
Efficient Automated Reasoning about Sets and
Multisets with Cardinality Constraints ?

Ruzica Piskac[0000−0002−3267−0776]

Yale University
ruzica.piskac@yale.edu

Abstract. When reasoning about container data structures that can
hold duplicate elements, multisets are the obvious choice for representing
the data structure abstractly. However, the decidability and complexity
of constraints on multisets has been much less studied and understood
than for constraints on sets. In this presentation, we outline an effi-
cient decision procedure for reasoning about multisets with cardinality
constraints. We describe how to translate, in linear time, multisets con-
straints to constraints in an extension of quantifier-free linear integer
arithmetic, which we call LIA*. LIA* extends linear integer arithmetic
with unbounded sums over values satisfying a given linear arithmetic for-
mula. We show how to reduce a LIA* formula to an equisatisfiable linear
integer arithmetic formula. However, this approach requires an explicit
computation of semilinear sets and in practice it scales poorly even on
simple benchmarks. We then describe a recent more efficient approach
for checking satisfiability of LIA*. The approach is based on the use of
under- and over-approximations of LIA* formulas. This way we avoid
the space overhead and explicitly computing semilinear sets. Finally, we
report on our prototype tool which can efficiently reason about sets and
multisets formulas with cardinality constraints.

Keywords: Multisets · Cardinality constraints · Linear interger arith-
metic.

1 Introduction

In the verification of container data structures one often needs to reason about
sets of objects – for example, abstracting the content of a container data structure
as a set. The need for cardinality constraints naturally arises in order to reason
about the number of the elements in the data structure. We have all witnessed to
the success of the BAPA logic [4,5] that was, among others, used for verification
of distributed algorithms [1].

Similarly, when reasoning about container data structures that can hold du-
plicate elements, multisets are the obvious choice of an abstraction. Multisets
are collections of objects where an element can occur several times. They can be

? This work is partially supported by the National Science Foundation under Grant
No. CCF-1553168 and No. CCF-1715387.

2 R. Piskac

seen as “sets with counting”. Although multisets are interesting mathematical
objects that can be widely used in verification, there was no efficient reasoner for
multisets and sets with cardinality constraints until recently [6]. Moreover, for a
long time it was not known if the logic of multisets with cardinality constraints
is even decidable [7]. Nevertheless, researchers have recognized the importance
of this logic and they have been studied multisets in combination with other
theories.

Zarba [13] investigated decision procedures for quantifier-free multisets but
without the cardinality operator. He showed how to reduce a multiset formula
to a quantifier-free defining each multiset operation pointwise on the elements
of the set. Adding the cardinality operator makes such a reduction impossible.

Lugiez studied multiset constraints in the context of a more general result
on multitree automata [7] and proved the decidability of multiset formulas with
a weaker form of cardinality operator that counts only distinct elements in a
multiset.

1.1 Multisets with Cardinality Constraints

In this paper we revive the first decision procedure for multisets with cardi-
nality constraints [9,10]. We represent multisets (bags) with their characteristic
functions. A multiset m is a function E → N, where E is the universe used for
populating multisets and N is the set of non-negative integers. The value m(e) is
the multiplicity (the number of occurrences) of an element e in a multiset m. We
assume that the domain E is fixed and finite but of an unknown size. We consider
the logic of multisets constraints with the cardinality operator (MAPA), given
in Fig. 1. An atom in MAPA is either a multiset comparison, or it is a stan-
dard quantifier-free linear integer arithmetic atom, or it is a quantified formula
(∀e.Fin), or it is a collecting sum formula. We allow only universal quantification
over all elements of E. This way we can express, for example, that for a multiset
k it holds ∀e.k(e) = 0 ∨ k(e) = 1 – in other words, k is a set. A collecting sum
atom is used to group several formulas involving sums into a single atom. This
is needed for the next step of the decision procedure. The sums are used in the
definition of the cardinality operator:

|m| =
∑
e∈E

m(e)

Piskac and Kuncak [9] showed that every MAPA formula can be translated
to an equisatisfiable LIA? formula. The translation is linear and described in [9].
This way reasoning about MAPA formulas reduces to reasoning about LIA?

formulas.

