
Check before You Change: Preventing Correlated Failures in Service Updates
Ennan Zhai†, Ang Chen‡, Ruzica Piskac◦, Mahesh Balakrishnan§,∗

Bingchuan Tian\, Bo Song•, Haoliang Zhang•
†Alibaba Group ‡Rice University ◦Yale University §Facebook \Nanjing University •Google

Abstract
The reliability of cloud services can be significantly under-
mined by correlated failures due to shared service dependen-
cies, even when the services are already replicated across ma-
chines. State-of-the-art failure prevention systems can proac-
tively audit a service before its deployment to detect risks
for correlated failures, but their auditing speeds are too slow
for frequent service updates. This paper presents CloudCa-
nary, a system that can perform real-time audits on service
updates to identify the root causes of correlated failure risks,
and generate improvement plans with increased reliability.

CloudCanary achieves this with two primitives, SNAPAUDIT

and DEPBOOSTER. SNAPAUDIT leverages two insights to
achieve high accuracy and efficiency: a) service updates typ-
ically affect only a small part of the service stack, allowing
the majority of previous auditing results to be reused; and
b) structural reliability auditing tasks can be reduced to a
Boolean satisfiability problem, which can then be solved ef-
ficiently using modern SAT solvers. DEPBOOSTER, on the
other hand, can generate improvement plans efficiently by
reducing the required reasoning load, using novel techniques
such as model counting. We demonstrate in our experiments
that CloudCanary can perform audits over large deployments
200× faster than state-of-the-art systems, and that it consis-
tently generates high-quality improvement plans within min-
utes. Moreover, CloudCanary can yield valuable insights over
real-world traces collected from production environments.

1 Introduction
High reliability is an essential requirement for cloud services.
To enhance reliability, cloud providers typically replicate
states and functionality across multiple servers, under the
assumption of failure independence [33, 34, 54].

Reality, however, is more complicated. The complex, multi-
layered nature of network/software stacks in cloud services
may conceal underlying interdependencies between seem-
ingly independent components, such as network switches and
software modules. Failures of these common service depen-
dencies can lead to correlated failures despite replication,
causing service downtime [11, 25, 39, 70]. For example, a
faulty top-of-rack (ToR) switch would affect all replicas in
the same rack [18], and a buggy software component could
propagate failures across all service instances it supports [38].

∗ Work done while at Yale University.

Such incidents have repeatedly made the headlines: in one of
the Rackspace outage events [9], glitches in two core switches
caused multiple servers to be inaccessible, leading to signif-
icant service disruption; in another incident, a single faulty
data collector in Amazon EBS brought down the Relational
Database service in an entire availability zone [3].

A number of previous efforts have focused on diagnosing
the root causes of correlated failures [14,23,47,58]. While this
is useful, post-failure diagnostics typically involves prolonged
failure recovery time [12, 64], as even the best of diagnostic
tools cannot prevent service outages. Such outages can be
quite costly: on average, a single datacenter outage can cause
an economic loss of $740,357 [4].

More recent proposals aim to proactively prevent correlated
failures by auditing the structural reliability of cloud services
before deployment [22, 70, 71]. At a high level, these systems
collect a comprehensive set of structural dependency data in
cloud services, and construct a system-wide fault graph to
encode the dependencies. They then identify potential risks
for correlated failures from the fault graph.

However, state-of-the-art auditing systems are designed to
perform audits at service initialization, not for conducting
real-time audits throughout the service lifetime. Runtime au-
dits are necessary, because existing work has shown that many
dependencies potentially causing correlated failures are intro-
duced by network and software updates (e.g., reconfigurations
and upgrades) during service runtime [39]. For example, a
Gmail service upgrade configured microservice replicas to
share the same vulnerable component, which later rendered
user data unavailable for many hours [5]. Existing systems
are impractical for real-time audits for two reasons.

• First, they are too slow in analyzing cloud-scale deploy-
ments in real time. For example, a state-of-the-art sys-
tem takes ∼35 hours to analyze a 30,528-component ser-
vice [70], making it only possible to perform a few audits
per week. This cannot match the update frequency in to-
day’s clouds—for instance, Google reported 58 updates per
week, roughly one update every three hours [37].
• Second, these tools can only alert the operator to corre-

lated failure risks, but do not offer further support to find
effective improvement plans. Thus, the operator needs to
either manually reason about improvements to the exist-
ing deployment, or use automated tools to generate a plan
from scratch [22, 70]. The former is error-prone, and the
latter may result in a plan that requires considerable service
reconfiguration. Moreover, both are inefficient.

