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ABSTRACT
The field of formal methods relies on a large body of background
knowledge that can dissuade researchers from engagingwith younger
students, such as undergraduates or high school students. How-
ever, we have found that formal methods can be an excellent entry
point to computer science research - especially in the framing of
Computing Identity-based Mentorship. We report on our experi-
ence in using a cascading mentorship model to involve early stage
researchers in formal methods, covering our process with these
students from recruitment to publication. We present case studies
(N=12) of our cascading mentorship and how we were able to in-
tegrate formal methods research with the students’ own interests.
We outline some key strategies that have led to success and reflect
on strategies that have been, in our experience, inefficient.
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1 INTRODUCTION
Engaging in early mentorship of students in computer science has
been shown to be an effective means to improve outcomes in di-
versity, retention, and performance [13]. In this paper we report
on our experiences in mentoring early stage researchers (such as
high school students and undergraduate students). In our report,
the mentors are based in Yale University, however the mentored
students came from various schools, even including from abroad.
We introduced the students to research in formal methods, which is
a subfield of computer science focused on improving software relia-
bility using formal mathematical techniques. Traditionally, research
in program verification and formal methods is considered a part of
computer science with a high entry bar [7, 31]. Conducting research
in formal methods requires practical expertise in programming lan-
guages and systems, as well as training in theoretical mathematical
foundations and logic. In addition, courses in formal methods are
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Figure 1: Our mentorship model engages all participants
with each other.

usually taught only at universities and on a graduate level. There-
fore, we first needed to introduce the students to the field of formal
methods, and after that, additionally find a suitable project for each
student.

We report on our experiences mentoring students in formal
methods, with a focus on program synthesis, using the lens of Com-
puting Identity-based Mentoring [3]. Computing Identity-based
Mentorship posits that by engaging students’ own backgrounds
and interests we can help students build a sense of identity around
computing. By engaging student with their own interests, it is pos-
sible to build a computing identity that helps to further engage
and retain students in the field [4]. Through a number of case stud-
ies of our mentorship experiences, we provide anecdotal evidence
of how the field of formal methods can be leveraged to engage
students in their own interests, while also building a common com-
munity of practice [30]. Encouraging communities of practice in
computer science has been shown to lead to stronger student out-
comes [8, 15, 21].

We frame our mentorship model as a type of cascading men-
torship [20], implemented similarly to prior mentorship models
for early stage computer scientists [28]. The cascading mentorship
model reimagines the mentor-mentee roles as interchangeable - ask-
ing mentees to act as mentors through mentoring younger students
(as in [20]), or through peer mentorship.

Our mentorship model, derived from the work of Tashakkori et
al [28], is shown in Fig. 1. The faculty mentor oversees the graduate
students, who themselves closely work with a small number of
early stage researchers. In addition to the graduate student’s direct
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mentees, every graduate student also engages to some degree with
the mentees of other graduate students as well. Additionally, the
younger students are also put in a position to act as peer mentors
to other early stage researchers. All the while, the faculty gives an
opportunity to the younger students to more formally present their
progress. We report in our case studies how, for some students,
we have seen this strongly connected social graph within the lab
environment lead to a stronger sense of community.

In our presentation of our case studies (N=12), we break down
the mentorship into three phases. First, we explain the recruiting
phase to give insight into how the opportunity for mentorship be-
gan. Second, we look at the ideation stage of the research, where
the faculty member, the graduate students, and early stage mentees
collaborate to define and scope an appropriate project for the al-
lotted time. Third, we look at the research stage itself, where the
mentee is actively involving in producing novel results. Finally, in
the presentation of each case study, we reflect on the outcomes of
the mentorship, in terms of concrete benefits both for the mentees
and the mentors. In many cases, the research resulted in publication.

When examining the positive outcomes of the mentorship ex-
periences, we frame the student experience’s in the context of the
Thomas principles of mentoring success [29]. For the sake of clarity
and concision, we in particular focus on the following principles:

(1) Identity Development - forming and reinforcing a Computing
Identity.

(2) Academic Support - ensuring efficient access to expertise
within the lab setting for guiding mentees and ensuring
continued progress.

(3) Sense of Belonging - building communities of practice in our
research field of formal methods.

(4) Leadership Development - developing mentees’ sense of lead-
ership and local expertise within our community of practice
encourages further engagement.

