
New Applications of Software Synthesis:
Verification of Configuration Files and Firewall

Repair
Ruzica Piskac?

Yale University

Abstract. The main goal of software synthesis is to automatically de-
rive code from a given specification. The specification can be either ex-
plicitly written, or specified through a couple of representative examples
illustrating the user’s intent. However, sometimes there is no specifica-
tion and we need to infer the specification from a given environment.
This paper present two such efforts.
We first show, using verification for configuration files, how to learn spec-
ification when the given examples is actually a set of configuration files.
Software failures resulting from configuration errors have become com-
monplace as modern software systems grow increasingly large and more
complex. The lack of language constructs in configuration files, such as
types and grammars, has directed the focus of a configuration file veri-
fication towards building post-failure error diagnosis tools. We describe
a framework which analyzes data sets of correct configuration files and
derives rules for building a language model from the given data set. The
resulting language model can be used to verify new configuration files
and detect errors in them.
We next describe a systematic effort that can automatically repair fire-
walls, using the programming by example approach. Firewalls are widely
employed to manage and control enterprise networks. Because enterprise-
scale firewalls contain hundreds or thousands of policies, ensuring the
correctness of firewalls – whether the policies in the firewalls meet the
specifications of their administrators – is an important but challenging
problem. In our approach, after an administrator observes undesired be-
havior in a firewall, she may provide input/output examples that comply
with the intended behavior. Based on the given examples, we automat-
ically synthesize new firewall rules for the existing firewall. This new
firewall correctly handles packets specified by the examples, while main-
taining the rest of the behavior of the original firewall.

Keywords: Software synthesis · program repair · verification · configu-
ration files · firewalls

?This research was sponsored by the NSF under grants CCF-1302327, CFF-1553168,
and CCF-1715387

1

2

1 Introduction

Software synthesis has the potential to transform the software development pro-
cess, by eliminating software errors before they even occur. The essence of soft-
ware synthesis is that a programmer must only state what should be done, and
not how it should be done. Instead of writing code manually, a programmer pro-
vides a specification and the synthesis tool automatically generates code that
satisfies the specification. Consequently, the generated code is correct by con-
struction, thereby avoiding many of the potential errors that could creep into
manually written code.

Recent work in this area has focused on manipulating fundamental data types
such as strings [5,9,14], lists [4,10] and numbers [15]. The success and impact of
this line of work can be estimated from the fact that some of this technology [5]
ships as part of the popular Flash Fill feature in Excel 2013 [16].

A common thread to all those tools that they take a given specification and
automatically generate code corresponding to that specification. The specifi-
cation can be explicitly written, in which case we are talking about complete
specification, or it can be given in the form of input/output examples. The user
provides those examples and they should be chosen so that they illustrate the
user’s intentions. Nevertheless, this is still an incomplete specification, which
means that there might be many programs satisfying the given examples. This
type of software synthesis is well known under the name programming by exam-
ple [3, 6, 8].

In this paper we describe two application domains for software synthesis
that have not been not previously studied by the community working in formal
methods and verification. One topic is synthesis of a specification for configura-
tion files (Sec. 2, previously published in [12,13]). The second project introduces
so-called repair by example, which is used for verification and repair of firewall
programs (Sec. 3, previously published in [7]).

2 Verification of Configuration Files

Configuration errors (also known as misconfigurations) have become one of the
major causes of system failures, resulting in security vulnerabilities, application
outages, and incorrect program executions [17, 18]. In 2015 Facebook, Tinder,
and Instagram all became inaccessible for approximately 52 minutes. A Facebook
spokeswoman reported that this was caused by a change to the site’s configura-
tion system [11]. These critical system failures are not rare – a software system
failures study [19] reports that about 31% of system failures were caused by
configuration errors. This is even higher than the percentage of failures resulting
from program bugs (20%).

A recent study [2] showed that in 2016 software errors cost the United States
economy approximately $1.1 trillion. Detecting and preventing software errors
plays a major role in a development process, with programmers using techniques
like testing, debugging, and verification. However, none of these techniques can

3

be applied to finding errors in configuration files. Effective testing of config-
uration files is difficult because errors may arise only under certain, hard to
simulate conditions, such as heavy traffic loads. Another approach to finding
errors in program code is software verification, which has been applied to many
complex systems (for example, operating systems, compilers). However, tradi-
tional verification techniques cannot be applied to configuration files, because
these techniques rely on formal specifications describing the expected behavior
of the program. The difficulty with configuration files is that they are mostly
simple text files of keywords and values, and there is no traditional sense of a
specification. With no formal specification of correctness or semantic program
information, verifying configuration files is far outside the scope of existing tech-
nologies.