In other words, although the operator may have enough lead
time to perform audits at service initialization, the high
turnaround time of existing systems prohibits their use in
real-time auditing during service runtime.

We present CloudCanary, a system that can efficiently and
accurately a) alert the operator to the root causes of correlated
failure risks introduced by service updates, and b) generate
a set of improved deployment plans with higher reliability.
CloudCanary achieves this using two primitives—SNAPAUDIT

and DEPBOOSTER—to help prevent correlated failures during
service runtime in a timely manner.
Contribution #1. SNAPAUDIT (§3) can efficiently and accu-
rately identify root causes for correlated failures in a given
service snapshot. The design of SNAPAUDIT addresses two
challenges. The first is how to rapidly analyze a fault graph
representing the service update snapshot. To address this
challenge, we propose an incremental auditing algorithm to
identify a set of differential fault graphs, which represents
the “delta” between the service snapshots before and after
an update. Based on the insight that service updates usually
affect a small part of service stacks [37, 49, 60], extracting
differential fault graphs enables us to avoid the need to re-
analyze the entire fault graph from scratch. Second, although
differential fault graphs are already smaller than the over-
all fault graph, analyzing each of them is still NP-hard and
time-consuming [63]. We therefore propose an approach that
speeds up the fault graph analysis by transforming a differen-
tial fault graph into a Boolean formula, and then solving the
formula using a high-performance MinCostSAT solver [35].
Contribution #2. DEPBOOSTER (§4), on the other hand, helps
the operator improve a risk-prone deployment. It allows the
operator to specify a reliability goal (e.g., the failure proba-
bility needs to be lower than a certain threshold), and then
generates a set of alternative improvement plans that meet
the specification. DEPBOOSTER also addresses two challenges.
First, there are infinitely many potential improvement plans
to be checked for their capability to satisfy the specified
goal. To overcome this challenge, we utilize network compres-
sion [17]—a technique that can simplify a datacenter network
by collapsing symmetric network structures and slicing away
irrelevant parts—to significantly reduce the number of states
we need to check. Second, even after compression, it still
takes a long time to check whether a candidate deployment
meets the specified goal. We further propose a novel algorithm
based on model counting [20] for efficient checks.

To the best of our knowledge, CloudCanary is the first
practical system capable of preventing correlated failure risks
in service updates. We have built a CloudCanary prototype
and evaluated it with a set of real-world scenarios (§6). Our
results show that SNAPAUDIT can identify correlated failure
root causes in a 1,183,360-component service within 8 min-
utes, 200× faster than the state-of-the-art systems, and that
DEPBOOSTER can find high-quality improvement plans within
minutes.

Core Router1
(Core1)

Core Router2
(Core2)

S1
S2 S3

Agg Switch1
(Agg1)

Internet

S4Cinder DB Cinder DB

Volume
Provider Volume

Cache

Volume
Provider

Changing
network paths

Upgrading software
components

Service
initialization

Agg Switch3
(Agg3)

Agg Switch2
(Agg2)

time

Figure 1: An update that affects the Cinder DB deployment,
where the path Agg2→Core2 is shifted to Agg2→Core1 due
to an ECMP configuration change.

2 Overview
In this section, we first motivate our problem further (§2.1).
Then, we describe the state-of-the-art auditing systems and
their limitations (§2.2 and §2.3). Finally, we present the archi-
tecture of CloudCanary (§2.4).

2.1 Motivation
Cloud operators ensure service reliability by replicating im-
portant state and functionality. Suppose that an operator de-
ploys Cinder DB (a block storage system in OpenStack) in her
datacenter, and that she replicates Cinder DB across multiple
servers to increase reliability. Unbeknownst to this operator,
the replicated Cinder DB instances may share deep dependen-
cies, such as certain network or software components [3, 9].
The failures of such latent common dependencies can lead
to a correlated failure across the entire system, undermining
the use of replication. Such common dependencies are often
called a risk group—a (small) number of components whose
simultaneous failure results in a correlated failure.

To prevent correlated failures, the operator needs a tool to
check for risk groups in a service deployment and generate
improvement plans. For instance, if a risk group only contains
one element, e.g., a shared switch, it may potentially become
a single point of failure. In this case, the operator may want to
improve the deployment so that even the smallest risk group
contains more than one element. In a similar spirit, if the
estimated probability for correlated failures is above a thresh-
old, the operator may want to find a functionally equivalent
deployment with a lower failure probability.

