND gate, since
the practical meaning of this query is to add a redundant network path to the original replication
deployment topology. For example, after the query AddPath(S1,Core2 :: Agg2), the mono-circuit
formula representing S1 becomes:

monoCircuit(S1) = (Agg1 ∨ Core1) ∧ (Core1 ∨ Agg2) ∧ (Core2 ∨ Agg2)

In this case, (Core1 :: nil) is no longer a RCG of S1, thus making the replication deployment
more reliable. We have more examples for AddPath() in Sec. 6.

Semantics. Figure 7 defines the semantics of RAL under the form of a big-step semantics. We write
Γ ⊢ S : τ ↓ (out ;τ ′) for the semantics of statements: from the global environment τ , execution of S
terminates and yields output out and global environment τ ′.
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Γ,τ ⊢ e ↓ v τ ′ = τ [д ← v]

Γ ⊢ let д = e : τ ↓ (ϵ ;τ ′)

Γ,τ ⊢ e ↓ v

Γ ⊢ print(e ) : τ ↓ (v ;τ )

Γ ⊢ S1 : τ ↓ (o1;τ
′) Γ ⊢ S2 : τ

′ ↓ (o2;τ
′′)

Γ ⊢ S1; S2 : τ ↓ (o1 :: o2;τ
′′)

Γ,τ ⊢ e ↓ i i , 0 Γ ⊢ S1 : τ ↓ (o;τ
′))

Γ ⊢ if(e ){S1} else{S2} : τ ↓ (o;τ
′)

Γ,τ ⊢ e ↓ 0 Γ ⊢ S2 : τ ↓ (o;τ
′))

Γ ⊢ if(e ){S1} else{S2} : τ ↓ (o;τ
′)

Γ,τ ⊢ e ↓ 0

Γ ⊢ while(e ){S } : τ ↓ (ϵ ;τ )

Γ,τ ⊢ e ↓ i i , 0 Γ ⊢ S : τ ↓ (o;τ ′) Γ ⊢ while(e ){S } : τ ′ ↓ (o′;τ ′′)

Γ ⊢ while(e ){S } : τ ↓ (o :: o′;τ ′′)

Fig. 7. Operational semantics of RAL.

5 AUDITING ENGINE

RepAudit’s auditing engine parses and executes RAL programs. The main challenge for the engine
is to design and implement RAL primitives capable of scaling to large-scale, complex datacenter
network topologies containing tens or hundreds of thousands of communication devices. In this
section, we describe the designs of five important primitives in the RAL language, FaultGraph(),
RankRCG(), FailProb(), and RecRep(), that enables administrators to perform diverse auditing
tasks in both efficient and accurate way even in cloud-scale networks.
We omit other primitives whose designs are straightforward. In addition, RepAudit allows

administrators to define and customize new primitives to support their specific goals.

5.1 The Fault Graph Generation: FaultGraph()

An RAL language primitive FaultGraph() takes as input a list of servers and returns a fault graph,
represented as a mono-circuit formula.
The fault graph is constructed automatically, using only the information from the dependency

information database (DepDB). First, RepAudit constructs the root node which denotes the failure
of the target replication deployment. Then, all the servers from the input list become children nodes
of the top event, connected with an AND gate. Using the AND gate indicates that the replication
deployment will fail iff all the replica servers fail. For each of servers, we query the DepDB to
obtain all the network paths relevant to the server. A path would fail iff any of its devices (e.g.,
some switch) fails. Thus, network devices on each path are connected with an OR gate.
Finally, we translate the constructed fault graph into a Boolean formula, to every variable we

also assign the failure probability, as described in Sec. 4. For every leaf n node we define a new
Boolean variable Bn . The translation algorithm T , which takes as input a root node in fault graph
and returns a Boolean formula, is straightforward:

T (n) =





T (n1) ∧ T (n2) n = inner AND (n1 :: n2)

T (n1) ∨ T (n2) n = inner OR (n1 :: n2)

Bn n = leaf _

A fault graph describing the replication deployment topology from Fig. 2b is a formula

(Agg1 ∨ Core1) ∧ (Core1 ∨ Agg2) ∧ (Agg1 ∨ Core1) ∧ (Core1 ∨ Agg2)
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Algorithm 1: RCGs auditing primitive

Input: F ← the input fault graph

Input: k ← the number of critical RCGs desired

Input: c ← critical metric for ranking

Output: R ← ranked RCGs list

1 costVector← ∅; // cost vector

2 x ← ∅; // minimal cost assignment list

3 rcg← ∅;

4 switch c do

5 case SIZE // Extracting the top-k RCGs with the smallest sizes

6 foreach variable i in F do

7 costVector[i]← 1;

8 case PROB // Extracting the top-k RCGs with the highest failure

probabilities

9 foreach variable i in F do

10 costVector[i]← (−100)× the logarithm of failure probability of

variable i;

11 ϕ ← F ;

12 for i ← 1 to k do

13 rcg← ∅;

14 x ←WP-MaxSATSolver(ϕ, costVector);

15 if x is a model then

16 k ← k − 1;

17 foreach literal i in the assignment list x do

18 if x[i] = TRUE then

19 rcg.append(x[i]);

20 R.append(rcg);

21 ϕ ← ϕ ∧ ¬x ;

22 else

23 break; // No feasible result

24 return R;

When this formula evaluates to true, that means that the depicted replication deployment failed.
Thus, any satisfying assignment of F denotes a risk component group.