2 FORMAL METHODS AS INTRODUCTORY
RESEARCH

One of the key insights of prior work was that students seeing a
clear impact of their work can have a positive impact on reten-
tion [4]. In this report, we focus on our own research programs in
the field of formal methods and the potential for students to see
impact.

The main goal of research in formal methods is to gain better
insight into code by using formal mathematical reasoning. Research
in formal methods began with development of computer science:
for instance, works of Alan Turing already talk about formal proofs
of program correctness. However, only recently we have seen for-
mal methods being applied to industrial software. Today, formal
methods are used in many major software companies, including
Google [1], Amazon [2], Facebook [9] and Microsoft [18].

The range of applications where formal methods are used cov-
ers almost all aspects of computer science: we can obtain guaran-
tees that servers are secure [23], ensure that data centers will not
crash [32], assist student programmers with bugs [6, 16], or write
programs that write programs [12] - to name a few applications.

Taking into account the increasing need for scientists working
in formal methods, there has been significant community effort in

developing programs to assist early stage researchers in covering
the basics of the field [10, 19]. These programs are also designed to
help lower the barrier to entry for formal methods research. This
is in part because, within the field itself, formal methods is seen
as having too high an entry bar to make it an appropriate field
for students’ initial experience with research without significant
preparation.

While this perceived high barrier to entry may at first seem
to imply it is not a good fit for younger students with limited
programming experience, we have found the opposite to be true. In
the subsequent sections we describe a number of case studies of our
collaborations with high school and undergraduate students in our
lab. All these projects were defined after initial discussions with
the students and tailor-made to fit around the student’s application
domain of interest.

Of all the fields of formal methods, we found that students were
particularly interested in software synthesis and its applications.
The goal of software synthesis is to automatically derive code based
on given specifications. A specification describes what the program
should do without going into details of how it should be imple-
mented. There are various ways of providing the specification: one
of the most commonly used approaches is to take a set of examples
that clearly illustrative the intended behavior of the code.

Based on these examples, a synthesis tool should automatically
generate corresponding code. This branch of synthesis is known
as “programming by example” [5]. While program synthesis might
have looked like an unreachable goal a decade ago, today – due to
the development of formal methods – the class of programs that can
be automatically synthesized has dramatically increased. Program
synthesis is even used in industrial software: it is vital part of the
Flash Fill feature in Microsoft’s Excel [14].

3 RESEARCH CONDUCTED BY HIGH
SCHOOL STUDENTS

In this section we describe the projects that were conducted by high
school students (n = 4). All these projects are related to software
synthesis, as the concept of program synthesis was the easiest for
us to describe to high school students, and they could immediately
see the impact of their work.

Of the four projects we present here, one used the research
experience as part of a course credit, while the other three included
formalized summer internship experiences. We conducted semi-
structured exit interviews with these three students. The projects
described here were largely defined in content and in scope by us,
but the technical solutions were driven by the students. In all cases,
the project topic was found as an intersection between our group’s
ongoing work on program synthesis, and the students’ background
and existing interests in computing.

3.1 Synthesis + HCI
Recruiting:Our first high school research intern came to us from a
cold email (as the student entered 11th grade). This student reached
out, as part of a research course at their high school, to seek out
opportunities for collaboration. The student mentioned our publica-
tions on program synthesis in their email, and was interested in the
potential benefit of synthesis for new programmers. The student



had prior research experience, having done a Human Computer
Interaction (HCI) study as a school project.

Ideation: In initial discussions, the student demonstrated inter-
est in HCI. We had an existing program synthesis tool implemented
to apply the programming-by-example paradigm to PowerShell
scripts. While we had already developed the tool itself, we were
lacking any usability studies. To complement the students’ existing
interests, we planned to develop a user study to learn about what
users expect and want from a programming-by-example engine.

Research: In developing the user study, the student made a
point to include both timing information (how quickly participants
complete the tasks) as well as how helpful the participants found the
tool. To our surprise, we found that while participants completed
tasks more quickly with programming-by-example, they found
manually writing code to be more helpful [25].

Outcomes: We published these results with the high school
student and his teacher. While we largely handled the writing our-
selves, the student drove the analysis and interpretation of the
results with the help of his teacher. This allowed the student to
actively participate in the publication process, without the prohibi-
tive overhead of learning scientific writing. This helped the student
develop a leadership role as the local expert on user study analysis.

We first presented the work at a workshop without proceedings,
and had a graduate student present a talk. We later published the
work at another workshop, and the high school student used a
recording of the graduate student’s talk as guide in the preparation
of their own presentation. In having the student present the work,
we helped form a sense of computing identity in the student, such
that the student is now majoring in Computer Science at college.