Suppose that a service never goes through updates, then
the above tasks only need to be performed once at service ini-
tialization. However, this is rarely the case in today’s clouds,
as most services experience frequent updates in their lifetime,
and risk groups can be introduced in any of the updates [39].
Figure 1 shows an example: if the network path Agg2→Core2
is shifted to Agg2→Core1 (e.g., due to a change to the ECMP

configuration), such an update will introduce a new risk group
σ ={Core1}, the fault of which will result in a correlated fail-
ure across both Cinder DB instances. Therefore, checking
for risk groups and generating improvement plans need to be
performed continuously in real time.

2.2 Starting Basis: Fault Graphs
Operators already apply a set of “golden standards” for in-
creasing service reliability, such as rack-aware replica place-
ment [8], geo-replication [1], canary tests [10], but achieving
a comprehensive understanding of failure risks is a task that
needs to be automated. To this end, several state-of-the-art au-
diting systems [22, 70, 71] have been proposed to proactively
check for correlated failures. They do so using a common
abstraction called a fault graph [63], which represents the
structural dependencies of a service.
Fault graph. A fault graph is a layered DAG representing the
logical relationships between component faults within a given
system [63]. Figure 2 shows the fault graph of the example
service in Figure 1. The fault graph has two types of nodes:
fault events and logic gates. The leaf nodes in a fault graph
are basic faults, which are the smallest units of failures under
consideration, e.g., the failure of a switch or software library.
The root node in a fault graph represents a target service fault,
which indicates the failure of the entire service. The rest of
the nodes are intermediate faults, which describe how basic
faults may cause larger service disruptions.

The fault propagation is encoded by layers of logic gates in
between. If a component fails, the corresponding fault node
outputs a 1 to its parent node, which could be either an AND
or OR gate; otherwise the fault node outputs a 0. For an OR
gate, if any of its children fail, a fault propagates upwards;
for an AND gate, it only propagates a fault upwards if all of its
children fail. Faulty nodes could be further associated with
weights that encode the failure probabilities. Each non-leaf
node has an input gate that connects its lower-layer faults, but
leaf nodes, i.e., basic faults, do not have an input gate.
Fault graph generation. State-of-the-art auditing systems
(e.g., INDaaS [70], reCloud [22]) have used existing data
acquisition tools to automatically collect the structural de-
pendency data needed for generating fault graphs. These
tools cover a variety of dependency data, including network
path dependencies [56, 70, 77], software component call
flows [69, 73–75], and micro-service execution dependen-
cies [24, 61]. Then, these auditing systems invoke various
fault graph synthesis algorithms [51, 70–72] to automatically
build fault graphs based on the acquired dependency data.
Large-scale fault graph generation has been shown to be
efficient—for example, INDaaS generates a 70,656-leaf fault
graph within minutes [70].

Commercial data centers also deploy a variety of such
profiling tools to track inter-service dependency, although
the specific tools would differ from company to company.
For instance, the Maelstrom [61] system at Facebook collects

+

+

+

OpenStack block storage service (Cinder) fault

Service access dependency 1 fault

+

+

Library fault

Driver
fault

Cinder DB fault

Service access dependency 2 fault

+

Path1 fault

+

Agg1 fault Core1 fault Agg2 fault

Path2 fault

Volume
Provider fault

+

Library fault

+

Core1 fault Agg2 fault

Path3 fault

S3 fault

Network fault

S1 fault S2 fault

Network fault

AND gate: a failure propagates upwards, only if all of the subsidiary components fail.

OR gate: a failure propagates upwards, if any of the subsidiary components fails.+

… ...

Cinder DB faultVolume
Cache fault

+

Library fault

+

Snap
fault

… ... … ...

Figure 2: A fault graph representing the post-update ser-
vice snapshot shown in Figure 1. Path 1, Path 2, and
Path 3 represent the links Agg1→Core1, Agg2→Core1, and
Agg2→Core1, respectively. Dashed boxes are logical compo-
nents that do not exist physically.

service dependency data and uses it for failure mitigation.
Later in our evaluation, we have also collected dependency
data from a production data center using tools that are already
in active deployment.

