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Abstract. Linear arithmetic with stars, LIA?, is an extension of Pres-
burger arithmetic that allows forming indefinite summations over val-
ues that satisfy a formula. It has found uses in decision procedures for
multi-sets and for vector addition systems. LIA? formulas can be trans-
lated back into Presburger arithmetic, but with non-trivial space over-
head. In this paper we develop a decision procedure for LIA? that checks
satisfiability of LIA? formulas. By refining on-demand under and over-
approximations of LIA? formulas, it can avoid the space overhead that is
integral to previous approaches. We have implemented our procedure in a
prototype and report on encouraging results that suggest that LIA? for-
mulas can be checked for satisfiability without computing a prohibitively
large equivalent Presburger formula.

1 Introduction

Decision procedures for Presburger arithmetic, also known as linear integer arith-
metic, LIA, are fundamental to many uses of SMT solvers. LIA is a first-order
theory of integers that includes addition and subtraction, but does not include
multiplication between variables. Reasoning about linear integer arithmetic is
widely used in verification. Furthermore, there are several decidable theories for
which the satisfiability problem reduces to reasoning in LIA [13,16]. Yet, LIA is
a mild subset of the highly undecidable Peano arithmetic.

In this paper, we pursue an extension of LIA called LIA?. LIA? extends
LIA by admitting predicates of the form x ∈ {y | F}?, where F is a LIA (or
in the nested case, a LIA?) formula. The set of x that satisfy the formula are
sums of values that satisfy F , thus x =

∑n
i=0 vi, for some n ≥ 0 and such that

F (vi) for each vi. We describe an efficient algorithm, also empirically tested in
practice, for reasoning about LIA?. To our knowledge it is the first available
approach for solving LIA? without requiring eagerly computing a semilinear set
representation explicitly or using a large template as suggested in [17]. Our al-
gorithm maintains under- and over-approximations of a star formula in the form
of LIA formulas. The approximations are refined iteratively until they converge
to the actual solution: the under-approximation may determine satisfiability,
while the over-approximation may determine unsatisfiability. Technically, the
under-approximation is weakened by extending an underapproximate semilinear
representation of the formula, while the over-approximation is strengthened via



LIA? formulas: ϕ ::= F1 ∧ x1 ∈ {x2 | F2}?
such that dim(x1) = dim(x2) and free-vars(F2) ⊆ x2

LIA formulas:
F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F1 | ∃x. F | ∀x. F
A ::= T1 ≤ T2 | T1 = T2
T ::= x | C | T1 + T2 | C · T1 | ite(F, T1, T2)

terminals: x - integer variable; C - integer constant

Fig. 1: Presburger Arithmetic and an extension with the Star Operator.

interpolation exploiting a characterization of the star operator as a solution to
a set of Constraint Horn Clauses (CHCs). In the limit, the algorithm creates a
semilinear set representation of a LIA formula, but only if it is unable to deter-
mine satisfiability using an approximation. The algorithm we present considers
the class of formulas studied in [17]. They involve only a single star formula in a
conjunction. Handling these formulas suffices for an evaluation based on multi-
set formulas, as well as formulas from the more specialized theory of Boolean
Algebra over Presburger Arithmetic, BAPA [12].

We have also investigated how to handle full LIA? allowing an arbitrary nest-
ing of star operators with negations, other Boolean connectives and quantifiers.
Full LIA? extends the ∃LIA? fragment from [9], which does not admit alternating
negations and universal quantifiers with stars. The generalization, which we do
not describe in this paper, can be accomplished using a scheme that also works
with under- and over-approximations of each subformula. We plan to describe
this generalization in future work. While the lower bound complexity of ∃LIA?

is known [9], we do not know the lower bound complexity of full LIA?.

2 Linear Integer Arithmetic with the Star Operator

In this section we introduce LIA? formally. The definition of the LIA? logic
relies on the crucial new operator, the star operator, defined over a set of integer
vectors S, as follows:

S? ,

{
n∑

i=1

si | ∀i.1 ≤ i ≤ n. si ∈ S

}
(1)

In other words, the set S? is a set of all linear combinations of vectors from
S. Implicitly, 0 ∈ S?, for every set S. Figure 1 contains the definition of the LIA?

logic. A LIA? formula is a conjunction of a LIA formula F1 and a star formula
x1 ∈ {x2 | F2}? that states that the vector x1 is a linear combination of solution
vectors x2 of the LIA formula F2. General LIA? formulas allow arbitrary Boolean
combinations as well as nesting of the star operator.

Through the rest of the paper we often use ϕ?(x1), or simply ϕ?, as a short-
hand for x1 ∈ {x2 | ϕ}?.
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(a) Integer solutions of formulas F1 and
F2 lie within the shaded areas. Note that
the solution set for F1 is unbounded.
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(b) The vector (6, 6) is a solution for
F1(x, y) ∧ F ∗

2 (x, y)

Fig. 2: An illustration of a LIA? formula F1(x, y)∧F ∗2 (x, y), such that F1(x, y)⇔
y+2x ≥ 17∧6x−y ≤ 47 and F2(x, y)⇔ 5x+2y ≥ 17∧3x−y ≤ 8∧2x+3y ≤ 20.

Example 1. Consider a simple LIA? example given in Fig. 2. The solid lines
indicate borders within which lie integer solutions of each formula. As it is clear
from Fig. 2a, formula F1(x, y) ∧ F2(x, y) is unsatisfiable. However, the LIA?

formula F1(x, y)∧F ∗2 (x, y) is satisfiable. The dashed lines in Fig. 2b outline the
borders within which lie integer vectors satisfying F ∗2 (x, y) – they are indicated
by the points. Consider, for example, the vector (6, 6): it satisfies F1(6, 6), while
at the same time (6, 6) = 2 ∗ (3, 3) and F2(3, 3) holds.

