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Abstract
Energy harvesting allows computational devices to run with-
out a battery, opening new application domains of comput-
ing. Such devices work under an intermittent computing
model, where the system may power cycle several times a
second. To ensure progress, intermittent computing uses
checkpoints, with much work being dedicated to this di-
rection. However, no existing approaches handle programs
using dynamically allocatedmemory in the intermittent com-
puting model. We pose this as a challenge area, demonstrate
the complexities of checkpointing in this space, and propose
key characteristics of an effective solution.
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1 Introduction
Intermittent computing is a model of computation where the
system experiences frequent power failures - possibly many
times a second. A system will experience power failures
as a result of using energy harvesting devices - whereby a
microcontroller is powered by ambient energy from the envi-
ronment (e.g. radiowaves). Although difficult to program [9],
intermittent computing devices are well-suited for a number
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of applications where batteries does not fit the design con-
straints, such as space computer systems [1] and long-term
environmental sensors [11].

Programs written in a continuous power model are unable
to run without modification under intermittent power. This
is because code keeps important state in volatile memory
(RAM), which is irretrievably erased when a device loses
power. This means that when a power failure occurs, all
of the progress a program has made is erased, and then,
when power is restored, execution starts over from the be-
ginning again. One solution is to intersperse code with check-
points [7]. A checkpoint is a procedure that saves the entire
state of volatile memory to non-volatile memory, which per-
sists even after a power failure. When the device has enough
power again, the system retrieves the state saved in non-
volatile memory and continues execution from that state.

While a number of checkpointing strategies have been
proposed [3–5], none have support for programs with dy-
namic memory allocation. This is in part because reasoning
about dynamic memory allocation, especially on embedded
systems is a difficult problem [2]. However, memory man-
agement is important to consider as the cost of a checkpoint
is directly proportional to the amount of memory the check-
point must save. When dynamically allocated memory must
be checkpointed, the fluctuation of the heap means that the
cost of checkpointing will also vary greatly. This makes the
heap incompatible with existing checkpointing strategies
that assume a relatively stable checkpoint size.

In this extended abstract, we: 1) Describe the challenge of
checkpointing programs with dynamic memory allocation;
2) Demonstrate that optimal checkpoint placement can have
up to a 22% speedup in performance when compared to sub-
optimal placement; 3) Outline a first approach for optimally
placing checkpoints in such a way that is compatible with
existing approaches checkpoint placement, and can be used
in conjunction with prior work.

2 Motivating Example
To demonstrate the complexity of checkpointing in dynami-
cally allocated code, consider the code in Fig. 1. When insert-
ing a checkpoint, we will consider only line 5, line 10, and
line 13 for this example. Placing a checkpoint at line 5 is the
worst choice in the case, as we have just spent energy allo-
cating memory, but have not done any useful computation.
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1 int x = 40;

2 int * y = malloc (4* sizeof(int));

3 int * z = malloc (4* sizeof(int));

4 // possible checkpoint (least optimal placement)

5 y[0] = 2;

6 z[0] = 2;

7 x = x + y[0];

8 free(y);

9 // possible checkpoint (suboptimal placement)

10 x = x + z[0];

11 free(z);

12 // possible checkpoint (optimal placement)

Figure 1. Code snippet of dynamic memory allocation with
potential checkpoint locations.

As a result, our checkpoint will need to copy variable 𝑥 , the
contents of the stacks, and the empty allocated memory of
𝑦 and 𝑧 to non-volatile memory to preserve the state of the
program. In contrast, line 13 is the best choice for this code
snippet, as we have completed the necessary computations
and free’d the memory. As a result, the only memory we
need to copy to non-volatile memory is the variable 𝑥 and
anything else on stack from the context.

In considering line 10 for a checkpoint, we see that it is a
suboptimal location. This is because line 12 will free memory
and thus decrease the cost of our checkpoint routine. Thus,
if the cost of the computation on line 11 is less than the cost
savings from freeing memory on line 12, we should skip the
line 10 checkpoint and instead checkpoint at line 13.

3 Impact of Checkpoint Placement
We hypothesized that placing checkpoints in areas of a pro-
gram that have less dynamic memory usage will increase
the overall speed of the code. In order to measure the sig-
nificance of this performance gain, we created a test setup
using real energy harvesting hardware.

To simulate power harvesting conditions, our experimen-
tal setup uses a TX91503 PowerSpot to send power over radio
waves, and a P2110EVB energy harvesting circuit to harvest
the power. A TI-MSP430FR2433 was run off the harvested en-
ergy, running code with checkpoints. We implemented a sim-
ple checkpointing procedure that saves the stack (cf. [3, 4]),
as well as the heap to non-volatile memory. We added check-
points to 3 programs with dynamically allocated arrays at
both optimal and least-optimal locations. We used the stan-
dard measurement for intermittent computing: we timed
how long it took for the programs to complete at different
distances (less energy is harvested at further distances).

We found that there is always at least some performance
gain, as shown in Fig. 2, from placing checkpoints at optimal
locations based on heap usage (immediately after frees) as
compared to the least optimal (immediately after mallocs).
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Figure 2. Performance gain between optimal and least-
optimal checkpoint placement in a top-down merge sort
implementation (blue), bottom-up merge sort implementa-
tion (red), and an edge case (malloc arrays and immediately
free) program (brown).

Since dynamically allocated memory has a significant im-
pact on checkpoint performance, a checkpointing strategy
should take advantage of fluctuations in heap usage. We
notice that freeing memory is a net negative energy cost com-
putation with respect to any upcoming checkpoint. Thus,
to find optimal checkpoint placements, we must balance
the energy cost saved by freeing memory with the energy
expended by running computations prior to freeing memory.

Determining the optimal location of checkpoints statically
is understood to be a poor approach in general due to the
variability of power cycles. Instead, most approaches to inter-
mittent computing will place checkpoints at run-time, based
on an adaptive, run-time analysis of the power availability.
These dynamic checkpoint approaches are well-studied [5, 6],
and as such, we aim to find a checkpoint placement algo-
rithm that can compliment existing work. We believe that an
effective approach should run as a static analysis procedure.
This will allow the proposed solution to be combined with
existing dynamic checkpoint placement algorithms [5].

To this end, our proposed checkpointing strategy aims to
automatically mark sections of code as no-checkpoint zones.
The intuition is that because freeing memory can signifi-
cantly decrease the cost of a checkpoint, there are zones of
the program immediately preceding memory frees that are
always suboptimal checkpoint locations. Our compile-time
analysis can then be combined with existing run-time analy-
ses to guide the dynamic checkpointing strategies. Determin-
ing how far these no-checkpoint zones extend requires us to
reason about the size of the heap throughout the program.
To this end, combining formal models of intermittent com-
puting [10] with separation logic to reason about memory
usage [8] is promising direction.
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