2.3 State of the Art and Limitations
State-of-the-art systems, such as INDaaS [70], reCloud [22],
and RepAudit [71], can perform structural reliability audits
on fault graphs to detect risk groups. They then output the
identified risk groups to the operator to alert her to the risk.
For instance, they may identify {Core1} to be a risk group,
because its failure would cause the entire service to fail. How-
ever, existing systems all focus on one-shot audits at service
initialization. They cannot handle real-time audits during ser-
vice runtime due to the following two reasons.
Inefficient risk group auditing. Since detecting risk groups
is NP-hard [63], existing auditing systems either perform an
exhaustive search, which scales poorly to large deployments,
or use heuristics, which sacrifices accuracy. For instance, IN-
DaaS [70] takes ∼35 hours to analyze a 30,528-component
service. Such speeds cannot match the frequency of network
and software updates in today’s clouds—for instance, Google
reported 58 network updates per week [37].
Lack of support for generating improvement plans. Exist-
ing systems offer no support for the operator to automatically
generate improvement plans. As a result, even after perform-
ing hours-long audits, the operator still needs to reason about
improvement plans if the current service snapshot does not
meet her reliability requirements. Existing systems such as
INDaaS [70] and reCloud [22] can compute deployment plans
from scratch, but such plans may differ considerably from

Table 1: Key techniques in CloudCanary.
Objective Key techniques Section(s)

Reusing previous audit results Caching + Cache refreshes 3.1 + 3.4
Avoiding full-blown Cartesian products Reduction to DNF (Disjunctive Normal Form) conversion 3.1
Incremental auditing Differential fault graphs 3.2
Efficient auditing Reduction to minimum-cost SAT 3.3
Avoiding large-scale Markov chains Reduction to model counting 4.2
Handling non-uniform probabilities Adding virtual leaf nodes 4.2
Reducing the search space Network compression + Search heuristics 4.3

SnapAudit

Target Service

Reliability Goal

Dependency acquisition
and

Fault graph generator

Fault Graph

DepBooster

1. {CoreRouter-1}
2. {Agg1, Agg2}
… ...

Improvement Plans

CloudCanary

Operator

Figure 3: The workflow and architecture of CloudCanary with
two novel primitives: SNAPAUDIT and DEPBOOSTER.

the current snapshots and require non-trivial reconfiguration.
Moreover, these systems are also inefficient to use in service
runtime with high update frequency.

Therefore, although the two tasks can be performed with
looser time constraints at service initialization, services with
frequent updates demand better support for efficient audits
and improvements in real time.

2.4 Our Approach: CloudCanary
We propose CloudCanary to achieve the above goals. Figure 3
shows CloudCanary’s workflow. For a given service snapshot
S, CloudCanary collects its dependency data and constructs a
fault graph using existing dependency acquisition and fault
graph generation modules [70]. The key innovation in Cloud-
Canary is its two primitives SNAPAUDIT and DEPBOOSTER.
SNAPAUDIT can extract risk groups from S, and DEPBOOSTER

can generate improvement plans, both in a matter of minutes.
Table 1 highlights the key techniques we have used and the
objectives they are designed to achieve.

SNAPAUDIT. To accelerate auditing, SNAPAUDIT uses two in-
sights. First, since service updates typically just affect a small
subset of dependencies [37, 49, 60], there is no need to audit
from scratch for each update. Rather, SNAPAUDIT performs
a complete fault graph analysis at service initialization, and
aggressively reuses cached results to perform incremental au-
diting afterwards. Second, we use a novel encoding to reduce
fault graph analysis to a minimum cost Boolean Satisfiability
(SAT) solving problem, and leverage modern SAT solvers for
fast auditing. This insight is driven by the fact that modern
SAT solvers can solve complex Boolean formulas efficiently
with accuracy guarantees.

DEPBOOSTER. The second primitive automatically gener-
ates improvement plans to meet a reliability goal, e.g., the

minimal risk group containing more than k elements, or the
failure probability being lower than α. If naïvely done, as-
sessing the failure probability requires solving a long Markov
chain [63], and searching through all possible plans further
exacerbates the inefficiency. We use a novel reduction to
model counting to compute the failure probability, as well as
a combination of network compression and search heuristics
to reduce the search space.