5.2 RCG Auditing Primitive

A risk component group (or RCG) [Kaminow and Koch 1997; Zhai et al. 2014] is a group of basic
failure events such that if all of them occur simultaneously, then the top event occurs as well. We
define an RCG as a minimal RCG if the removal of any of its constituent failure events makes it no
longer an RCG. Consider the following two RCGs in Figure 2b: {Agg1 fails, Core1 fails} and {Agg2
fails, Core1 fails}. None of them is a minimal RCG because {Core1 fails} alone is sufficient to cause
the top event to occur.
Analyzing minimal RCGs in a large-scale fault graph structure is an NP-hard problem [Zhai

et al. 2013], and this is a potential obstacle for auditing current datacenter networks. The previous
attempts, using Monte Carlo simulations did not scale well [Zhai et al. 2013]. On the other hand,
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existing SAT solvers can successfully check satisfiability of Boolean formulas arising from practical
and industry-scale problems. There are reports [Balyo et al. 2016] showing that formulas with
millions of variables and clauses can be solved in seconds. We thus decided to use advances in
modern SAT solvers and de the task of finding minimal RCGs in a fault graph to the weighted
partial MaxSAT (WP-MaxSAT) problem.

Definition 5.1. [Ansótegui et al. 2009, 2010] For a given Boolean formula ϕ with n variables
x1,x2, . . . ,xn , and a corresponding cost vector, {ci |ci ≥ 0,1 ≤ i ≤ n}, the goal is to find a satisfying
assignment for ϕ that minimizes the formula:

C =

n∑

i=1

cixi (1)

An assignment sets every variable xi to 1 or 0.

Algorithm 1 provides an implementation of the RankRCG() language primitive. The algorithm
works in two phases. In the first phase we initialize the cost vector according to the criterion for
ranking (lines 4-10 in Algorithm 1). For the SIZE criterion (i.e., extracting the top-k RCGs with the
smallest sizes), each leaf node’s cost is 1. For PROB option (i.e., extracting the top-k RCGs with the
highest failure probabilities), each leaf’s value ci = (−100) logpi , where pi is its failure probability.

To explain the value of ci , note that computing a failure probability of a single RCG is a product
of the failure probabilities of all of its components. However, the WP-MaxSAT problem is about
finding the satisfiability assignment where the sum of the costs of variables, that are set to 1, is
minimal. That is why we use the log function. Having an RCG with {y1, . . . ,ym } components, its
cost will be computed as Σmi=1ci = Σmi=1 (−100) logpi = (−100) logΠm

i=1pi . If we just used ci = logpi ,
the resulting costs would be negative numbers, which cannot be the applied in the WP-MaxSAT
problem. Therefore we multiply each value with a negative number. This way the finding the
minimal cost assignment will result in an RCG with the highest failing probability.

Theorem 5.2. Given a fault graph with {x1, . . . ,xn } variables, where every xi is associated cost

ci . An RCG {y1, . . . ,yk } ⊆ {x1, . . . ,xn } is minimal iff it is a solution of the corresponding weighted

partial MaxSAT problem.

In the second phase of the algorithm, we invoke a WP-MaxSAT solver on the formula ϕ and
find the top k- critical RCGs through k loop iterations. We used an open source weighted partial
MaxSAT solver Maxino [Alviano 2015]. Since the numbers − logpi were too small and too close in
the value for the solver, we use ci = (−100) logpi .

5.3 Computing the Failure Probability

The RAL primitive FailProb() computes the failure probability of the fault graph’s top event.
Because the intermediate nodes in fault graph are not independent, computing the failure probability
of the top event can be done by computing a conditional probability for a Markov chain. However,
previous attempts did not scale for a large fault graph [Zhai et al. 2014]. We again reduce this
computation task to the weighted partial MaxSAT problem for guaranteed accuracy and efficiency.
This way we delegate the burden of heavy computations to a WP-MaxSAT solver problem.

To compute the failure probability of the top eventT , i.e., Pr(T ), we first call RankRCG() to output
the top-k RCGs of the T , and then compute Pr(T ) based on the inclusion-exclusion rule:
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Pr(T ) =

k∑

i=1

Pr(RCGi ) −
∑

1≤i<j≤k

Pr(RCGi ) · Pr(RCG j )

+

∑

1≤i<j<m≤k

Pr(RCGi ) · Pr(RCG j ) · Pr(RCGm )

+ · · · + (−1)k−1 Pr(RCG1) · Pr(RCG2) · · · Pr(RCGk )

(2)

where RCGi means the ith RCG output by RankRCG(). In Figure 2b example, for k = 2, there are
two RCGs, i.e., {Core1 fails} and {Agg1 fails, Agg2 fails}. Let us assume the failure probability of
each component is 0.2 (clearly, too high for practical purpose, we use it only for a demonstration).
We compute the probability of the top event (i.e., the failure probability of the target replication
deployment) by: Pr(T ) = 0.2 · 0.2 + 0.2 − 0.2 · 0.2 · 0.2 = 0.232.

