
Live Programming By Example

Mark Santolucito
Computer Science
Yale University
mark.santolucito@yale.edu

William T. Hallahan
Computer Science
Yale University
william.hallahan@yale.edu

Ruzica Piskac
Computer Science
Yale University
ruzica.piskac@yale.edu

ABSTRACT
Live programming is a novel approach for programming practice. Programmers are given real-time
feedback when writing code, traditionally via a graphical user interface. Despite live programming’s
practical values, such as providing an easier overview of code and better understanding of its structure,
it is not yet widely used. In this work, we extend live programming to general purpose code editors,
which allows for live programming to be used by programmers, and provides new interfaces for
understanding and changing the functionality of code. To achieve this we extended a fully-featured
IDE with the ability to show input/output examples of code execution, as the programmer is writing
code. Furthermore, we integrate programming by example (PBE) synthesis into our tool by allowing
the user to change the shown output, and have the code update automatically. Our goal is to use live
programming to give novice programmers a new way to interact and understand programming, as
well as being a useful development tool for more advanced programmers.

CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI’19 Extended
Abstracts), May 4–9, 2019, Glasgow, Scotland Uk, https://doi.org/10.1145/3290607.3313266.

https://doi.org/10.1145/3290607.3313266


CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland Uk

INTRODUCTION
Traditionally, writing a program is a relatively static process: a programmer writes some code and,
after a successful compilation, can observe and inspect its behavior. If the code does not actually
implement the programmer’s intentions, they can correct the program and repeat the process.

Figure 1: Code is written in the left hand
panel, while examples are shown in the
right hand panel.

Figure 2: When the code is modified, the
examples update in real time. Here, the
user has added a space to the output, by
editing the code.

Figure 3: The user can also modify the
output examples, to repair the code. Here,
the user has added a exclamation point to
the end of the example’s output, resulting
in new code that appends an exclamation
point. The old code is preserved in a com-
ment.

Of course, this cycle often extends over a long period of time. Not all bugs are discovered immediately,
and old code often has to be updated to suit new purposes. Unfortunately, documentation is often
incorrect or out of date, leaving the best resource for developers as the code itself [10]. In fact, it is
estimated that half of a programmers time is spent just comprehending previously written code [4].
The live programming paradigm advocates a more dynamic programming cycle that allows the

programmer to inspect and understand the code as it is written. As code is written, the user interface
gives real-time feedback. While existing live programming environments [2, 3, 16] focus on programs
with graphical or auditory output, we focus on general-purpose live programming.

We seek to give programmers immediate feedback as they write code, an understanding of code that
was written in the past, and a way to avoid manually writing code altogether. We accomplish these
goals through input/output examples. We use live debugging to show realtime feedback via changing
outputs to fixed inputs as a function is modified. We also leverage recent advances in programming by
example (PBE) to offer automated repairs based on input/output examples. Programming by example
can be a useful technique for novice programmers, for example in a classroom setting [15].
Both live debugging and PBE are also beneficial when later modifying the code. As opposed to

traditional documentation, the live debugging examples update automatically, and thus will never fall
out of date. PBE simplifies modifying legacy code, by allowing programmers to simply demonstrate
new behavior. Of course, the programmer must be careful to preserve desired existing behavior, but
this can be done by comparing the old and new code, rather than having to write new code manually.

As an implementation, we developed a Javascript live coding plugin for the Atom text editor [7].

LIVE CODING PLUGIN
As shown in Figures 1 to 3, our live programming methodology relies on two panels. Programmers
write code in one panel. The other panel displays input/output examples, which are used for both live
debugging, and programming by example.

Live Debugging
We introduce live debugging as a technique to show realtime feedback as programmers write code.
Programmers can specify an arbitrary number of function inputs. As users write code, we continually
run the code on the given inputs.By observing changes in the input-output pairs, the user receives
immediate feedback about whether the code is correct without actually analyzing it in detail.



CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland Uk

As Javascript is an interpreted language, running syntactically correct code is fairly straightforward.
Unfortunately, the process of editing code often involves that code being in a malformed, syntactically
incorrect state. Thus, we only update the displayed output when the code is, in fact, syntactically
valid. When the user closes the file or editor, we write the examples to a metadata file. We reload the
examples when the file is opened again.

Programming by Example
Our framework also allows for programming by example [5, 6, 9, 11]. PBE is a synthesis technique that
automatically generates programs that coincide with given input/output examples. An example is
specified as a tuple of input and output values. Given a set S = {(i1,o1), . . . , (in ,on)} of input/output
examples, the goal is to automatically derive a program P such that for every j , P(i j ) = oi . The success
and impact of this line of work can be seen from the fact that some of this technology ships as part of
the popular Flash Fill feature in Excel 2013 [8].