3 The SNAPAUDIT Design
This section details the design of SNAPAUDIT that identifies
the minimal risk groups in a given service snapshot. Figure 4
presents the key algorithms of SNAPAUDIT: FIRSTAUDIT is
only executed once at service initialization. INCAUDIT per-
forms incremental auditing for the subsequent snapshots dur-
ing service runtime. For a given service snapshot, the input of
FIRSTAUDIT or INCAUDIT is a fault graph G representing its
underlying dependency structure, and the output is ΣG which
contains the top-k minimal risk groups of G.
Minimal risk group. A risk group is minimal if the removal
of any of its constituent elements makes it no longer a risk
group. For instance, in Figure 2, there are two minimal risk
groups: σ1 ={Core1} and σ2 ={Agg1∧Agg2}. On the other
hand, σ3 ={Agg1∧Core1} is also a risk group but is not a
minimal risk group, because the failure of Core1 alone can
cause the entire service to fail. Moreover, we can characterize
a risk group’s criticality by its cardinality, e.g., σ1 is more
critical than σ2 because |σ1|= 1 < |σ2|= 2—it takes two fail-
ures in σ2 to take down the service but only a single failure in
σ1. The top-k risk groups of a given fault graph G are a ranked
list of minimal risk groups by size or by failure probability.
e.g., ΣG = {σ1,σ2}. Extracting minimal risk groups in a fault
graph is NP-hard [63, 72].

3.1 The First Audit
At service initialization, we use FIRSTAUDIT to compute the
risk groups from scratch. FIRSTAUDIT not only audits the over-
all fault graph G, but also every subgraph in G, thus enabling
subsequent audits (performed by INCAUDIT) to reuse the re-
sults for these subgraphs. All audit results are recorded in a
key-value cache Σ, where the key corresponds to a particu-
lar subgraph, and the value is its top-k minimal risk groups.
FIRSTAUDIT builds a unique identifier for each subgraph by
constructing a Merkle Hash Tree [53], and uses the root node’s
hash as the identifier of the entire subgraph. This allows for a

function FIRSTAUDIT(G)
if isleaf(G) then

ΣG←{G}
for c ∈ G.children do

if Σc = /0 then
Σc← FIRSTAUDIT(c)

ΣG← MERGE(G)
return ΣG

function MERGE(G)
c1, · · · ,ck ← G.children
if G.gate = AND then

ΣG← DNF(Σc1 ∧·· ·∧Σck)
else

ΣG← DNF(Σc1 ∨·· ·∨Σck)

return ΣG

function INCAUDIT(G)
Π← GETBORDER(G)
for t ∈Π, t.children /∈Π do

for c ∈ t.children,Σc = /0 do
Σc←MINCOSTSAT(c)

ΣG←MERGEALL(G)
return ΣG

function GETBORDER(G)
while BFS(G) with Q do

n← Q.Pop()
if Σn = /0 then

if c∈ n.child, Σc 6= /0 then
L.append(n)

Q.Push(n.children)
return L

Figure 4: The key functions in SNAPAUDIT: FIRSTAUDIT and MERGE (§3.1), INCAUDIT and GETBORDER (§3.2).

B

... ...

E F

(b)(a)

+

B

... ...

ƩE:
- {A3}
- {A1, A2}

ƩF:
- {A4}
- {A1, A3}

ƩB :
- {A3}
- {A4}
- {A1, A2}

E F

ƩB :
- {A1, A3}
- {A3, A4}
- {A1, A2, A4}

ƩE:
- {A3}
- {A1, A2}

ƩF:
- {A4}
- {A1, A3}

Figure 5: Merging risk groups for AND/OR gates.

more compact encoding of the subgraphs in the cache, given
that the number of subgraphs in G is very large. For exam-
ple, in Figure 5(a), the key of the subgraph rooted at B is
h(B) = h(h(E)||h(F)), where h is a hash function and || de-
notes concatenation. Indexing Σ by B’s key would return
ΣB = {{A3},{A4},{A1∧A2}}.

To generate Σ for both G and its subgraphs, a strawman
solution is to directly call existing auditing systems such as
INDaaS [70]. However, as discussed in §2.3, these systems
are quite slow because their fault graph analysis algorithms
scale poorly. Here, any inefficiency would be amplified sev-
eral times over, because we are computing the minimal risk
groups for each subgraph in G. To address this problem, we
propose a completely different approach to computing the
minimal risk groups, using high-performance Boolean for-
mula translation toolchains such as Z3 [27] and Velev [62].