Note that FailPro() is not guaranteed to always return 100% accurate failure probability, since
we consider only the top-k RCGs during the process of computation. Nevertheless, because the
administrators use the probabilities only to get an estimate on how reliable the replication systems
are, we believe that using an efficient algorithm that efficiently obtains (almost) accurate results is
more important than having a completely accurate but computationally expensive algorithm.

5.4 Recommending Replication Deployments

The RAL primitive RecRep() recommends the most independentm-way replication deployment
according to a given list specifying n candidate servers. With such a candidate server list in hand,
the most straightforward way designing RecRep() is to traverse all the possiblem-way replication
deployment cases and use FailProb() or RankRCG() to compute a metric for picking out the most
suitable one. However, such an approach is impractical in a datacenter topology with tens of
thousands of nodes, since it needs to try Cm

n cases.
We design a scalable RecRep() inspired from an existing theory named network transforma-

tion [Plotkin et al. 2016]. In principle, network transformation theory can transform a given
structurally symmetric network N (e.g., datacenter network) into a łsimplifiedž network N ′, with
equivalent connectivity and reachability but with much less nodes, by exploiting datacenter network
symmetry and network surgery (in which irrelevant sets of nodes and paths are sliced away). We
follow the network transformation effort proposed by Plotkin et al. [Plotkin et al. 2016] to develop
a network transformation solver that can transform a given łsymmetricž CNF into a simpler CNF
with the same reachability and validity but with much less variables. Figure 8 gives an example
about the input and output networks of our network transformation tool.
The algorithm of RecRep() includes three steps. First, by taking candidate server list as input,

we generate a Boolean formula representing dependencies underlying all the servers in the given
candidate list. Second, we put the generated formula into the network transformation tool [Plotkin
et al. 2016], obtaining a tailored formula representing the simplified topology. Finally, we traverse
all the possible redundant deployment cases on the transformed small topology and extract the
most independent deployment. The independence metric could be computed by FailProb() or
RankRCG().

We make no claim that network transformation is novel in itself, as it is an existing theory and
has been applied in other domains to scale verifications; we merely utilize it in a new domain (i.e.,
independent redundant deployment extraction) to enable our efficient auditing.
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Fig. 8. A simple example for network transformation.

6 RAL CODE GENERATION

We believe that expressing basic auditing tasks in RAL (e.g., Example 1, 2 and 4 in Sec. 2) is easy.
However, once the cloud administrators understand correlated failure risks in their replication
deployments, they often need to improve the reliability of their deployments. This is typically
done by: 1) additionally deploying replicas on new servers (cf. Example 3 in Sec. 2), 2) adding new
paths to connect existing servers and switches, 3) moving replicas from some of current servers to
another servers, or 4) using new devices with low failure probabilities to replace vulnerable ones.
RAL offers language primitives (e.g., AddNode(), AddPath(), MvRep(), and ChNode()) to allow

administrators to łsimulatež a desired replication deployment at the logical level. The administrators,
therefore, can estimate whether the new replication deployments satisfy their goals. For example, in
Example 3 (Sec. 2) an administrator tried to find a new replication deployment using RAL program.
Nevertheless, because these advanced RAL programs are done by administrators manually, it

is an error-prone process and there is no guarantee that the resulting program finds the optimal
solution such as adding the minimal number of paths. In order to avoid this tedious process, we
extend the RAL language with a possibility to automatically generate the RAL code that helps
administrators to obtain better deployments.
Note that the RAL-code generator only łchangesž replication deployments at the logical level,

rather than physically updating deployments. In addition, the generator aims to produce RAL code
for common but difficult-to-write auditing tasks, rather than generating simple RAL code like the
Example 1, 2 and 4 in Sec. 2, because RAL itself has been expressive enough for those simple cases.

6.1 Grammar and Usage

An administrator specifies what code should be generated using the following template call:

goal (spec | scheme | CONSTRAINTS*)

The specification, scheme and constraints are formed according to the following grammar:

spec := failProb(ft) op N | sizeMinRCG(ft) op N

op := < | ≤ | = | > | ≥

scheme ::= ChNode | MvRep | AddPath | AddNode | · · ·

CONSTRAINTS := l⟨PosConstr⟩,l⟨NegConstr⟩

PosConstr := !DeviceID |!Serv
NegConstr := ∼ DeviceID |∼ Serv

Here, N is a number, given by the administrator, to compare the failure probability or the size of
the minimal RCGs to this threshold N. Current scheme contains four types of reliability enhancement
schemes: adding new paths (i.e., AddPath), moving replicas from some of current servers to another
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servers (i.e., MvRep), additionally deploying replicas on new servers (i.e., AddNode), and using more
reliable devices to replace the old ones (i.e., ChNode). Our RAL-code generator is extendible to more
schemes as long as administrators define more primitives. CONSTRAINTS is an optional parameter
and it stands for a list of constraints. There are two type of constraints: positive and negative. In
negative constraints, we indicate that certain devices cannot be used, or certain servers should not
be used to hold replica data. In positive constraints (or a better name: enforcing constraints), we
specify to the generator that some devices or servers must be used.