Modern verification technologies inherently depend on the availability of for-
mal specifications, yet they are extremely labor intensive to create and maintain.
This is especially the case for configuration files, which rarely have any docu-
mentation, even in written English form. We proposed and developed the first
tool that can synthesize complex configuration specifications. Our tool com-
bines knowledge discovery techniques with automated reasoning to synthesize
constraint models of configuration files.

In the first prototype of our tool, ConfigC [13], we analyzed existing cor-
rect configuration files and learned properties that always hold in those con-
figuration files. Some examples of the properties are ordering constraints (e.g.,
one library should be loaded before another), type constraints (e.g., which key-
words act as Boolean flags), and size constraints (e.g., that some memory size
always needs to be bounded by some other). Once we have learned such con-
straints/specifications, ConfigC can verify users configuration files, and report
any violations to the user.

We extended this work to a more advanced tool ConfigV [12], which is the first
tool that can automatically detect complex errors involving multiple variables,
and learn over a training set of partially incorrect configuration files. ConfigV
required two core theoretical advances; the first was the introduction of proba-
bilistic types, and the second was an extension to association rule learning [1].
Since configuration files lack helpful semantic information to infer types, we use
a probabilistic inference method to learn likely types for keywords based on their
values from the training set. We combined this new type information with a gen-
eralization of association rule learning that handles not just association rules,
but arbitrary, typed predicates.

We evaluated ConfigV by verifying public configuration files on GitHub, and
we showed that ConfigV can successfully detect configuration errors in these
files.

3 Verification and Repair of Firewalls

Firewalls play an important role in today’s individual and enterprise-scale net-
works. A typical firewall is responsible for managing all incoming and outgoing

4

traffic between an internal network and the rest of the Internet. The firewall
accepts, forwards, or drops packets based on a set of rules specified by its ad-
ministrators. Because of the central role firewalls play in networks, small changes
can propagate unintended consequences throughout the network.

We proposed and developed the first framework, called FireMason [7], https:
//github.com/BillHallahan/FireMason, that not only detects errors in fire-
wall behaviors, but also automatically repairs the firewall. Broadly speaking, a
firewall is correct if the rules of that firewall meet the specification of its admin-
istrator. While existing tools can identify the cause of an error, administrators
still have to manually find an effective repair to the firewall so that it meets
the specification. We introduced the concept called repair by example. Specifi-
cally, a user provides a list of examples of packets and desired routing (e.g., all
packets with a certain source IP address should be dropped) to describe the de-
sired behavior of the firewall. The current firewall might or might not route the
packets as specified in the examples, but FireMason automatically synthesizes
a new firewall that is guaranteed to satisfy the examples. Given the complexity
of enterprise-scale networks, finding such a repair requires considerable exper-
tise on the part of the administrator. To the best of our knowledge, there is no
other existing effort that automates firewall repairs by examples. The concept
of “repair by example” was motivated by the standard practice of how users ask
for help with repairing their firewalls. On user forums, users would provide their
firewalls and then list a couple of illustrative examples to show how the behavior
should change.

The main challenges in firewall repair and verification is that adding a new
rule might fix the current problem, but entirely break the behavior on some
packages that the user might not have considered. To ensure the correctness
of the repair we use techniques from formal methods. We translated a firewall
into the formal mathematical language of first-order logic. This allows us to
use existing SMT solvers which can automatically reason about these logics. As
an illustration, checking if the repair broke some of previously correct behavior
reduces to checking a formulas entailment.

By using SMT solvers, FireMason can provide formal guarantees that the
repaired firewalls satisfy two important properties:

– Those packets described in the examples will be routed in the repaired fire-
wall, as specified in provided examples.

– All other packets will be routed by the repaired firewall exactly as they were
in the original firewall.

Taken together, these two properties allow administrators confidence that the
repairs had the intended effect.

By using our formalism we are able to check some important and widely
used, but previously out-of-scope, properties, including rate limits. Rate limits,
which are frequently used in modern firewalls, put a restriction on the number of
packets matched in a given amount of time. Such rules say, for example, that we
can only accept 6 packets per minute from a certain IP address. As before, the
user provides a list of examples, but with relative times. This requires reasoning

https://github.com/BillHallahan/FireMason
https://github.com/BillHallahan/FireMason

5

about the priorities and permissions of each firewall entry, as well as the temporal
patterns of the incoming packets.