Checking satisfiability of a LIA? formula is decidable [16]. Furthermore, when
restricting the underlying LIA formulas to be quantifier free, it is an NP complete
problem [17]. The key insight is that (i) the set of solutions of every LIA formula
is a semilinear set, as proved in [8], and (ii) the representation of the solutions
as a semilinear set allows to eliminate the star operator (cf. Theorem 2).

Definition 1. A linear set LS(a, B) is defined by an integer vector a and a
finite set of integer vectors B = {b1, . . . , bn}, all of the same dimension, as
follows:

LS(a, B) ,

{
a+

n∑
i=1

λibi |
n∧

i=1

λi ≥ 0

}
(2)

The vector a is called the shift vector, and the vectors b1, . . . , bn ∈ B are called
the offset vectors.

A semilinear set SLS(ls1, . . . , lsn) is a finite union of linear sets ls1, . . . , lsn,
i.e., SLS(ls1, . . . , lsn) =

⋃n
i=1 lsi.

A linear set LS(a, B) can be seen as Minkowski sum {a} + B∗. In the sequel,
we often view B as a matrix and use λB as a shorthand for

∑n
i=1 λibi.

Theorem 1 (Theorem 1.3 in [8]). Let f be a LIA formula. Then the set of
vectors that satisfy f forms a semilinear set. Furthermore, any semilinear set



U = SLS(LS(a1, B1), . . . , LS(ak, Bk)) can be characterized by a LIA formula,
defined as follows:

Lia(U)(x) ,
k∨

i=1

∃λ ≥ 0 . x = ai + λBi (3)

Theorem 2 (Lemmas 2 and 3 in [17]). Let f be a LIA formula and let U =
SLS(LS(a1, B1), . . . , LS(ak, Bk)) be the semilinear set of vectors that satisfy
f . Then f?(x) ≡ StarLia(U)(x), where StarLia(U) is a LIA formula that
characterizes U? and is defined as follows:

StarLia(U)(x) , ∃µ1 ≥ 0, . . . , µk ≥ 0,λ1 ≥ 0, . . .λk ≥ 0 .

x =

k∑
i=1

µiai + λiBi ∧
k∧

i=1

(µi = 0→ λi = 0)

(4)

Given a LIA? formula F1∧x ∈ {y | F2}?, where F1 and F2 are LIA formulas,
Theorem 1 ensures that there is a semilinear set describing the set of solutions
of F2. Theorem 2 shows how to use that semilinear set to eliminate the star
operator. The resulting LIA formula is equivalent to x ∈ {y | F2}?, thereby
reducing satisfiability checking to LIA.

3 Reasoning about Multisets as a LIA? Problem

Multisets can be seen as a generalization of sets: they are mathematical objects
where an element can appear multiple times in a collection. For example, if a set
contains an element, adding that same element to the set does not change the
set. However, in the same scenario, adding an element to a multiset results in a
different multiset. Formally, a multiset can be defined as a function from some
unbounded set of elements E to the set of natural numbers N. Formulas involv-
ing multisets with cardinality constraints naturally arise in verification when a
container data structure is abstracted in a way that it only tracks the elements
appearing in the data structure. While there are several decision procedures for
multisets [15–17,20], they were essentially impractical, until now.

Multisets And Presburger Arithmetic (MAPA) formulas allow an arbitrary
Boolean combination of atomic formulas that compare multisets for equality
(m1 = m2) or inclusion (m1 ⊆ m2), and quantifier-free LIA formulas, where
arithmetic terms are extended with a cardinality operator for multisets; The
syntax is given in Figure 3. The cardinality operator returns the number of
elements in the multiset; the same elements are counted as many times as they
appear. To count the number of distinct elements in a multiset m, we can use
the expression |set(m)|. The set(·) function converts a multiset into a set. As an
illustration, two different multisets {a, a, a, b, b} and {a, a, b, b, b} as sets are the
same: set({a, a, a, b, b}) = set({a, a, b, b, b}) = {a, b}. Using the set(·) function,



top-level formulas:
F ::= A | F ∧ F | F ∨ F | ¬F
A ::= M=M |M ⊆M | FLIA

quantifier-free linear arithmetic formulas:
FLIA ::= ALIA | FLIA ∧ FLIA | FLIA ∨ FLIA | ¬FLIA

ALIA ::= t ≤ t | t=t
linear arithmetic terms:

t ::= x | |M| | C | t+ t | C · t | ite(FLIA, t, t)
multiset expressions:

M ::= m | ∅ |M ∩M |M ∪M |M ]M |M \M |M \\M | set(M)
terminals:
m - multiset variables; x - integer variable; C - integer constant

Fig. 3: MAPA: Quantifier-Free Multiset Constraints with Cardinality Operator

we can easily express standard BAPA benchmarks as MAPA benchmarks. All
standard set expressions are also defined on multisets. In addition the disjoint
union, ], operator produces a multiset where the multiplicity of elements are
added. Figure 3 provides a grammar for quantifier-free MAPA.

The semantics of MAPA is provided in Figure 4, which describes how ev-
ery MAPA formula can be reduced to an equisatisfiable LIA? formula in linear
time. The reduction follows a sequence of rewriting steps corresponding to the
definitions of multiset operators. A justification for this translation is provided
in [16].

Example 2. Consider the following constraint: if an element is removed from a
multiset, its size will decrease by one. In MAPA, this property can be expressed
as s ⊆ L∧|s| = 1⇒ |L\s| = |L|−1. To prove its validity, we apply the algorithm
given in Fig. 4 to check the satisfiability of the formula s ⊆ L∧|s| = 1∧|L\s| 6=
|L| − 1. The first step flattens the formula and we introduce new variables for
all non-trivial expressions:

x1 6= x2 − 1 ∧ x3 = 1 ∧ |m| = x1 ∧ |L| = x2 ∧ |s| = x3 ∧m = L \ s ∧ s ⊆ L

The resulting formula has three parts: a part that is a pure LIA, a part which
defines cardinality constraints, and a part that is only about multisets without
cardinality constraints. Every MAPA formula can be reduced to this form.