Usage example. The example below illustrates how to use the feature of RAL-code generator in
our small replication system example shown in Figure 2a:

let s1 = Server("172.28.228.21");

let s2 = Server("172.28.228.22");

let rep = [s1, s2];

let ft = FaultGraph(rep);

goal (failProb(ft) < 0.08 | AddPath | ~Agg3);

In this program, the target replication deployment consists of two servers s1 and s2. The goal
for an improvement is to make the replication deployment’s failure probability lower than 0.08.
Additionally, we require adding new paths to the underlying topology (i.e., AddPath scheme), and
the new paths cannot contain the switch Agg3. Taking this specification as input, the generator
outputs the following RAL program.

let ls1 = [Switch("Agg1"), Switch("Core2")];

let path1 = (s1, ls1);

ft = AddPath(ft, path1);

let ls2 = [Switch("Agg2"), Switch("Core2")];

let path2 = (s2, ls2);

ft = AddPath(ft, path2);

The generated RAL program adds the lowest number of paths to the existing fault graph and it
is guaranteed that the new fault graph has the failure probability lower than 0.08. The generated
code is presented to the administrator, and she then may decide if the physical network topologies
should be updated accordingly.

6.2 Code Generation Algorithm

The algorithms employed in the RAL-code generator for different schemes (e.g., AddPath, MvRep,
AddNode, and ChNode) are all based on efficient searching through the space of all possible solutions
for the specified goal. During the search process, the algorithms cut off unnecessary solution
branches based on specified constraints. We omit the generation algorithm for ChNode and AddNode

schemes, since they are straightforward to design. We detail the design of generation algorithms
for AddPath and MvRep schemes.

RAL-code generation for AddPath scheme. The algorithm works in two phases. In the prepro-
cessing phase, all network paths are classified into groups according to the number of overlapping
devices, between that group and the topology of original replication deployment. Intuitively, all
the paths in the same group have the equal effects in terms of improving the original replication
deployment’s independence. For example in Figure 2a, a candidate path <src="S4" dst="Internet"

route="Agg3,Core2"/> has no overlapping device with the current replication deployment. In the
second phase, the algorithm finds new paths to be added to the existing fault graph. Adding each of
these paths in fault graph would influence the independence of the entire replication deployment.
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Algorithm 2: RAL-code generation algorithm for AddPath scheme.

1 Algorithm generation()

Input: Spec← the given specification;

Input: map()← mapping the solution to Prog

Output: Prog← RAL program for Spec

2 F ← Spec.faultGraph;

3 д ← Spec.goal;

4 c ← Spec.constraints;

5 F ′ ← findPaths(F, g, c);

6 if F ′ = noSolution then

7 return noSolution;

8 else

9 Prog.append(map(F’));

1 Procedure findPaths()

Input: F ← the input fault graph;

Input: д← the specified goal;

Input: c ← the constraints;

Output: F ′← new fault graph satisfying д;

2 f ← F ;

3 v ← classify all the candidate paths into groups;

4 for each group v[i] in v do

5 j ← len(v[i]) − 1;

6 // v[i][0 : j] means the former j paths in the group v[i]

7 if check ( f ∧v[i][0 : j],д,c ) = ok then

8 F ′ ← binarySearch(f ,v[i][0 : j],д,c);

9 if F ′! = nil then

10 return solution F ′;

11 else

12 return EXCEPTION;

13 else

14 f ← f ∧v[i][0 : j];

15 return noSolution;

Using the binary search, we find the minimal number of paths. The constraints are enforced by
discarding the paths that do not satisfy them.
Algorithm 2 describes the process. First, the algorithm gathers all the candidate paths into the

corresponding groups according to the number of overlapping devices between these paths and
the target replication deployment. With v[i], we denote a group of all candidate paths, which have
i overlapping devices with the replication deployment. Our algorithm searches a solution from
v[0] to v[len(v ) − 1] (in that order), because a path in v[0] can make the łbiggestž independence
improvement to the original replication deployment. During searching through the v[i] group,
the algorithm uses binary search way to check whether the current solution is the optimal one
satisfying the specified goal and constraints (line 8 in findPaths()).

RAL-code generation for MvRep scheme. Similar to AddPath scheme, the code generation algo-
rithm for MvRep scheme also works in two phases. In the preprocessing phase, all available servers
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Algorithm 3: RAL-code generation algorithm for MvRep scheme.