1.2 Reasoning about LIA? Formulas

The LIA? logic [10] is a standard linear integer arithmetic extended with a new
operator: the star operator, which is defined over a set of integer vectors as

Title Suppressed Due to Excessive Length 3

top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= M=M |M ⊆M | ∀e.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
∑
Fin

(tin, . . . , tin)

tout ::= k | |M| | C | tout + tout | C · tout | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | P | tin + tin | P · tin | ite(Fin, tin, tin)
multiset expressions:

M ::= m | ∅ |M ∩M |M ∪M |M]M |M \M |M \\M | set(M)
terminals:
m - multiset variables; e - index variable (fixed)
k - integer variable; C - integer constant; P - non-negative integer constant

Fig. 1: The logic of multiset constraints with Presburger Arithmetic (MAPA)

follows:

S? ,

{
n∑

i=1

si | ∀i.1 ≤ i ≤ n. si ∈ S

}
(1)

The result of the star operator applied to set S is a set if all linear additive
combinations of vectors from S. Its syntax is given in Fig. 2.

LIA? formulas: ϕ ::= F1 ∧ x1 ∈ {x2 | F2}?
such that dim(x1) = dim(x2) and free-vars(F2) ⊆ x2

LIA formulas:
F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F1 | ∃x. F | ∀x. F
A ::= T1 ≤ T2 | T1 = T2
T ::= x | C | T1 + T2 | C · T1 | ite(F, T1, T2)

terminals: x - integer variable; C - integer constant

Fig. 2: Linear integer arithmetic (LIA) and an extension with the Star Operator.

To check a satisfiability of a LIA? formula, we use the semilinear set charac-
terization of solutions of integer linear arithmetic formulas.

Definition 1 (Semilinear sets). A linear set LS(a, B) is defined by an integer
vector a and a finite set of integer vectors B = {b1, . . . , bn}, all of the same

4 R. Piskac

dimension, as follows:

LS(a, B) ,

{
a+

n∑
i=1

λibi |
n∧

i=1

λi ≥ 0

}
(2)

Sometimes, as a shorthand, we use λB =
∑n

i=1 λibi.
A semilinear set SLS(ls1, . . . , lsn) is a finite union of linear sets ls1, . . . , lsn,

i.e., SLS(ls1, . . . , lsn) =
⋃n

i=1 lsi.

Ginsburg and Spanier showed (Theorem 1.3 in [3]) that a solution set for
every Presburger arithmetic formula is a semilinear set, and we use that result
to eliminate the star operator.

Theorem 1 (Lemmas 2 and 3 in [10]). Given a LIA? atom x1 ∈ {x2 | F2}?,
let SLS(LS(a1, B1), . . . , LS(ak, Bk)) be a semilinear set describing the set of
the solutions of formula F2. The atom x1 ∈ {x2 | F2}? is equisatisfiable to the
following LIA formula:

∃µ1 ≥ 0, . . . , µk ≥ 0,λ1 ≥ 0, . . .λk ≥ 0 .

x1 =

k∑
i=1

µiai + λiBi ∧
k∧

i=1

(µi = 0→ λi = 0)

By applying Theorem 1, checking satisfiability of a LIA? formula reduces
to reasoning about linear integer arithmetic. Note, however, that this approach
results in automatically constructing a formula might be really large, depending
on the size of a semilinear set. In addition, this approach relies on computing
semilinear sets explicitly, both of which make it scale poorly even on simple
benchmarks.

2 Illustrating Example

We illustrate now how is a decision procedure for MAPA working on the following
simple multiset formula: for two multisets X and Y , the size of their disjoint
union is the sum of their respective sizes. In other words, we need to prove the
validity of the following formula

|X] Y | = |X|+ |Y |

As usual, we prove the unsatisfiability of the formula |X] Y | 6= |X| + |Y |.
The first step is to reduce this formula into an equisatisfiable LIA? formula. To
do that, we perform a sequence of steps that resemble the purification step in
the Nelson-Oppen combination procedure [8]. In a nutshell, we introduce a new
variable for every non-terminal expression.