The next step is to translate the resulting formula into a LIA? formula. For
every multiset variable M we introduce an integer variable M̃ . After some basic
simplifications the above formula becomes:

x1 6= x2 − 1 ∧ x3 = 1 ∧ (x1, x2, x3) ∈ {(m̃, L̃, s̃) | m̃ = L̃− s̃ ∧ s̃ ≤ m̃}?

For brevity, we suppress the sign constraints m̃ ≥ 0, L̃ ≥ 0 and s̃ ≥ 0.



INPUT: a multiset formula in the syntax of Figure 3
OUTPUT: an equisatisfiable LIA? formula

1. Occurrences of multiset equalities M1 = M2 that are not top-level are rewrit-
ten to |M1| = |M2| ∧ |M1 \ M2| = 0 ∧ |M2 \ M1| = 0, and similar with
M1 ⊆M2.

2. Flatten all expressions e where e is one of the expressions ∅, M1 ∪ M2,
M1 ∪ M2, M1 ] M2, M1 \ M2, M1 \\M2, set(M1), |M1|, and where the
occurrence of e is not already in a top-level conjunct x = e or e = x for
some variable x:

C[e]  (xf = e ∧ C[xf ]), where xf is a fresh variable.

3. Furthermore, for multi-set variable Mi introduce a top-level conjunction xi =
|Mi| if it doesn’t already exist for fresh xi.

4. Create a LIA? formula. The step eliminates all multisets Mi using a corre-
sponding fresh integer variable M̃i. Let x1 = |M1|, . . . , xn = |Mn| be the

cardinality equalities, then the integer variables are M̃1, . . . , M̃n. All the
rewrite steps are applying the following schema:

F ∧ Fmul  F ∧ (x1, . . . , xn) ∈ {(M̃1, . . . , M̃n) | FLIA ∧
∧
i

M̃i ≥ 0}∗

The schema is applied to the following pairs of multiset and LIA formula:

Fmul : M0 = ∅  FLIA : M̃0 = 0

Fmul : M0 = M1 ∩M2  FLIA : M̃0 = ite(M̃1 ≤ M̃2, M̃1, M̃2)

Fmul : M0 = M1 ∪M2  FLIA : M̃0 = ite(M̃1 ≤ M̃2, M̃2, M̃1)

Fmul : M0 = M1 ]M2  FLIA : M̃0 = M̃1 + M̃2

Fmul : M0 = M1 \M2  FLIA : M̃0 = ite(M̃1 ≤ M̃2, 0, M̃1 − M̃2)

Fmul : M0 = M1 \\M2  FLIA : M̃0 = ite(M̃2 = 0, M̃1, 0)

Fmul : M0 = set(M1)  FLIA : M̃0 = ite(1 ≤ M̃1, 1, 0)

Fmul : M1 ⊆M2  FLIA : M̃1 ≤ M̃2

Fmul : M1 = M2  FLIA : M̃1 = M̃2

Fmul : xi = |Mi|  true

Fig. 4: Algorithm for converting MAPA formulas to LIA? formulas.

The final step is the elimination of the star operator. A semilinear set de-
scribing all the solutions of the formula m̃ = L̃ − s̃ ∧ s̃ ≤ m̃ is a linear set
LS((0, 0, 0), {(1, 1, 0), (0, 1, 1)}). Having the zero vector as the shift vector, sim-
plified the process of eliminating the star operator:

(x1, x2, x3) ∈ {(m̃, L̃, s̃) | m̃ = L̃− s̃ ∧ s̃ ≤ m̃}? ⇔
∃λ1, λ2.(x1, x2, x3) = λ1(1, 1, 0) + λ2(0, 1, 1)



The final formula x1 6= x2 − 1 ∧ x3 = 1 ∧ (x1, x2, x3) = λ1(1, 1, 0) + λ2(0, 1, 1) is
unsatisfiable, proving that the originally given formula was valid.

4 Checking Satisfiability of LIA? Formulas by
Approximating from Above and Below

In this section, we explain our algorithm for checking satisfiability of LIA? for-
mulas.

We fix a LIA? formula g ∧ x ∈ {y | f}?. Observe that the set of solutions
of f? is the least fixpoint of the following set of equations (Constrained Horn
Clauses):

x = 0 −→ f?(x)

f?(y) ∧ f(z) ∧ x = y + z −→ f?(x)
(5)

However, to determine unsatisfiability of g ∧ f?, it suffices to find an over-
approximation o of f? such that g ∧ o is UNSAT, while satisfiability may be
determined based on satisfiability of an under-approximation u. As such, rather
than computing a LIA formula that captures f?, the algorithm approximates
this set and uses the approximations for checking satisfiability of g ∧ f?. To do
so, the algorithm maintains:

– A LIA formula u that underapproximates f?, i.e., u → f?.
– A LIA formula o that overapproximates f?, i.e., f? → o.

Algorithm 1 displays the steps for checking satisfiability of g ∧ f? as a set
of inference rules. The algorithm manipulates three types of states: initial states
of the form 〈g, ϕ〉, internal states of the form 〈g, u, ϕ, o〉 and terminal states
[u, o], where g, u, o, f ∈ LIA and ϕ = f?. The formulas u and o are under-
and overapproximations, respectively, of ϕ, and as such every state satisfies the
invariant that u → ϕ→ o.