In addition to repairing, FireMason is also a stand-alone verification tool.
For a given specification, such a checking if a certain packet will be rejected,
FireMason can either prove that it holds, or it produce counterexamples.

We evaluated our tool using real-world firewall issues from user forums. We
observed that FireMason is able to efficiently generate correct firewalls meeting
administrators’ examples, without introducing any new problems. In addition,
our evaluation shows that FireMason scales well to enterprise-scale networks.

4 Conclusions

More details about the presented projects can be found in [7, 12,13].
Two presented projects demonstrated that software synthesis can be success-

fully applied to problems, such as repair of firewalls and verification of configu-
ration files, which are usually tackled by a system research community. One of
the main obstacles was that often the specification does not exist and needs to
inferred from the given context or provided examples. In our experience finding a
suitable formalism to model the problem and efficiently solve real world instances
is crucial. Both presented tools were successfully tested on the real world exam-
ples, which motivates us to further pursue addressing non-traditional synthesis
problems.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (Jun 1993), http://doi.
acm.org/10.1145/170036.170072

2. Cohane, R.: Financial cost of software bugs. https://medium.com/@ryancohane/
financial-cost-of-software-bugs-51b4d193f107 (2017)

3. Cypher, A., Halbert, D.: Watch what I Do: Programming by Demonstration. MIT
Press (1993)

4. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015. pp. 229–239 (2015)

5. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: POPL. pp. 317–330 (2011)

6. Gulwani, S.: Synthesis from examples: Interaction models and algorithms. 14th In-
ternational Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (2012), Invited talk paper

7. Hallahan, W.T., Zhai, E., Piskac, R.: Automated repair by example for firewalls. In:
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria,
October 2-6, 2017. pp. 220–229 (2017), https://doi.org/10.23919/FMCAD.2017.
8102263

8. Lieberman, H.: Your Wish Is My Command: Programming by Example. Morgan
Kaufmann (2001)

http://doi.acm.org/10.1145/170036.170072
http://doi.acm.org/10.1145/170036.170072
https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107
https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107
https://doi.org/10.23919/FMCAD.2017.8102263
https://doi.org/10.23919/FMCAD.2017.8102263

6

9. Menon, A.K., Tamuz, O., Gulwani, S., Lampson, B.W., Kalai, A.: A machine
learning framework for programming by example. In: ICML (1). pp. 187–195 (2013)

10. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, Portland, OR, USA, June 15-17, 2015. pp. 619–630
(2015)

11. Ryall, J.: Facebook, Tinder, Instagram suffer widespread issues. http://mashable.
com/2015/01/27/facebook-tinder-instagram-issues/ (2015)

12. Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., Piskac, R.: Synthesizing con-
figuration file specifications with association rule learning. PACMPL 1(OOPSLA),
64:1–64:20 (2017), http://doi.acm.org/10.1145/3133888

13. Santolucito, M., Zhai, E., Piskac, R.: Probabilistic automated language learning
for configuration files. In: Computer Aided Verification - 28th International Con-
ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II.
pp. 80–87 (2016), https://doi.org/10.1007/978-3-319-41540-6_5

14. Singh, R., Gulwani, S.: Learning semantic string transformations from examples.
PVLDB 5 (2012)

15. Singh, R., Gulwani, S.: Synthesizing number transformations from input-output
examples. In: CAV. pp. 634–651 (2012)

16. Flash Fill (Microsoft Excel 2013 feature),
http://research.microsoft.com/users/sumitg/flashfill.html

17. Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., Talwadker, R.: Hey, you have
given me too many knobs!: understanding and dealing with over-designed configu-
ration in system software. In: The 10th ESEC/FSEJoint Meeting on Foundations
of Software Engineering (Aug 2015)

18. Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., Pasupathy,
S.: Do not blame users for misconfigurations. In: The 24th SOSPACM Symposium
on Operating Systems Principles (Nov 2013)

19. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.:
An empirical study on configuration errors in commercial and open source sys-
tems. In: Proceedings of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles. pp. 159–172. SOSP ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2043556.2043572

http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://doi.acm.org/10.1145/3133888
https://doi.org/10.1007/978-3-319-41540-6_5
http://research.microsoft.com/users/sumitg/flashfill.html
http://doi.acm.org/10.1145/2043556.2043572