3.2 Synthesis + Machine Learning
Recruiting: One high school student was recruited (while the
student was in 11th grade) during one of our outreach activities, at
a hackathon in Bermuda [11]. At this hackathon, we were running
a workshop on machine learning techniques for local Bermudian
high school students with prior experience with programming. We
contextualized the machine learning workshop within our research
in order to both deliver the content and expose the students to novel
applications of the material. One student was particularly interested
in the application of machine learning to program synthesis, so we
offered to stay in contact to begin a research collaboration.

Ideation: During the hackathon, the student had already dis-
cussed possible applications of their own expertise, machine learn-
ing, to our work on program synthesis. Through the research stage,
we iteratively refined the topic such that this became its own re-
search project that was not reliant on any of our existing work. The
project was still framed in such a way so that it directly helped our
ongoing work.

Research: We worked with this student remotely after the
hackathon in December for four months, and in May invited the
student to join us to work in person for a four week internship
in the summer. Being both underage and an international student,
the process of formalizing the internship presented challenges. The
best solution we found in the end was to have this student’s stay
in New Haven accompanied by their parent. The student’s work
was largely self-directed in technique, while we provided guidance

in scoping the project appropriately. We were aiming for a scope
such that we could have a measured impact, but also complete an
initial evaluation by the end of the students’ visit to campus.

Outcomes: The student was able to develop a tool with strong
results and subsequently published a paper [22]. In our exit inter-
view with the student, we saw that the student connected to the
impact of their work in the larger research community.

“If you’re very interested in the topic while you’re in
high school, I think [research experience] is beneficial
due to the fact that it allows you to really experience
how real world problem solving happens in a very
real environment.”

We also saw the student developed a sense of belonging that was
conducive to productive research conversations. When asked about
the benefits of the internship experience, the students responded:

“Just being around the office and having fun conver-
sations about things I’m interested in, and that being
okay, just being able to have fun in what you’re inter-
ested in.”

3.3 Synthesis + Apps
Recruiting: Another high school student came to us from a cold
email (as the student entered 12th grade) with an interest in develop-
ing mobile applications. This student reached out on the recommen-
dation of friends to email professors to find research opportunities.
The student reported reaching out roughly 100 professors, and re-
ported hearing back at all from about five, including our group. We
were able to find intersection with our research on reactive systems
synthesis [12].

Ideation: In our initial Skype sessions, we worked with the
student to design the high level goal of the project and layout
the way in which we could find an overlap with the student’s
existing interests. The student had sent a resume which mentioned
a course that involved VeriLog, a programming language popular
in the ‘reactive synthesis” subfield of formal methods As such we
searched for projects that overlappedwith our ownwork on reactive
synthesis The goal of this student’s project was to reuse the existing
program synthesis infrastructure we had built for general reactive
synthesis problems, and adapt it to synthesize an Android app in
Kotlin.

Research: We initially worked with the student over Skype,
then invited the student to work with us over for four weeks over
the summer. Again, as an underage international student, this stu-
dent’s stay in New Haven was accompanied by their parent. This
project was a good fit for the student, who had limited program-
ming experience, as it the programming aspect mostly involved
editing existing parsing code, and following predefined patterns
to generate program code. The student had a stronger math back-
ground, and was able to explore more of the theoretical problems
with reactive synthesis for Kotlin. We did not anticipate having
the student address these theory issues, but the student in fact
took the project in this direction themselves after completing the
programming aspect of the project.

Outcomes: The majority of this student’s research experience
was during an onsite internship that was overlapping with the



student from Sec. 3.2. Organizing overlapping internships was rec-
ommended a key lesson learned in organizing internships from
prior work [13]. We confirmed that this is a productive insight in
our own experience. Throughout their time on campus, the two
students worked closely together on both projects - helping each
other with both technical and conceptual issues. When asked to
describe some benefits of the internship experience, the student
said:

“I’m very comfortable and the environment is such
that I can go out and say ‘Hey, do you think you could
help me with this problem’ and everyone is super
open to helping me.”

3.4 Synthesis + Hardware
Recruitment:We recruited one high school student (as the student
entered 10th grade) from the local New Haven area. This student
had been working on writing a compiler for Basic as a side project
and reached out for some guidance on ways to get more involved
in computer science.