We first introduce a multiset variable M defining multiset expression X] Y
and then we introduce integer variables k1, k2, k3 for each of the cardinality
expressions. This way the formula becomes:

k1 6= k2 + k3 ∧ k1 = |M | ∧ k2 = |X| ∧ k3 = |Y | ∧M = X] Y

Title Suppressed Due to Excessive Length 5

We next apply the point-wise definitions of the cardinality and] operators
and we obtain the following formula:

k1 6= k2 + k3 ∧ k1 =
∑
e∈E

M(e) ∧ k2 =
∑
e∈E

X(e) ∧ k3 =
∑
e∈E

Y (e)

∧ ∀e.M(e) = X(e) + Y (e)

Grouping all the sum expressions together results in the formula:

k1 6= k2 + k3 ∧ (k1, k2, k3) =
∑
e∈E

(M(e), X(e), Y (e)) ∧ ∀e.M(e) = X(e) + Y (e)

Piskac and Kuncak have shown in [9] that every multiset formula can be
reduced to this form. They call it the sum normal form. It consists of three
conjuncts. One is a pure LIA formula, the other is the summation and the third
part is a universally quantified formula. By applying Theorem 2 from [9], the
above MAPA formula is translated into an equisatisfiable LIA? formula, where
m,x and y are non-negative integer variables:

k1 6= k2 + k3 ∧ (k1, k2, k3) ∈ {(m,x, y)|m = x+ y}?

To check the satisfiability of this formula, we first need to eliminate the star
operator, which is done by computing a semilinear set describing the set of solu-
tions of m = x+ y. In this particular case, the semilinear set is actually a linear
set, consisting of the zero vector and two vectors defining linear combinations:

{(m,x, y)|m = x+ y} = LS((0, 0, 0), {(1, 1, 0), (1, 0, 1)})

Having the semilinear set representation, we can apply Theorem 1. In partic-
ular, only one linear set and the zero vector can significantly simplify the corre-
sponding equisatisfiable formula. As the result of applying Theorem 1, we obtain
that formula (k1, k2, k3) ∈ {(m,x, y)|m = x+y}? is equisatisfiable to the formula
(k1, k2, k3) = λ{(1, 1, 0), (1, 0, 1)} ⇔ (k1, k2, k3) = λ1(1, 1, 0) + λ2(1, 0, 1).

This way we have eliminated the star operator from the given LIA? formula.
It is now reduced to an equisatisfiable linear integer arithmetic formula:

k1 6= k2 + k3 ∧ k1 = λ1 + λ2 ∧ k2 = λ1 ∧ k3 = λ2

The resulting LIA formula is unsatisfiable.

3 Efficient Reasoning about LIA? formulas

The described decision procedure is sound and complete. However, its crucial
component is a computation of semilinear sets. While it is possible to com-
pute Hilbert basis using the z3 [2] SMT solver, to the best of our knowledge
there are no efficient tools for computing semilinear sets. Moreover, Pottier [12]
showed that a semilinear set might contain an exponential number of vectors.

6 R. Piskac

To overcome the explicit computation of semilinear sets, Piskac and Kuncak [10]
developed a new decision procedure for LIA? which eliminates the star opera-
tor from the atom x1 ∈ {x2 | F}? by showing that x1 is a linear combination
of O(n2 log n) solution vectors of F , where n is the size of the input formula.
Although this new decision procedure avoids computing semilinear sets, it in-
stantly produces a very large formula that could not be solved in practice by
existing tools, not even for the most simple benchmarks.

Levatich et al. [6] used those insights to develop a new efficient and scal-
able approach for solving LIA? formulas. The approach is based on the use of
under- and over-approximations of LIA? formulas. This way one avoids the space
overhead and explicitly computing semilinear sets.

The key insight of their approach is to construct a solution or a proof of un-
satisfiability “on demand”. Given a LIA? formula F1(x1)∧x1 ∈ {x2 | F2(x2)}?,
we first find any solution vector for formula F2, let us name it u1. We next
check if formula F1(x1)∧x1 = λ1 ∗u1 is satisfiable. If this is the case, the given
LIA? formula is satisfiable as well. However, if this is not the case, we cannot
conclude anything about the satisifiability of the given LIA? formula, so we find
a new different solution of formula F2, denoted by u2: F2(u2)∧u1 6= u2. Next,
we check if the vector x1 is a linear combination of those two solution vectors:
F1(x1)∧x1 = λ1 ∗u1 + λ2 ∗u2. If this newly constructed formula is satisfiable,
so is the original LIA? formula, otherwise we repeat the process. This way, by
finding and checking solution vectors of F2, we construct underapproximations
of the set {x2 | F2(x2)}?. Moreover, we know that this process will terminate
once we check sufficiently many solution vectors, as shown in [10].