On input g ∧ f?, the algorithm starts at the initial state 〈g, f?〉. From the
initial state it follows the ?-Init rule and transitions to the internal state 〈g,x =
0, f?, true〉 that maintains in addition to g and f? also approximations of f?. ?-
Init initializes the underapproximation of f? to include only 0, and initializes
the overapproximation to true.

Transitions between (internal) states refine the approximations according to
the inference rules: weaken the underapproximation of f? (rule ?-Weaken) or
strengthen its overapproximation (rule ?-Strengthen). These transitions take
the form

〈g, u, ϕ, o〉 =⇒ 〈g, u′, ϕ, o′〉 such that u → u′ → ϕ→ o′ → o .

We explain ?-Strengthen in Section 4.1, and ?-Weaken in Section 4.2.
The ?-Converge rule identifies the case where the underapproximation u

has become an over-approximation of f?. This happens when u satisfies Equa-
tion (5) (recall that f? is the least solution of these equations). ?-Converge



Algorithm 1: Procedure for checking satisfiability of a LIA? formula
g ∧ x ∈ {y | f}?.

Initial states: 〈g, ϕ〉 ∈ LIA× LIA?

Internal states: 〈g, u, ϕ, o〉 ∈ LIA× LIA× LIA? × LIA s.t. o → ϕ→ u
Terminal states: [u, o] ∈ LIA× LIA

〈g, f?〉 =⇒ 〈g,x = 0, f?, true〉 ?-Init

g ∧ o is UNSAT
Exit-UNSAT〈g, u, f?, o〉 =⇒ [u, o]

g ∧ u is SAT
Exit-SAT〈g, u, f?, o〉 =⇒ [u, o]

f(x) ∧ ¬u(x) is UNSAT
?-Converge〈g, u, f?, o〉 =⇒ 〈g, u, f?, u〉

x = v |= f(x) ∧ ¬u(x)

u′ = WeakenUnder(u,v)
?-Weaken〈g, u, f?, o〉 =⇒ 〈g, u′, f?, o〉

u(x) ∧ f≤2n(y) ∧ g(x+ y) is UNSAT

o′ = StrengthenOver(o,u,f≤n,g)
?-Strengthen〈g, u, f?, o〉 =⇒ 〈g, u, f?, o′〉

recognizes this case by unsatisfiability of the test f(x)∧¬u(x) since this test is
equi-satisfiable to the “inductiveness” test u(y)∧f(x)∧¬u(x+y) (because u(0)
and u is closed under addition, as we will see in Section 4.2). When this condition
holds, it indicates that the under-approximation has converged to a LIA formula
that is equivalent to f?, and satisfiability of g ∧ f? reduces to satisfiability of
g ∧ u, as they are equi-satisfiable.

In fact, u need not be equivalent to f? to enable determining satisfiability of
g ∧ f?. Equi-satisfiability of u and f? with respect to g is a sufficient condition
for that, which is in turn ensured by equi-satisfiability of u and o with respect
to g (since u → f? → o). Accordingly, we say that:

Definition 2. An internal state 〈g, u, ϕ, o〉 is determined when g ∧ u and g ∧ o
are equi-satisfiable.

Such a state is called determined since equi-satisfiability of the under- and over-
approximations with respect to g implies that they are both equi-satisfiable to
f? with respect to g. Equivalently, the under-approximation is satisfiable or the
over-approximation is unsatisfiable when conjoined with g:

Lemma 1. An internal state 〈g, u, ϕ, o〉 is determined if and only if g ∧ u is
SAT or g ∧ o is UNSAT.



Algorithm 2: StrengthenOver(o,u,f≤n,g)

/* Procedure for computing an over-approximation o of f? */

1 f1 := u(y)∧f≤n(z)∧x = y+z ; f2 := ¬(x = y′ +z′∧f≤n(y′)∧ g(z′))
2 if f1 → f2 then
3 Itp(x) := interpolant between f1 and f2
4 C := conjunction of all interpolants produced so far
5 o := the maximal subset of C such that o(x) ∧ f(y)→ o(x+ y)

6 return o

The Exit-SAT and Exit-UNSAT rules establish these cases as exit criteria
that lead to terminal states.

Note that the exit rules may be applicable before the approximations con-
verge to a formula that is equivalent to f?. However, in the worst case the
algorithm terminates after ?-Converge is applied.

We discuss correctness and termination of the algorithm in Section 4.3, after
we fill in the missing details for weakening and strengthening the approximations.

4.1 Computing Over-Approximations of f?

Our approach for obtaining an over-approximation of f?, depicted in Algo-
rithm 2, is through reverse interpolation against g. Recall that f? is the least
solution of Equation (5). Hence, any solution to these equations is an overap-
proximation of f?. Recall further that the overapproximation o is used for early
detection of unsatisfiability of g∧f? (rule Exit-UNSAT). Hence, the “optimal”
overapproximation (in case g ∧ f? is unsatisfiable) is a solution for the following
set of equations:

x = 0 −→ o(x)

o(y) ∧ f(z) ∧ x = y + z −→ o(x)

o(x) −→ ¬g(x)

As a step towards finding such a solution, we use interpolation. For a given un-
derapproximation u that covers in general an unbounded number of f? solutions
(including x = 0) and where u(y) ∧ f(z) ∧ x = y + z ∧ g(x) is UNSAT, we can
query an interpolation procedure for a predicate Itp(x) such that

u(y) ∧ f(z) ∧ x = y + z → Itp(x) and Itp(x)→ ¬g(x),

The interpolant Itp(x) is disjoint from g. However, it is not in general an over-
approximation of f?(x); rather, it is an over-approximation of a single unfolding
of f from u. We therefore do not use Itp as is, but use it as the basis for obtaining
an overapproximation of f?.