Ideation: We worked with this student for roughly a year -
mostly over email with occasional in-person meetings. Because this
student was interested in low-level language details, we designed
a project working with intermittent computing and program syn-
thesis. The goal of this project was to synthesis code that is able to
run on specialized hardware devices that run on harvested ambient
(e.g. radiowaves) energy.

Research: The student’s project has two components - a hard-
ware side focused setting up a test framework on the specialized
hardware - and the software component of program synthesis. The
student first setup the hardware and gained basic familiarity with
work in this domain. The student’s first approach to synthesis was
to utilize their existing work on writing a compiler. While this was
not an efficient solution in the end, it gave the student exposure to
the technical details necessary for working in this domain. With
that background, the student was able to reframe and rescope their
work into a new direction.

Outcomes: While the hardware setup was less of a novel re-
search project, it gave the student a strong sense of local expertise
with these devices. The student worked primarily with one grad-
uate student, but was able to get feedback from another graduate
student with a background in electrical engineering.

As a local student, the collaboration is logistically simple to
facilitate as an ongoing project. We also hosted this student for a
four week internship during the same time period as the students
in Sec. 3.2 and Sec. 3.3. One negative results we found with this
setup was that, while the students occasionally worked together,
the sense of peer mentorship was not as strong with this student.
We hypothesis the age gap may have contributed to this, as well as
the student’s prior local commitments decreasing the amount of
interaction time with the other two interns.

4 RESEARCH CONDUCTED BY
UNDERGRADUATE STUDENTS

In this section we describe projects involving undergraduate stu-
dents (n = 8). While these projects might not seemmore demanding
or complex than the projects conducted by high school students,

undergraduate students were given more freedom in defining their
research agenda. Their projects were initially less clearly defined.
They were given a general description of a problem and led the
discussion about possible research directions. In this way, they
helped to outline the project, based on their own research interests,
which made the students additionally motivated to participate in
the project. Their research interests were often defined either by
courses that they had taken until that point, or by their extracurric-
ular activities. All the projects presented in this section are either
published at a top venue, or are currently under a submission to a
top tier conference. The students conducted their research either as
a part of a summer research internship, or received course credits,
or were working on these projects in their own free time.

4.1 Synthesis + HCI
Recruitment: One student (a rising senior at the time of recruit-
ment) came to us at the end of the school year looking to gain
research experience, with the intention of applying to graduate
school. The student expressed an interest in topics of HCI, but
did not have a concrete project in mind. As much of our group’s
work in formal methods focuses on applications intended to help
developers, we are nearly always in need of further user studies.

Ideation:We presented a number of our projects to this student,
and asked the student to identify a preference and direction within
the HCI space. The student was interested in our work on synthesis
in a “live” environment, whereby program synthesis runs in realtime
to assist developers as they are writing code. We had some initial
work on developing the tooling for this project, but lacked any user
studies to drive our interface decision making.

Research: The student worked in a 12-week onsite internship
to design and implement an online version of the live synthesis
interface in order to then deploy the user study to a wider audience.
The student also designed the user study, and conducted numerous
pilot studies with early iterations of the online interface and the
study design.

Outcomes: At the time of writing, the study is currently being
deployed, and the student is continuing to work with us to prepare
a paper submission. When asked to reflect on the impact of the
internship experience in an exit interview, the student said:

“I think one reason that I find going into academia,
as a Chicano, so important is that I want to see other
people like me in these fields and sometimes it’s dif-
ficult to see yourself in these places, see yourself in
academia, going to grad school when you don’t see
many leaders like that. But through this experience
I found there is a lot of great and supportive people
within the field and through that I feel so much more
confident about getting into academia, applying to
grad school, and cranking out a thesis one day”

4.2 Synthesis + Systems
Recruitment: Two undergraduate students were working on this
project. One student approached us after taking the course (in their
3rd year) given by our group and asked to work on a verification-
related project. The other student was a personal friend of group



members so initially became interested in the project through dis-
cussions with group members. As the project progressed, this stu-
dent (in their 4th year) became more involved and took a lead for
certain parts of the project. Both students were supervised by a
PhD student, using the cascading mentorship model.

Ideation: Our group had previously worked on configuration
file analysis. Incorrectly setting up a configuration file has been
found to cause more server outages than bugs in the code. These
students worked on learning specifications of correctness of config-
urations by analyzing a large number of existing configuration files.
From that corpus we learned properties about configuration files,
and used them as a specification, enabling us to formally verify
configuration files and detect previously unknown bugs.