When a user modifies an examples output, we update the code to reflect the change. To synthesize
code, we make use of CVC4’s Syntax-guided synthesis (or SyGuS) algorithm [14]. SyGuS is an
approach that performs an enumerative search over the space of possible programs, based on a given
grammar. We draw possible grammatical elements from the existing function implementation and
the provided examples. This both helps ensure that the newly generated code does not stray too far
from the programmers original implementation, and helps constraint the space CVC4 has to search
over. If we fail to find a solution to the SyGus problem, we can iteratively increase the size of the
grammar to include elements not present the user-provided code.

Implementation
We have implemented our live programming methodology as a plugin for Javascript programming in
the Atom text editor [7]. To demonstrate the key ideas, our implementation supports live debugging
for programs manipulating strings. We are in the process of extending this support to other datatypes,
and we see no significant theoretical obstacles to doing so.

There have been many systems from the program synthesis community that build custom editors
for live programming [12] or support synthesis for domain-specific languages invented by the re-
searchers [13]. A key contribution in our implementation is embedding live programming by example
into a language (Javascript) and an editor (Atom) that has a large userbase. By implementing our
tool in this way, we hope to learn how users interact with live programming by example in the wild.
We can collect logs of synthesis tasks requested by users of the tool to contribute new synthesis
benchmarks (for example to the SyGuS competition set [1]) that more accurately reflect the synthesis
tasks that users need.



CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland Uk

CONCLUSION
By combining live debugging and programming by example, our methodology offers programmers a
useful work environment. Live debugging offers rapid feedback as code is written and modified. When
the user encounters unexpected output, they have two options. The user can go back to the code,
detect the source of the error, and correct it manually. However, they can also adjust that output value
directly, and rely on programming by example to ensure the program gives the expected output.

Acknowledgments. This work was supported in part by NSF grants CCF-1302327, CCF-1715387, and
CCF-1553168.

REFERENCES
[1] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2017. SyGuS-Comp 2017: Results and Analysis.

arXiv preprint arXiv:1711.11438 (2017).
[2] Andrew R Brown and Andrew Sorensen. 2009. Interacting with generative music through live coding. Contemporary

Music Review 28, 1 (2009), 17–29.
[3] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and direct manipulation, together at

last. ACM SIGPLAN Notices 51, 6 (2016), 341–354.
[4] Thomas A Corbi. 1989. Program understanding: Challenge for the 1990s. IBM Systems Journal 28, 2 (1989), 294–306.
[5] Allen Cypher. 1991. EAGER: programming repetitive tasks by example. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM, 33–39.
[6] A. Cypher and D.C. Halbert. 1993. Watch what I Do: Programming by Demonstration. MIT Press.
[7] GitHub. 2018. Atom - The hackable text editor. https://github.com/atom/atom.
[8] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In POPL. 317–330.
[9] Sumit Gulwani. 2012. Synthesis from Examples: Interaction Models and Algorithms. 14th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (2012). Invited talk paper.
[10] Thomas D LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: a study of developer work habits.

In Proceedings of the 28th international conference on Software engineering. ACM, 492–501.
[11] H. Lieberman. 2001. Your Wish Is My Command: Programming by Example. Morgan Kaufmann Publishers.
[12] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Proc. ACM

Program. Lang. 2, OOPSLA, Article 127 (Oct. 2018), 28 pages. https://doi.org/10.1145/3276497
[13] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A Hammer. 2018. Live Functional Programming with Typed Holes.

arXiv preprint arXiv:1805.00155 (2018).
[14] Andrew Reynolds and Cesare Tinelli. 2017. SyGuS Techniques in the Core of an SMT Solver. arXiv preprint arXiv:1711.10641

(2017).
[15] Ryo Suzuki, Gustavo Soares, Elena Glassman, Andrew Head, Loris D’Antoni, and Björn Hartmann. 2017. Exploring the

Design Space of Automatically Synthesized Hints for Introductory Programming Assignments. In Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’17). ACM, New York, NY, USA,
2951–2958. https://doi.org/10.1145/3027063.3053187

[16] Bret Victor. 2012. Learnable Programming : designing a programming system for understanding programs. (2012).
Available at http://worrydream.com/LearnableProgramming/.

https://github.com/atom/atom
https://doi.org/10.1145/3276497
https://doi.org/10.1145/3027063.3053187
http://worrydream.com/LearnableProgramming/

	Abstract
	Introduction
	Live Coding Plugin
	Live Debugging
	Programming by Example
	Implementation

	Conclusion
	References