Similar to how IC3 propagates clauses through frames that represent in-
creasing unfoldings of the transition relation, and in the essence of the Houdini



approach for learning conjunctions of inductive predicates from a candidate set
of predicates, our approach is to use conjunctions generated from all the inter-
polation queries to strengthen a global “inductive invariant”, i.e., a formula o(x)
such that x = 0 −→ o(x) and o(y)∧ f(z)∧x = y+z −→ o(x). Such a formula
may not be disjoint from g but it is guaranteed to overapproximate f? (which is
the least solution of these equations). Our task of producing a global invariant
concludes when it implies ¬g(x); or u(x) witnesses satisfiability.

A drawback of posing the interpolation query with only one unfolding of
f is that it could easily find a biased interpolant based on g(x) or u(x). We
therefore pose more general interpolation queries that are forced to produce
separating predicates that generalize beyond 0 or 1 unfoldings with f as follows.
We consider n unfoldings of f :

Definition 3 (f≤n(y)).

f≤0(y) , y = 0

f≤n+1(y) , y = 0 ∨ (∃y1,y2 . y = y1 + y2 ∧ f(y1) ∧ f≤n(y2))

Given some choice of n such that u(y) ∧ f≤2n(x) ∧ g(x+ y) is unsatisfiable,
Algorithm 2 computes an interpolant:

u(y) ∧ f≤n(z) ∧ x = y + z → Itp(x) and

Itp(x)→ ¬(x = y′ + z′ ∧ f≤n(y′) ∧ g(z′))

and uses it as the basis for computing an over approximation as explained above.
(If the above formula is satisfiable, the over approximation is not modified.)

4.2 Computing Under-Approximations of f?

The procedure WeakenUnder extends the current under-approximation u of
f? to include a solution v of f (and hence also of f?) that is not yet covered by
u. Recall that such a solution also establishes that u is not yet inductive since
the test f(x) ∧ ¬u(x) is equi-satisfiable to the test u(y) ∧ f(x) ∧ ¬u(x + y).
The procedure returns a weaker under-approximation u′ such that u → u′ → f?

and x = v |= u′. The procedure relies on (i) computing a semilinear set U that
underapproximates the solutions of f and includes v, and (ii) using Theorem 2
to express its star using a LIA formula. Since the star operator is monotone, we
are guaranteed that applying the star operator on the underapproximation of f
results in an underapproximation of f?.

We start by describing a procedure, called LIA2SLS, for computing a semi-
linear representation of the LIA formula f with access to a LIA oracle only.
WeakenUnder does not invoke that procedure per se, but it uses some of its
ingredients, where it acts as the LIA oracle, as we explain in the sequel.

Definition 4 (LIA oracle). By a LIA oracle we will understand a decision
procedure for LIA, which, given a LIA formula f , returns a model for f if it is
satisfiable, and returns UNSAT otherwise.



Generating semilinear representation of a LIA formula via underapproximations.
The LIA2SLS procedure, displayed in Algorithm 3, generates increasing under-
approximations of f in the form of semilinear sets that converge to a represen-
tation of f .

One should observe that at any given point, LIA2SLS maintains a semilinear
set SLS(LS(a1, B1), . . . , LS(ak, Bk)) that under-approximates (the set of solu-
tions of) f . The semilinear set is represented as a set U of linear sets LS(ai, Bi),
where each of them is represented by its shift vector and offset vectors. In the
sequel, we sometimes identify U with the semilinear set. Using this terminology,
an invariant of the procedure is that Lia(U) → f (where Lia(U) denotes the
formula associated with the semilinear set, as defined in eq. (3)).

Initially, the under-approximation U is the empty set (rule Init). The proce-
dure then augments the under-approximation until f → Lia(U), in which case
f ≡ Lia(U) and U is its representation as a semilinear set (rule Exit). As long
as this is not the case, Augment extends U by adding a solution of f that is
not yet covered, followed by a saturation procedure. Saturation applies the rules
Merge, Shift Down and Offset Down that use coordinate-wise comparison
between vectors, defined below, in order to minimize shift and offset vectors and,
as we will see, ensure termination.

Definition 5 (a � b). For two integer vectors a and b define

a � b ,
∧

0<i≤dim(a)

(0 ≤ ai ≤ bi ∨ 0 ≥ ai ≥ bi) (6)

Algorithm 3: LIA2SLS

Init U := ∅.
Augment Let v be a solution to f(x) ∧ ¬Lia(U)(x). Add the linear set

LS (v, ∅) to U , and apply Saturate(U) until convergence.
Exit If f ∧ ¬Lia(U) is UNSAT, then return Lia(U).

Saturate(U):

Merge Let LS (a1, B1) and LS (a2, B2) be two linear sets in U such that
a2 � a1. If ∀λ1,λ2, λ3 . f(a2 + λ1B1 + λ2B2 + λ3(a1 − a2)) is valid
(equivalently, ¬f(a2 + λ1B1 + λ2B2 + λ3(a1 − a2)) is unsatisfiable) then
replace the two linear sets by LS (a2, B1 ∪B2 ∪ {a1 − a2}) in U .

Shift Down Let LS (a1, B1) be a linear set in U . If there is a b ∈ B1, such
that b � a1 and ∀λ . f(a1 − b+ λB1) is valid, then replace LS (a1, B1) by
LS (a1 − b, B1).

Offset Down Let LS (a1, B1) be a linear set in U . If there are b1, b2 ∈ B1,
such that b2 � b1 and ∀λ . f(a1 + λB′1) is valid for
B′1 := (B1 \ {b1})∪{b1− b2}, then replace LS (a1, B1) by LS (a1, B

′
1) in U .



It follows by inspecting the steps that the procedure always augments U to an
improved under-approximation of f . In other words, it maintains the invariant
Lia(U)→ f .