1 Procedure findServers()

Input: F ← the input fault graph;

Input: д← the specified goal;

Input: c ← the constraints;

Output: F ′← new fault graph satisfying д;

2 f ← network_transform(CNF_transform(F ));

3 v ← classify all the candidate servers into groups;

4 u ← classify all the servers of f into groups;

5 for each group v[i] in v do

6 j ← len(v[i]) − 1;

7 // v[i][0 : j] means the former j servers in the group v[i]

8 if check ( f − u[i][0 : j] ∧v[i][0 : j],д,c ) = ok then

9 F ′ ← binarySearch(f ,u[i][0 : j],д,c);

10 if F ′! = nil then

11 return solution F ′;

12 else

13 return EXCEPTION;

14 else

15 f ← f − u[0 : j] ∧v[i][0 : j];

16 return noSolution;

(servers not used by the current deployment) are classified into groups according to the number
of overlapping devices, between that group and the topology of original redundant deployment.
Intuitively, all the servers in the same group have the equal effects in terms of improving the
original replication deployment’s independence. For example, in Figure 2a, candidate server S4 has
no overlapping device with the current replication deployment. In the second phase, the algorithm
finds new servers to replace some of replica servers in the current system. Such a replacement
would influence the independence of the entire replication deployment. To continue with the
previous example, if we use S4 to replace S2, the independence of the new deployment is much
better than the original one. We find the minimal number of servers that need to be replaced by
using the binary search. We enforce the specification’s constraints by discarding the paths that do
not satisfy them.

Algorithm 3 describes the process of MvRep scheme. First, the algorithm gathers all the candidate
servers into the corresponding groups v according to the number of overlapping devices between
these servers and the target replication deployment. We use v[i] to denote a group of all candidate
servers, which have i overlapping devices with the target replication deployment. Meanwhile, the
algorithm calls the network transformation toolbox [Plotkin et al. 2016] to generate a simplified
fault graph (i.e., f in Algorithm 3) and then puts all the replica servers in f into groups u. After
the above preprocessing, our algorithm searches for a solution from v[0] to v[len(v ) − 1] (in
that order), because a server in v[0] can make the łbiggestž independence improvement to the
original replication deployment. During searching through the v[i] group, the algorithm uses
binary search to check whether the current solution is the optimal one satisfying the specified goal
and constraints.
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Summary. The RAL-code generation algorithms (including AddPath, MvRep, AddNode and ChNode

schemes) search at the best-effort independence improvement on the original deployment, and
then narrow the solution space down with the binary search algorithm, finding this way a program
that satisfies the specified goal and the constraints.

6.3 Extending RAL-Code Generator for More Advanced Goals

In practice, administrators may want their replication systems to achieve more sophisticated
reliability goals, such as: 1) enabling their replication systems to balance the trade-off between
the synchronization latency and independence of replicated data, and 2) obtaining a replication
deployment with the lowest failure probability in a group of deployments where all the RCGs’ sizes
are larger than a certain number. These reliability goals are realistic requirements of current cloud
administrators; however, achieving these targets in reality are non-trivial and error-prone [Bodik
et al. 2012].
With RepAudit in hand, an administrator can easily obtain a replication deployment plan that

meets complex reliability goals as shown above, by extending the template call of RAL-code
generator. We now present an example for extending the RAL-code generator to obtain a replication
deployment that balances the trade-off between the synchronization latency and independence of
replication.
The only new language operator we need to add in the RAL-code generator is an AND operator,

which will be used in spec. In particular, AND allows administrators to express a specification where
multiple conditions should hold simultaneously. For instance, if we want to take into account
both the synchronization latency (e.g., sync < 0.01ms) and independence (e.g., failure probability
< 0.08), then an administrator can specify a goal like: goal(latency < 0.01 AND failProb(ft) <

0.08 | MvPath). The RAL-code generator can directly read the above goal and then returns the
results without changing any code in the generator. This is because we in fact only add more
checking conditions in g (line 3 in generation() of Algorithm 2), and the g is checked by different
procedures that correspond to specified schemes. In principle, any extension on specification means
more conditions (or constraints) need to be checked to cut off branches that violate any of these
conditions (e.g., latency and failure probability in our example), and thus we can obtain desired
replication deployments that should be the solutions in the whole space-search process in the
invoked procedure.
For example in Figure 2a, we still assume the failure probability of each device is 0.2 and

assume the latency among servers is lower than 0.1ms. The administrator conveys RepAudit a
specification like goal(latency < 0.01 AND failProb(ft) < 0.08 | MvNode), which means we
want to generate such a deployment by moving replica data from some of current servers to another
servers (defined earlier). Then, she gets the following results: Plan 1: Move replica data from S1 =>
S4; Plan 2: Move replica data from S2 => S4.
The above generated plans mean if the administrator moves one of her replica data from S1

or S2 to S4, then the failure probability of her replication system would be less than 0.08 and the
synchronization latency between replica servers is less than 0.01ms. Note that the only additional
information we require is the data for latency among replica servers. The RAL-code generator can
get this information by querying DepDB (defined in Sec. 3), which is responsible for providing the
profiling information of the underlying topology.

7 IMPLEMENTATION

This section first describes the implementation of our RepAudit prototype in Sec. 7.1. In order to
deeply evaluate RepAudit, we also implemented two auditing toolsÐbased on two state-of-the-art
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fault graph analysis approaches, minimal cut-set algorithm and failure sampling algorithmÐto
compare with RepAudit. We describe the implementation of these two systems in Sec. 7.2.