Outcomes: This work resulted in a paper at a top venue [27].
Both students were exposed to the formal methods community
either at a conference, or by attending summer schools. While
both students worked as software engineers upon graduating and
completing this project, one of them has recently returned to a
non-CS graduate school at Yale.

4.3 Synthesis + Music
Recruitment: One non-traditional application field we have found
rich collaborations from is computer music. We have had three
students (at the time of their recruitment, a 4th year, and two 2nd
years) work with us on a project combining program synthesis with
music. One student participated in a 12-week internship, one par-
ticipated in this project as their senior project, and one is currently
participating as an extracurricular activity.

Ideation: We initially started this project because one PhD stu-
dent was interested in the intersection of formal methods andmusic.
The goal of the project was to build a programming-by-example
engine for audio files. The engine takes two audio wave files, and
automatically synthesizes digital signal processing programs that
transform the input to the output audio file. From a technical per-
spective, this work focused on combining machine learning tech-
niques with formal methods for application in music.

Research: The first student worked on this over the summer
and was mainly focused on implementation, building much of the
core codebase of the project that handles the machine learning
components. The senior thesis project focused on developing a
theory of how to apply formal methods techniques to the project.
Currently, the most recent undergraduate researcher is working on
implementing and extending this theory.

Outcomes: The work of two of the students on this project was
published at a specialized computer music workshop that focuses
on programming language design [26]. In the vein of institutional
academic support, one student was able to use this project to gain
credit for their senior thesis.

4.4 Symbolic Execution Engine
Recruiting: This student started to attend our group meetings im-
mediately after joining Yale (a freshman at the time of recruitment)
in order to learn more about research.

Ideation: Due the opportunity of getting this student involved
early, we gave the student an especially challenging project of
developing a symbolic execution engine for Haskell programming

language. The student was directly supervised by a PhD student
from the group, but also worked independently, developing their
own research agenda.

Research: A symbolic execution engine takes as input a pro-
gram, and instead of executing the program on some concrete
values, it runs the program using symbolic values. The result is a
mathematical formula that describes the program’s behavior. Al-
though symbolic execution engines are well studied, languages
like Haskell, based on lazy semantics, had no efficient symbolic
execution engine. The problem required a deep understanding of
Haskell’s semantics: the research combined some foundational the-
oretical problems, but was also implementation-intensive.

Outcomes: While the student kept working with our group
throughout their undergraduate program, they also developed other
research interests at the intersection of mathematical reasoning
and computer science. Nevertheless, the symbolic execution engine
work resulted in papers accepted and presented at two top ACM
sponsored venues [16, 17]. In addition, we helped the student ex-
plore other research directions, and the student did three research
internships: one at a different university, one at an international
research institute, and one at a research lab of a large company.
The student presented work at various international meetings and
volunteered at conferences, developing a strong sense of helping
the community. The student also received the 2019 NSF Graduate
Research Fellowship, was accepted to several PhD programs, and
is currently attending one of them.

4.5 Program Repair
Recruiting: The student took a course (during their 3rd year) from
our research group and asked directly about a possibility to conduct
an independent research study. The student worked directly with a
professor, as the group had no graduate students at the time.

Ideation: The student was doing a double major in math and
computer science, and was interested in finding a way to leverage
both these backgrounds.

Research:When writing code, a user might be sure about what
they want to write, but we are not sure about the right ordering
of all arguments when invoking library functions. When program-
ming, a user might write code that does not compile but clearly
outlines their intentions. The student used their expertise in graph
algorithms to develop a tool that repaired these errors.

Outcomes: This work was published and presented by the stu-
dent at a top conference [24]. The student also presented a poster
at the ACM Student Research Competition, and received second
place. The student was accepted to several PhD programs, and is
currently attending one of these schools.

5 LESSONS LEARNED
Reflecting back on our experiences with using formal methods
research as an entry point to computer science research and a way
to build a computing identity, we explore here some key lessons
we have learned.

5.1 Recruitment
Recruiting students for collaboration has been one of the most
important steps of our process. At Yale University, we are privileged



to have a large pool of talented undergraduates to draw from -
however the main challenge is awareness. There is some existing
infrastructure in place - as in many universities - to encourage
Computer Science majors to complete a senior thesis as a research
collaboration with a lab. While this is effective, as such a thesis
is completed in the students’ final year, the student then leaves
just as they begin to be particularly productive from a research
perspective. Involving students at early stages in their academic
career not only has helped the students themselves, but also has
increased the long term quality of our collaboration.