Lemma 2. Let U be the set computed after any number of steps of Algorithm 3,
and let Lia(U) be the formula associated with it (per eq. (3)). Then Lia(U)→ f .

Proof (sketch). The Augment rule adds to U a single solution of f . Any of the
other rules checks whether the newly added linear set, when converted into a
LIA formula via eq. (3), implies f .

In each step, the under-approximation is improved as it has more solutions or
a smaller representation. Termination is obtained since � is a well quasi order
(wqo) [11] (a reflexive and transitive relation where any infinite sequence of
elements v1,v2, . . . contains an increasing pair vi � vj with i < j).

Lemma 3 (Termination). Algorithm 3 terminates in a finite number of steps.

Proof. Observe that � is a pointwise application of well quasi orders. Hence,
by Dickson’s lemma [7], it is also a well quasi order. This ensures that for any
finite set U , any of the rules Merge, Shift Down and Offset Down may only
be applied finitely many times (since a wqo does not have infinite descending
sequences). Hence, to establish termination it remains to show that Augment
cannot be applied infinitely many times. Assume to the contrary that Augment
generates an infinite sequence v1,v2, . . .. Each vector in the sequence belongs
to one of the finitely many linear sets defining f . Hence, there is an infinite
subsequence of v1,v2, . . . where all vectors are members of the same linear set
L(a, B), and further are all merged together by Merge. Further, since � is a
wqo, this subsequence has an infinite increasing subsequence vi1 � vi2 � . . ..

For each vector vij , we denote by set(ij) = LS (aij , Bij ) the linear set in U
to which vij belongs after the (single) application of Augment that generated
it followed by an iterative application of Merge, Offset Down, Shift Down,
until they converge. An invariant that follows by induction is that aij = a+λB
for some λ and, similarly, each vector in Bij is a linear combination of vectors
in B, i.e., is equal to λB for some λ (it is easy to verify that Offset Down
and Shift Down preserve this property; for Merge we rely on our choice of
vectors). The vector aij may be decreased only finitely many times, hence at
some point it stabilizes to some vector ã. Similarly, each vector b in Bij may
be decreased by Offset Down at most finitely many times. Hence, for each Bij

there exists a time step after which all the vectors that originated from it are no
longer decremented. Denote the set that contains the vectors originating from
Bij after stabilization by B̃ij .

Hence, the infinite sequence vi1 � vi2 � . . . gives rise to an infinite sequence

of sets of vectors B̃i1 ⊆ B̃i2 , . . . as defined above (inclusion follows since the

vectors in B̃ij no longer evolve). Note that by construction, LS (ã,
⋃

j B̃ij ) spans

all vectors in vi1 ,vi2 , . . .. Further,
⋃
B̃ij must be finite since all the vectors

in it are incomparable (as all vectors have stabilized) and � is a wqo. However,



Algorithm 4: WeakenUnder(u,v)

U := getSLS(u)
Add LS (v, ∅) to U and apply Saturate(U) until convergence.
Return StarLia(U).

this implies that LS (ã,
⋃

j B̃ij ) is added to U after a finite number of steps, after
which no vector from v1,v2, . . . may be generated by Augment, in contradiction
to our assumption that infinitely many of them are generated. ut

Note that by strengthening the queries into the LIA oracle to find minimal
solutions modulo � we can effectively bound the number of queries that produce
new vectors to be the same as the size of a minimal semilinear set representation.
Our proof doesn’t assume minimality of vectors and therefore relies on using
properties of well quasi orderings.

Computing under-approximations of f?. WeakenUnder (Algorithm 4) relies
on Algorithm 3 to generate a semilinear set U that under-approximates f . From
U it produces an under-approximation StarLia(U) of f? through eq. (4).

In order to compute U , WeakenUnder first extracts from u, the current
under-approximation of f , the semilinear set U such that u = StarLia(U). Since
all underapproximations are computed by WeakenUnder, all of them follow
eq. (4), which makes it easy to extract U from u. WeakenUnder then simu-
lates an iteration of Algorithm 3 (a step of Augment followed by saturation)
that extends U based on a new solution to f , except that it uses the provided
uncovered solution v of f rather than obtaining one from the LIA-oracle.

Recall that the solution v provided to WeakenUnder is taken from x =
v |= f(x)∧¬u(x). Hence, v is a solution to f that is not yet covered by u. This
means that v is not yet covered neither by U nor by U?.

Iteratively applying WeakenUnder results in a variant of Algorithm 3,
where in each iteration, U is extended not with an arbitrary solution of f ∧
¬Lia(U) (that may or may not be covered by U?), but rather with a solution of
f∧¬StarLia(U) as the algorithm is geared towards computing a representation
of f?. Similarly to Algorithm 3, iterative application of WeakenUnder is guar-
anteed to converge to a precise representation U of f within a finite number of it-
erations, in which case StarLia(U), returned as the under-approximation of f?,
is also precise (i.e., equivalent to f?). It may terminate earlier, as StarLia(U)
may be equivalent to f? even though Lia(U) is not yet equivalent to f .

4.3 Correctness

The following lemma is a simple corollary of the invariants maintained by the
algorithm.



Lemma 4 (Partial Correctness). If 〈g, f?〉 =⇒∗ [u, o] then g ∧ u, g ∧ o and
g ∧ f? are all equi-satisfiable.

To argue termination of Algorithm 1, we must require a fair scheduling of
the transitions: namely, each of the rules must be scheduled infinitely often.

Lemma 5 (Termination). Any fair execution of Algorithm 1 starting from
state 〈g, f?〉 terminates in a finite number of steps.

As explained in the previous section, iterative application of weakening, which
gradually refines u, mimics Algorithm 3. Hence, u must converge to a LIA for-
mula that is equivalent to f? within a finite number of steps, in which case when
Algorithm 1 applies ?-Converge it reaches a determined state, and terminates
in one of the exit rules. Note that the termination argument relies only on the
under-approximations and their convergence to f?. However, in practice, the
over-approximations are also important for termination as they facilitate early
termination without convergence to a LIA formula that is equivalent to f?.