7.1 RepAudit Prototype Implementation

We developed an RepAudit prototype that fully implemented our design in a mix of C++, shell
scripts and several open-source software components. The prototype consists of RAL, the auditing
engine and the RAL-code generator. We used C++ to develop RAL as a domain-specific language
following the grammar defined in Sec. 4. In the auditing engine, there are two key implementations
that significantly optimize the performance: 1) we adapted a high-performance weighted partial
MaxSAT solver, called Maxino [Alviano 2015], to enable the WP-MaxSAT capability, and 2) we
developed a fault graph parser which can transform any given fault graph into a CNF Boolean
formula. The implementation of RAL-code generator introduced a set of corner-case optimizations
to speed up the solutions search.

The source code for our implementation is available at (https://github.com/ennanzhai/repaudit).

7.2 The Implementation of Comparable Systems

We now present how we implement two state-of-the-art fault graph analysis tools. For simplicity,
we call these two tools as MCS (Minimal Cut-Set) and FSA (Failure Sampling), respectively. This
is because they rely on minimal cut-set and failure sampling algorithms, respectively. Both MCS
and FSA are also implemented in a mix of C++, shell scripts and several open-source libraries,
which makes them fair to compare with RepAudit. In the rest of this section, we detail the working
principle of the core algorithms of these two tools.

Minimal cut-set approach. The first tool, MCS, is implemented based on minimal cut-set algo-
rithm [Kaminow and Koch 1997], which produces the precise minimal RCGs but is not scalable as
it takes exponential time in the input size. In particular, the algorithm traverses a fault graphT in a
reverse breadth-first order (from basic events to the top event). Basic events first generate RCGs
containing only themselves, while non-basic events produce RCGs based on their child events’
RCGs and their input gates. For a non-basic event, if its input gate is an OR gate, the RCGs of this
event include all its child events’ RCGs; otherwise, if its input gate is an AND gate, each RCG of this
event becomes an element of the Cartesian product among the RCGs of its child events. Traversing
the fault graph T generates all the RCGs, and in turn all the minimal RCGs through simplification
procedures.

Failure sampling approach. Another auditing tool, FSA, implements the failure sampling algo-
rithm [Zhai et al. 2014]. It is designed based on random sampling, and aims to randomly determine
RCGs efficiently but not accurately. In a typical process, this algorithm uses multiple sampling
rounds, each of which performs a breadth-first traversal of the fault graphT . Within each sampling
round, the algorithm assigns either a 1 or a 0 to each basic event ofT based on random coin flipping,
where 1 represents failure and 0 represents non-failure. Starting from such an assignment, the
algorithm assigns 1’s and 0’s to all non-basic events from bottom to top based on their logic gates
and the values of their child events. After each sampling round, the algorithm checks whether
the top event fails. If it fails (i.e., its value is 1), then the algorithm generates an RCG consisting
of all the basic events being assigned a 1 in this sampling round. The algorithm executes a large
number of sampling rounds and aggregates the resulting RCGs in all rounds. The failure sampling
algorithm offers the linear time complexity, but is non-deterministic and cannot guarantee that the
resulting RCGs are minimal.
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Table 1. Expressiveness (in LOC) comparison between RAL, MCS and FSA on various auditing tasks.

Auditing tasks RAL MCS FSA

Modeling underlying topologies 4 213 224
Extracting and ranking RCGs 5 244 433
Computing failure probability 9 287 562
Ranking components 10 289 No Support
Recommending the most independent deployments 16 562 1395

Table 2. Configurations of the evaluated topologies.

Topology A Topology B Topology C Topology D

# Switch ports 16 24 48 64
# Core routers 64 144 576 1,024
# Agg switches 128 288 1,152 2,048
# ToR switches 128 288 1,152 2,048
# Servers 1,024 3,456 27,648 65,536

Total # devices 1,344 4,176 30,528 70,656

8 EVALUATIONS

RepAudit consists of three key components (RAL, auditing engine and RAL-code generator); thus,
our evaluation aims to answer the following three questions:

• Whether RAL is expressive (Sec. 8.1)?

• Whether the auditing engine is scalable to large-scale fault graphs (Sec. 8.2)?

• How expensive is our RAL-code generator (Sec. 8.3)?

8.1 Evaluating the Expressiveness of RAL

Our first goal is to evaluate the expressiveness of the RAL language, and thus we compare auditing
programs written in RAL with MCS and FSA (described in Sec. 7) in terms of lines of the code (LOC).
In particular, we use the three tools to express different auditing tasks, including: 1) modeling
underlying topologies, 2) extracting and ranking RCGs in a given replication system, 3) computing
failure probability, 4) ranking components based on their relative importance, and 5) recommending
the most independent deployments.

Table 1 shows the expressiveness comparison results. We can observe that the auditing programs
written in RAL are significantly more concise than the other two systems. For example, RAL
program uses ∼80× less lines of code than FSA in expressing an RCG-ranking task. This is because
RAL is a domain-specific language for expressing the correlated failure risk auditing tasks. In
addition, it is difficult to write task ranking components by using FSA, because FSA in principle
cannot output accurate minimal RCGs and ranking components heavily rely on the results of
minimal RCGs.

8.2 Evaluating Auditing Engine

We now compare the efficiency/accuracy trade-off of different auditing approaches, including
RepAudit, MCS, and FSA, respectively.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 97. Publication date: October 2017.