Overall, our FIRSTAUDIT algorithm starts with the leaf
nodes, and recursively ascends to upper layers, until it reaches
the root node of G. The base case for FIRSTAUDIT is to com-
pute the minimal risk group list Σn for a leaf node n, where it
simply returns Σn = {{n}}. In the inductive case, FIRSTAUDIT

processes an intermediate node n with children n1, · · · ,nk by
calling MERGE on n and combining results for all its chil-
dren. If n’s children are connected by an OR gate, we have
Σn = Σn1 ∪·· ·∪Σnk ; otherwise, if n’s children are connected
by an AND gate we have Σn = Σn1×·· ·×Σnk , where× denotes
Cartesian product. Figure 5 shows a concrete example.
Reduction to DNF conversion. A naïve MERGE over an AND
gate requires a full-blown Cartesian product between risk
groups, which leads to state explosion. If the size of each Σni

is |Σ|, merging k of them would result in a set of size |Σ|k;
after s merges, the size would further grow to |Σ|ks. To solve
this problem, our insight is that MERGE can be achieved by a
DNF (Disjunctive Normal Form) conversion, which can be
efficiently computed using modern solvers [27]. A Boolean
formula is in DNF if it is a disjunction of conjunctive clauses.

Consider the case shown in Figure 5(b), where we have ΣE =
{{A3},{A1∧A2}} and ΣF = {{A4},{A1∧A3}}. We need
to compute ΣB = ΣE ×ΣF , which can be transformed to a
Boolean formula: φ = ΣE ∧ΣF = ((A1∧A2)∨A3)∧ ((A1∧
A3)∨A4). By using Z3, we can quickly compute the DNF of
φ, getting (A1∧A3)∨(A1∧A2∧A4)∨(A3∧A4). As a result,
ΣB contains three minimal risk groups: {A1,A3}, {A3,A4},
and {A1,A2,A4}. Note that only DNF transformation can
output all the minimal risk groups within one-run, and other
solvers, e.g., MinCostSAT, do not support such a capability.

3.2 Subsequent Audits
All subsequent audits are performed using INCAUDIT, which
reuses the results in Σ generated by FIRSTAUDIT. As
shown in Figure 4, INCAUDIT has three steps: GETBORDER,
MINCOSTSAT, and MERGEALL. Given a fault graph G,
INCAUDIT first uses GETBORDER to identify the differential
fault graphs, and then invokes MINCOSTSAT to extract risk
groups from each differential fault graph. Finally, INCAUDIT

uses MERGEALL to merge the results for the differential fault
graphs and those for the unchanged subgraphs, getting the
final result ΣG (i.e., G’s minimal risk groups).

GETBORDER. This step identifies a set of special border
nodes that delineates the changed and unchanged portions of
the fault graph. Concretely, a node n with children n1, · · · ,nk
is called a border node if a) at least one of n1−nk’s key has a
hit in Σ (i.e., Σni 6= /0), and b) at least one of them has a miss
in Σ (i.e., Σn j = /0). If all n’s children have been previously
audited, or none of them has been audited, then n is not a
border node. For instance, in Figure 6, A and B are border
nodes, but C–F are not.

To identify border nodes, we traverse G in a breadth-first
order from the root. For each traversed node n, we check
whether n has a hit in Σ. If n has a hit, we can reuse its result
because 1) n is not a border node, and 2) n’s subgraph has
not changed. If n misses in Σ (e.g., A in Figure 6), we check
its children. If any of n’s children has a hit in Σ (e.g., D in
Figure 6), we record n as a border node, and recurse and
process n’s children in order to find more border nodes.

We then extract differential fault graphs based on the border
nodes and analyze such subgraphs from scratch, starting from
the bottom border node. A node is a bottom border node if
a) it is a border node, and b) none of its subgraphs contains

+

… ...

A0

H(A)=aed8

...

......

+

C
H(C)=x1r6 … ...

......

B0

H(B)=d6cf
D

H(D)=cfce

E
H(E)=6t1s

F
H(F)=ou7b

A
H(A)=45zc

...