5 Evaluation

To empirically test our decision procedure, we implemented Algorithm 1. In
addition, we also implemented the translation algorithm given in Fig. 4. This
way we can evaluate our tool on real-world MAPA problems. The implementation
is written in Python, using the Python binding for Z3 as our LIA oracle. The
implementation and benchmarks are publicly available at https://github.com/
mlevatich/sls-reachability.

As it was pointed out in [18], there is a lack of native MAPA benchmarks.
For our evaluation, we tested the code on 240 BAPA benchmarks derived from
a set of benchmarks used for reasoning about distributed algorithms [1]. Since
the BAPA problems involve reasoning about sets and not multisets, we used
the set(·) operator which explicitly states that a multiset variable M is a set,
meaning that an element can appear at most once.

Before we expand further upon the results for each table presented here,
we divide the benchmarks into classes based on their size, where the size of a
benchmark is determined by the number of conjunctions in its LIA? represen-
tation. Due to our translation, this value also scales evenly with the number of
free variables in the formula, and is a rough measure of a problem’s complexity.
For each class, we give the number of benchmarks in that class, and how many
of them were sat or unsat, or timed out. We provide average statistics for the
solved examples in that class about the size of the final computed semilinear
set (measured as total number of vectors in its linear sets, including the offset
vector for each set), the number of calls made to z3, and the total runtime of
the algorithm. For all evaluations, we arbitrarily chose a timeout of 50 seconds.

The results of our initial evaluation are given by Table 1. We found that our
tool handled the BAPA benchmarks very effectively – most benchmarks finished
quickly and severely under-approximated the full semilinear set representation

https://github.com/mlevatich/sls-reachability
https://github.com/mlevatich/sls-reachability


of the problem. This experiment used a single unfolding when computing inter-
polants in Algorithm 2.

We noticed that the set(·) operator and at-most-one appearance constraints
increase each benchmark’s difficulty, reflected by the larger semilinear sets, many
Z3 calls, and longer average running times. To test how our decision procedure
performs on its native theory, MAPA. We converted all 240 of the BAPA bench-
marks into genuine MAPA problems by simply omitting the set(·) constraints
from the translation. This change means that the set variables in the original
benchmarks are no longer considered sets but multisets. Our only intent in do-
ing this was to create suitable benchmarks for evaluating our tool we are not
concerned with whether or not MAPA is suitable for modeling the same prob-
lems as the original benchmarks. By turning the BAPA benchmarks into MAPA
benchmarks, we could exercise true multiset reasoning. The results of MAPA
benchmarks are given by Table 2, in which we see a considerable speedup even
though multisets are more complex objects than sets, the omission of the multi-
plicity constraints results in a shorter and more efficient representation, showing
the effectiveness of our tool on genuine MAPA problems.

Using the MAPA representation of the benchmarks, we further studied the
reverse interpolation procedure for computing over-approximations. We applied
the unfolding method given by Definition 3 with n = 5 to produce more general
interpolants. Table 3 presents the performance of the benchmarks with unfolding
added (also using MAPA semantics). By unfolding, we force Z3 to generate
interpolants which are more likely to be inductive, resulting in a significant
speedup and the ability to solve far more of the hard problems in the 13-16 size
range.

To demonstrate the need for interpolation, we also ran our procedure with
no interpolation at all. Without interpolation, unsatisfiability can only be shown
when the entire semilinear set representation is computed, which is prohibitively
expensive. The summary of the results is given in Table 4 (for MAPA seman-
tics). In this case, the algorithm struggles to prove that complex examples are
unsatisfiable, and must resort to generating larger semilinear sets.

Problem Size # of Problems Sat/Unsat/TO SLS Size Z3 Invocations Time (s)
6 106 76/30/0 6 76 1.6

7 - 9 64 34/30/0 7 75 1.8
10 - 12 13 1/9/3 18 575 21.7
13 - 16 46 3/0/43 20 780 33.9
19 - 22 11 0/0/11 N/A N/A N/A

Table 1: BAPA evaluation summary for n = 1 unfoldings.

Finally, in Table 5 we provide the running times of our procedure, giving
the average time spent by each evaluation on different parts of the procedure.
In general, the algorithm performs very well for smaller problem sizes and the
intrinsic complexity of the problem is visible on the problems of a bigger size.



Problem Size # of Problems Sat/Unsat/TO SLS Size Z3 Invocations Time (s)
6 106 76/30/0 4 22 0.6

7 - 9 64 34/30/0 5 30 0.9
10 - 12 13 2/8/3 11 225 7.5
13 - 16 46 2/2/42 10 200 8.4
19 - 22 11 0/0/11 N/A N/A N/A

Table 2: MAPA evaluation summary for n = 1 unfoldings.

Problem Size # of Problems Sat/Unsat/TO SLS Size Z3 Invocations Time (s)
6 106 76/30/0 4 17 0.6

7 - 9 64 34/30/0 3 15 0.7
10 - 12 13 0/11/2 2 11 0.8
13 - 16 46 3/15/28 4 76 7.9
19 - 22 11 0/0/11 N/A N/A N/A

Table 3: MAPA evaluation summary for n = 5 unfoldings.

Problem Size # of Problems Sat/Unsat/TO SLS Size Z3 Invocations Time (s)
6 106 76/30/0 5 18 0.6

7 - 9 64 34/30/0 5 20 0.7
10 - 12 13 0/0/13 N/A N/A N/A
13 - 16 46 8/0/38 10 93 4.7
19 - 22 11 0/0/11 N/A N/A N/A

Table 4: MAPA evaluation summary without interpolation.