An Auditing Language for Preventing Correlated Failures in the Cloud 97:23

 0

 20

 40

 60

 80

 100

 1  2  4  8  16  32  64  128 256 512%
 t
o
p
-2

0
 c

ri
ti
c
a
l 
R

C
G

s
 d

e
te

c
te

d

Computational time (seconds)

RepAudit

MCS

FSA (10
2
 rounds)

FSA (10
3
 rounds)

FSA (10
4
 rounds)

(a) Topology A: 1,344 devices.
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(b) Topology B: 4,176 devices.
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(c) Topology C: 30,528 devices.

Fig. 9. Performance evaluation of RepAudit, MCS and FSA.

We use FNSS [Saino et al. 2013], a standard and widely-accepted datacenter topology generator,
to generate four topologies from a small-scale cloud deployment (with 1,344 devices) to a large-
scale deployment (with 70,656 devices). All the topologies follow well-known fat tree datacenter
model. Note that the topology configurations generated by FNSS are equivalent to realistic fat tree
topologies [Mysore et al. 2009] in terms of our evaluation context. These topologies include the
typical devices within a commercial datacenter: servers, Top-of-Rack (ToR) switches, aggregation
switches, and core routers. Table 2 details the configurations of our evaluated topologies. Note that
the topology configurations generated by FNSS are equivalent to real fat tree topologies in terms
of our evaluation purposes. All the experiments in this section are conducted on a Dell Precision
T3600 workstation equipped with Intel Xeon E5-1620 v2 Quad Core HT 3.7 GHz CPU and 16 GB
memory.
Figure 9 compares the capabilities of evaluated tools by using them to rank the top-20 critical

RCGs with size metric in Topology A, B and C. We only evaluate the performance of RepAudit on
Topology D, because MCS and FSA are too slow for Topology D. As shown in Figure 9, RepAudit
not only runs much faster than the compared auditing tools MCS and FSA, but also obtains 100%
accurate the top-20 critical RCGs. For MCS, which is implemented based on minimal cut-set
algorithm, although it can also obtain the 100% accurate results, the running time is not acceptable
in practice. For example, for the Topology C, MCS needs more than 2048 minutes to get the result.
On the other hand, because FSA is implemented based on randomized sampling algorithm, it can
run faster than MCS. However, as the sizes of target datasets increase, the accuracy of the FSA is
significantly affected. For example in Topology C, FSA with 104 sampling rounds can only detect
less than 20% critical RCGs. On the contrary, RepAudit can get 100% accurate results within 13
minutes. The reason RepAudit can work much better than MCS and FSA in both accuracy and
efficiency aspects is RepAudit is built upon modern WP-MaxSAT solver, which is equipped with
many smart heuristic algorithms.

Can RepAudit try Topology D? Furthermore, we also run a more challenging fat tree topology
consisting of 5120 64-port switches and 65,536 servers. In such a huge dataset, RepAudit outputs
the top-5 critical RCGs within 15 minutes; on the contrary, other two tools, MCS and FSA, are
time-out (i.e., > 48 hours).

8.3 Evaluating RAL-Code Generator

To evaluate the performance of our RAL-code generation, we measure the code generation time
under different scales of datacenter topologies (shown in Table 2). In our experiments, we randomly
select four replica servers, and generated RAL program reducing the failure probability of the
selected replication deployment lower than 0.009. The scheme we choose is the AddPath scheme.
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Table 3. RAL-code generator processing time.

Topology A Topology B Topology C Topology D

Load time (ms.) 0.22 1.2762 12.65 33.004
Generation time (sec.) 0.2955 1.0245 7.353 23.279

Total time (sec.) 0.2957 1.0258 7.3657 23.312

Table 3 shows the evaluation results. In Table 3, load time denotes the preprocessing time, and
generation time denotes the time spent on generating RAL programs. We can observe two useful
phenomena: 1) our code generation approach is scalable to large-scale datacenter network (even for
Topology D); and 2) network path loading time (i.e., preprocessing time for the RAL-code generator)
is much faster than the running generation algorithm.

9 LIMITATIONS AND DISCUSSIONS

This section discusses the limitations of current RepAudit and potential solutions.

Correlated failures caused by dependencies other than network sources, e.g., deep bugs.

Our current RepAudit mainly focuses on correlated failures resulting from network-level compo-
nents and their dependencies. However, in practice, many cloud service failures were caused by
bugs within common software dependencies, such as packages and libraries [Gunawi et al. 2014,
2016]. In fact, collecting software dependencies has been out of our scope, because RepAudit is
responsible for analyzing the structural data rather than acquiring this data. Given the fact that
several existing systems [Zhao et al. 2016, 2014] offer automatic software dependency collection
capability, RepAudit can be extended to handle the correlated failures caused by common bugs, as
long as we can connect these tools to our framework.