However, if the given LIA? formula is unsatisfiable, this approach will result
in an equally large formula as in [10], and again it does not scale. Therefore, in
parallel to finding an under-approximation of the set {x2 | F2(x2)}?, we are also
constructing a sequence of its over-approximation. The properties, that such an
overapproximation should have, are encoded as a set of Constraint Horn Clauses
and we use existing solvers to compute them. Such an overapproximation, if
exists, is an interpolant that separates two conjuncts in the given LIA? formula,
proving this way that the formula is unsatisfiable.

Finally, we have implemented the presented decision procedure and the tool
is publicly available at https://github.com/mlevatich/sls-reachability.
Because there were no MAPA benchmarks available, we had to create our own
benchmarks. In addition, we also treated 240 BAPA benchmarks about sets,
available in [1], as MAPA benchmarks. While the full report on the empirical
results is available in [6], our general assessment is that the presented algorithm
is effective on both SAT and UNSAT benchmarks. Our tool solved 83% of bench-
marks in less than 50 seconds, and over 75% of those in under 3 seconds. We
believe that this tool is the first efficient reasoner for multisets and sets with
cardinality constraints.

https://github.com/mlevatich/sls-reachability

Title Suppressed Due to Excessive Length 7

4 Conclusions

The presented work describes a sequence of decision procedures that has lead to-
wards an efficient reasoner for multisets and sets with cardinality constraints. We
noticed that some constraints arising in formal verification of protocols and data
structures could have been expressed more succinctly and naturally, were they
using multisets as the underlying abstract datatype in the specification. Never-
theless, due to the lack of tool support they use sets, resulting in more complex
constraints. While there was an older tool for reasoning about multisets with
cardinality constraints [11], that tool served mainly as a proof of concept and
was evaluated only on a handful of manually written formulas. We here presented
a recent tool for reasoning about sets and multisets and we showed empirically
that this tool scales well and can easily reason about complex multiset formulas.
We hope that this work will lead to a renewed research interest in multisets and
encourage their use in software analysis and verification.

Acknowledgments

This presentation is based on the previously published results on reasoning about
multisets with cardinality constraints [6, 9–11]. We sincerely thank the collabo-
rators on these projects: Nikolaj Bjørner, Maxwell Levatich, Viktor Kunčak and
Sharon Shoham, without whom this work would not be possible.

References

1. Idan Berkovits, Marijana Lazic, Giuliano Losa, Oded Padon, and Sharon Shoham.
Verification of threshold-based distributed algorithms by decomposition to decid-
able logics. In CAV (2), volume 11562 of Lecture Notes in Computer Science, pages
245–266. Springer, 2019.

2. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS 2008, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

3. Seymour Ginsburg and Edwin H. Spanier. Semigroups, presburger formulas, and
languages. Pacific J. Math., 16(2):285–296, 1966.

4. Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. An algorithm for deciding
BAPA: boolean algebra with presburger arithmetic. In CADE, volume 3632 of
Lecture Notes in Computer Science, pages 260–277. Springer, 2005.

5. Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. Deciding boolean algebra
with presburger arithmetic. J. Autom. Reasoning, 36(3):213–239, 2006.

6. Maxwell Levatich, Nikolaj Bjørner, Ruzica Piskac, and Sharon Shoham. Solving
LIA? using approximations. In VMCAI, volume 11990 of Lecture Notes in Com-
puter Science, pages 360–378. Springer, 2020.

7. D. Lugiez. Multitree automata that count. Theor. Comput. Sci., 333(1-2):225–263,
2005.

8. Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. J. ACM, 27(2):356–364, 1980.

8 R. Piskac

9. Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with cardi-
nality constraints. In VMCAI, volume 4905 of Lecture Notes in Computer Science,
pages 218–232. Springer, 2008.

10. Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In CAV, volume
5123 of Lecture Notes in Computer Science, pages 268–280. Springer, 2008.

11. Ruzica Piskac and Viktor Kuncak. MUNCH - automated reasoner for sets and
multisets. In IJCAR, volume 6173 of Lecture Notes in Computer Science, pages
149–155. Springer, 2010.

12. Loic Pottier. Minimal solutions of linear diophantine systems: Bounds and algo-
rithms. In RTA, volume 488 of Lecture Notes in Computer Science, pages 162–173.
Springer, 1991.

13. Calogero G. Zarba. Combining multisets with integers. In CADE-18, 2002.

	Efficient Automated Reasoning about Sets and Multisets with Cardinality Constraints Multisets with Cardinality Constraints