Unfortunately, due to the time constraints on faculty members,
proactive recruiting dedicated to high school students was not a
practical strategy in our situation. The cold email is an increasingly
common strategy for high school students to get involved in re-
search. Students reach out to a large number of professors (in the
case of Sec. 3.3, as many as 100) in hopes that one will respond and
allow them participate in an unpaid internship in their lab. While
the volume of these emails can be overwhelming, we have had suc-
cess by forwarding these students to graduate students, following
the cascading mentorship model. In this way, the faculty member
provides mentorship training opportunities to the graduate student,
and the graduate student can utilize the students’ assistance.

In terms of selecting high school students, while the high school
students’ resumes provided some clues as to their prior experience,
we found the students to be too young for their resume to be a use-
ful predictor of their success in research. Generally, demonstrating
some prior experience and interest in programming was sufficient.
Beyond this, students largely self-selected when presented with
concrete research tasks. However, from another perspective, this is
a potentially negative result. While we have had a number of suc-
cessful high school interns, as listed in Sec. 3, a number of students
have also dropped contact with us after a short time. Investigating
effort-effective strategies to stay engaged with more students who
initially reach out for collaboration is a space for further research.

5.2 Ideation
We learned to ensure that student projects are noncritical paths
along our larger research vision, but still contribute significant
value, which encourages the students’ sense of computing identity.
Additionally, granting students the latitude to guide their project
scope and how their project integrates into the larger research
vision encourages the development of a stronger computing identity,
with the student as the leader, or “local expert”, of their topic.

The benefits of mentorship go beyond the mentees, especially
with the cascading mentorship model. For graduate students, the
process of advising students and defining scope of projects is valu-
able experience. In our experience, undergraduate research is gener-
ally fairly regulated, such as being formalized as a course, a summer
internship, or a campus job. In contrast, working with high school
students allows graduate students to take more risks with mentor-
ship, which in turn creates more learning opportunities. Especially
for graduate students who are planning to go on the academic job
market, the experience of running a ‘micro-lab’ environment has
been particularly useful.

5.3 Research
The first and most important guideline for our research programs
has been to provide academic support to early stage students -
especially in stressing the importance of asking the right questions.
Students have tended to ask too few questions, and waste time on
technical challenges that can be answered quickly by the mentor.
This is dangerous to the success of the collaboration, as it can cause
students to lose interest in the project.

Consequentially, we have found it to be important that the men-
tor makes sure the student feels comfortable asking questions. How-
ever, sometimes a question will be more appropriate for the student
to discover on their own. This is especially important for develop-
ing computing identity, as we have seen this provide students the
confidence needed to solve problems on their own.

In working to minimize the interruptions to the workflow of
graduate students (as mentoring students was not the graduate
students’ primary responsibility), we found that having multiple
students working on projects at the same time and in the same space
encouraged peer mentoring. By connecting the students, they can
lend their expertise to each other and progress more quickly. This
worked particularly well with the high school students, but had
not worked well with the undergraduates. We suspect that this was
due to the great flexibility the undergraduates had in the physical
workspace. We plan to further investigate strategies to increase
informal peer mentoring among undergraduate researchers.

6 PUBLISHING
In our experience, early stage students have had limited scientific
writing experience, so the majority of the initial drafts were written
by graduate students and faculty. However, we have been able to
keep students engaged during the publication process by assigning
other critical tasks, for example, in the analysis of data.

When possible, ensuring that publication happens before January
of the students’ senior year of high school will deliver themost value
to the student, as the publication can be included in their college
application. This acts as a good motivator for them to complete
their projects by a hard deadline.

One challenge we have found with the computer science confer-
ence model is the challenge of travel. Publishing in conferences that
are geographically far from the students has presented challenges
in allowing the student to fully participate in the research experi-
ence. While we have sometimes been able to fund undergraduate
researchers during their time at the undergraduate institution, if a
student graduates before the conference takes places, it becomes
more difficult to find the resources to allow the student to attend. In
the case of one of the student co-authors in Sec. 4.2, the student was
able to use funding from their company to attend the conference
where we had published the work, as the work was also aligned
with the goals of their post-graduation employer. However, this
problem is even exasperated in the case of high school students.
Our current solution is to intentionally target conferences that are
relatively local to allow the student to attend as well.
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