Auditing tasks requiring solvers different than WP-MaxSAT. Our current RAL primitives
heavily rely on WP-MaxSAT solver to ensure their efficient and accurate executions. However,
for some practical auditing tasks, WP-MaxSAT solvers may not be the most suitable ones. As an
illustration, suppose an administrator would want to introduce a new primitive which will return
all the affected components if a certain set of components fails. In this case, the administrator
should use an efficient reachability solver [Lal et al. 2012] for that task. Nevertheless, it is important
to stress that our RepAudit prototype is modularly designed so that the administrator can easily
add a new solver if she wants to extend the language with a new auditing primitive. She can also
easily replace the currently used WP-MaxSAT solver with any other WP-MaxSAT solver.

Detecting RCGs across inter-cloud replications. The current RepAudit design cannot identify
RCGs within inter-cloud replication systems, where each individual cloud provider is responsible
for one replica. This is because in practice no provider is willing to share its own dependency
information with other cloud providers. For example, as an application-level cloud provider, iCloud
rents Amazon S3 and Microsoft Azure storage for reliability enhancement [Hardaware 2011]. If
iCloud wants to use RepAudit to analyze its replication deployment, RepAudit needs to collect
infrastructure information for both S3 and Azure storage to understand its own infrastructure
dependencies. Unfortunately, the access may be difficult if not impossible as this information tends
to be secret, proprietary information. Thus, the RepAudit cannot provide solution to the replication
deployments across multiple individual infrastructure providers. Some alternative solutions include:
1) introducing a trusted third-party to collect all the infrastructure information from cloud providers
(e.g., EC2 and Azure for iCloud) and perform the RepAudit for target replication deployments, and
2) using secure multi-party computation (SMPC) [Yao 1982] to privately provide analysis. Xiao et
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al. [Xiao et al. 2013] and Zhai et al. [Zhai et al. 2013, 2014] proposed privacy-preserving approaches
to auditing application services across multiple clouds.

10 RELATED WORK

Offering structural auditing to the cloud services has been advocated as an effective means to avoid
correlated failures and ensure the reliability of replication in the cloud [Shah et al. 2007]. However,
practical (i.e., expressive, effective and efficient) auditing method still remains an open problem. To
the best of our knowledge, RepAudit is the first effort offering expressive, effective and efficient
auditing to cloud-scale replication deployments.
As the first effort for structural cloud auditing, INDaaS can quantify the independence of repli-

cation deployment of interest [Zhai et al. 2014]. INDaaS employs failure sampling algorithms to
analyze fault graphs, which is the same as FSA. Compared with RepAudit, both effectiveness and
efficiency of INDaaS are much worse than RepAudit (see the evaluation results performed by FSA
in Sec. 8). More important, due to the lack of language-level support, INDaaS is too complex to be
configured by administrators for expressing their tasks.

In the post-failure forensics (or called troubleshooting) field, diagnosis systems [Bahl et al. 2007;
Barham et al. 2004; Chen et al. 2004, 2008; Dunagan et al. 2004; Kandula et al. 2005, 2009; Kom-
pella et al. 2005; Peddycord III et al. 2012] and accountability systems [Haeberlen 2009; Haeberlen
et al. 2010] identify failure root-causes after outages. Compared with proactive failure prevention
techniques, e.g., RepAudit and INDaaS, these troubleshooting approaches mainly have two disad-
vantages. First, all the troubleshooting efforts cannot avoid system downtime, because they aim
to identify root causes of failures after outages occur. Second, existing investigations have shown
troubleshooting systems eventually leads to prolonged failure recovery time in the face of complex
cloud-scale systems [Wu et al. 2012].
Recent years, new language approaches have been developed to analyze dependency graphs

representing systems or programs of interest, in order to offer safety guarantees [Huang et al. 2011;
Johnson et al. 2015; von Hanxleden et al. 2014]. Existing dependency graph-based efforts mainly
focus on checking and controlling data flow and information flow of programs or systems, rather
than estimating correlated failure risks within interdependent structures underlying cloud-scale
replication deployments. Because different system structures need very different dependency graph
modeling, e.g., PDG [Johnson et al. 2015], fault graph [Zhai et al. 2014, 2013] and attack trees [Huang
et al. 2011; Zhai et al. 2015], existing dependency graph languages are not suitable to the correlated
failure auditing problem.
To facilitate the management of datacenter networks, language-based approaches have been

proposed to verify datacenter network properties or synthesize datacenter network rules and
policies. In particular, NoD [Lopes et al. 2015] is used to check important properties of datacenter
networks, e.g., the reachability of some packets, through writing the corresponding specifications.
McClurg et al. [McClurg et al. 2015] propose a synthesis approach that automatically produces
datacenter network rule-update scripts that should be guaranteed to preserve specified properties.
Different from RepAudit, these efforts aim to assist cloud administrators to understand and manage
network traffic within their datacenter networks.

11 CONCLUSION

We have presented a novel language-based framework RepAudit for administrators to express
diverse auditing tasks to cloud-scale replication systems. By comparing with state-of-the-art efforts,
we demonstrate RepAudit is much easier to use, in the sense that we can express complex auditing
tasks significantly more succinctly. Furthermore, RepAudit generates the auditing results much
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more efficiently and more accurately. To the best of our knowledge, RepAudit is the first effort
capable of simultaneously achieving expressive, efficient and accurate auditing.
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