Augmentation (s) Interpolation (s) Reduction (s) Sat Checking (s)
BAPA 0.23 0.87 0.92 1.09
MAPA 0.07 0.48 0.17 0.33
UNFOLD-5 0.04 0.86 0.07 0.17
NO-INTERP 0.08 0 0.2 0.32

Table 5: Runtime performance profile of the procedure.

One observation is that the MAPA evaluation is much faster than BAPA
while our algorithm generalizes to BAPA, the set(·) operator results in the in-
crease of the ite(·, ·, ·) expressions, which can potentially lead to an exponential
blow up in size of the input formula. On the positive side, our efficient rep-
resentation means that modeling multisets is comparatively easy despite their
complexity, opening the opportunity for easy use of multisets in verification.

The MAPA evaluation, when compared to NO-INTERP (Table 4), also show-
cases the benefits of using the semilinear set over-approximation. NO-INTERP
was unable to prove a single complex problem unsatisfiable, because the full semi-
linear set representation that witnesses unsatisfiability is too large to compute
even with our reduction and augmentation cycle. NO-INTERP solved slightly
more satisfiable examples than MAPA, since the algorithm could spend more
time growing the semilinear set before timing out (because it was not interpo-
lating).



The most effective evaluation was UNFOLD-5 (Table 3). Compared to MAPA,
UNFOLD-5 solved 14 more of the problems of size 13-16, out of 46 total, and
was faster on average for all classes of problems. The general interpolants that
unfolding demands are far more likely to be inductive and, for many real-world
MAPA problems, can prove unsatisfiability almost instantly. The trade-off is
that the interpolation problems become heavier, as shown in Table 5, and be-
cause interpolants serve as over-approximations, they do not help for satisfiable
problems.

It is possible that by tuning the unfolding by experimenting more thoroughly
with different values for n, we could increase the speed and effectiveness of the
algorithm even further. We can also apply the benefits of unfolding to satisfiable
MAPA problems by introducing unfoldings when checking for satisfiability even
before the semilinear set underapproximation is able to reach a solution, a finite
unfolding allows it to flexibly step outside itself and look for nearby solutions.

Overall, our initial results are quite promising, and there is still room for
potential optimizations to be made to the basic algorithm.

6 Related Work

Several decidable extensions of LIA have been studied, such as LIA with di-
visibility constraints [10] and Büchi arithmetic [4, 5] that has a predicate that
can distinguish whether a number is a power of two. The existential fragment
of LIA? with unbounded nesting of stars, ∃LIA?, was established to be NEXP-
complete in [9]. Although quantifier-free LIA formulas with bounded nesting of
star operators lie in the NP-complete fragment, as established in [17], there is no
implementation and the proposed algorithm relies on computing the semilinear
representation of the solution, which is mainly unfeasible in practice. In general
semilinear sets require a number of generators that is exponential in the size of
the input LIA formula [19]. There are algorithms that are based on enumerative
search for possible generators of a semilinear set [6], following the size ordering
and yielding a potentially doubly exponential number of vectors that need to
be considered. The other approach, suggested in [19], uses the bounds on the
vectors in a standard basis (as obtained from a Hilbert basis). The fact that
the number of basis vectors easily explodes precludes implementations that can
efficiently find semilinear sets for a given formula.

To avoid explicit computation of semilinear sets, Piskac and Kuncak [17]
devised a novel decision procedure that for a given LIA? formula F1 ∧ x ∈ {y |
F2}?, constructs an equisatisfiable LIA formula F1 ∧ F ′2 by using only solution
vectors for formula F2. The number of the solution vectors is high: it is bounded
by O(n2 log n), where n is the size of the formula. Although this approach does
not compute semilinear sets, the algorithm was still not applicable in practice.
The decision procedure constructs formula F ′2 in a monolithic way, producing
immediately a very large formula that could not be solved by existing tools, not
even for the most simple cases. It should be clear that for modest values of n,
the bound n2 log n grows very quickly.



Zarba [20] studied a combination of multisets and linear integer arithmetic.
The logic did not support the cardinality operator, but there was a count op-
erator that would return how many times an element appears in a multiset.
Lugiez [15] considered a logic of multisets with a limited cardinality operator
that would return only the number of distinct elements. Piskac and Kuncak [16]
introduced a more general logic that allows the standard definition of the car-
dinality operator. We use MAPA, a simplified, but equally expressive version of
their logic. This name is chosen to also indicate that MAPA can be seen as a
generalization of BAPA (Boolean Algebra and Presburger Arithmetic) [12, 13],
a logic that is used to express properties about sets with cardinality constraints.
The BAPA logic is used in verification of data structures [3] and distributed
protocols [1].

7 Conclusion

In this paper we developed and evaluated a decision procedure for LIA?. The
evaluation, using our prototype, suggested that samples extracted from BAPA
applications benefited from the incremental nature of our solver. In addition, it
suggested that interpolants based on bounded unfoldings were useful for finding
over-approximations that were helpful determining unsatisfiability. The proto-
type could be improved in many ways, including notably a tighter integration
within a native LIA? solver. The benefits of a native integration includes in-
crementality, access to preprocessing simplifications, and alternative heuristics
such as sampling f for creating a large initial basis, and sound, but incomplete,
inference rules. Nevertheless, we feel encouraged by the overall approach given
the promising results from the prototype.

While our initial motivation for this work was to find an efficient decision
procedure for reasoning about multisets with cardinality constraints, reasoning
about LIA? formulas suggested new application areas. For instance, there are
numerous classes of integer vector addition systems with states (VASS), where
the set of reachable states is described with a semilinear set (for a classification
of VASS see for example [2,14]). We conjecture that our solver for LIA? formulas
could be used for checking VASS reachability for those classes.
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