B
H(B)=2xzb

D
H(D)=cfce

F
H(F)=ou7b

E
H(E)=6t1s

Update

G0 G

Figure 6: A service update where a subgraph C is added to
the fault graph; this changes the keys for subgraphs rooted at
A and B. In the updated fault graph, A and B are border nodes,
B is the bottom border node, and D–F are unchanged. The
subgraph rooted at C is a differential fault graph, which we
invoke MINCOSTSAT on to obtain ΣC. The results for ΣD, ΣE ,
and ΣF have already been cached in Σ.

more border nodes. For example, in Figure 6, the only bottom
border node is B; A is a border node, but not a bottom border
node. We identify the bottom border nodes’ children who
miss in Σ (e.g., C in Figure 6) as the roots of differential fault
graphs, and analyze such subgraphs from scratch.

MINCOSTSAT. To analyze a differential fault graph, G∆,
from scratch, a straightforward approach is to directly invoke
FIRSTAUDIT. However, unlike the first audit at service initial-
ization, which could be performed at leisure, INCAUDIT is
frequently invoked during service runtime; thus, efficiency
is much more critical. Thus, rather than audit all subgraphs
in G∆, we only audit G∆ itself. We achieve this by reducing
this single audit to a minimum-cost SAT problem, which can
be efficiently solved using modern SAT solvers. This step is
denoted by MINCOSTSAT. For example, in Figure 6, because
the subgraph rooted at C is a differential fault graph, we in-
voke MINCOSTSAT to compute its minimal risk groups, i.e.,
ΣC. We detail this MINCOSTSAT reduction in §3.3.

MERGEALL. After we use MINCOSTSAT to compute the risk
groups for all differential fault graphs, we need to recompute
the risk groups of G. Our insight is that we already have
results for the siblings of these differential fault graphs (e.g.,
D, E, and F in Figure 6), and we could directly use the DNF
conversion in MERGE (§3.1), to obtain the risk groups for
the entire G. Specifically, we generate a Boolean formula
φ by only combining all the border nodes’ children using
their respective logic gates. Then, we transform φ into DNF,
obtaining ΣG. For example, in Figure 6, we first generate
φ = (ΣC ∨ ΣE ∨ ΣF)∧ ΣD, and then transform it into DNF,
getting the recomputed ΣA.

3.3 The MinCostSAT Solving
We now detail the design of MinCostSAT function, which can
efficiently and accurately extract minimal risk groups from a
given fault graph.

At a high level, a minimum-cost SAT problem [35] takes as
input a Boolean formula φ with n Boolean variables b1, b2, . . .,
bn, and a cost vector {wi|wi≥ 0,1≤ i≤ n}. The goal is to find
a satisfying assignment to these variables such that φ evaluates
to True, and simultaneously minimizing the following value:
W = ∑

n
i=1 wibi.

We design the MINCOSTSAT function to compute the top-k
risk groups. Initially, we transform an input fault graph into a
Boolean formula φ, and initialize the cost of all the Boolean
variables to one. For example in Figure 7, the fault graph
at the left-hand can be transformed into (Agg1 ∨ Core1) ∧
(Core1 ∨ Agg2). We then use a MinCostSAT solver to find
the top-k critical risk groups through k rounds. Without loss
of generality, for the i-th round, we identify the i-th smallest
risk group in three steps: 1) we input the current formula φi
and its cost vector into the MinCostSAT solver to generate the
satisfying assignment with the minimal cost, 2) we obtain a
risk group by extracting all the True literals from the resulting
assignment, denoted as ψ. and 3) we use a conjunction to
connect the current φi and the negation of ψ, generating a new
φi+1 = φi∧¬ψ for the next round.

3.4 Further Speedups
Since SNAPAUDIT heavily relies on the cache Σ for efficient
audits, we propose two additional techniques to achieve fur-
ther speedups. First, the results obtained during INCAUDIT can
also be cached in Σ, so that Σ would grow over the service
lifetime and the hit rate would improve. Second, INCAUDIT

does not audit the subgraphs of a G∆, but the subgraphs may
be needed for subsequent audits. We therefore run a back-
ground process that periodically invokes FIRSTAUDIT over the
more recent snapshot to refresh the cache. However, we have
omitted these techniques from the pseudocode for brevity.

4 The DEPBOOSTER Design
Identifying risk groups is a useful first step, but the opera-
tor still needs to reason about ways to increase the service
reliability. Rather than ask the operator to achieve this manu-
ally, CloudCanary offers a second primitive, DEPBOOSTER, to
generate improvement plans in an automated fashion.

4.1 The DEPBOOSTER Workflow
DEPBOOSTER offers the operator an interface to specify “reli-
ability goals”, and assesses if the current deployment meets
the goals. If not, DEPBOOSTER generates improvement plans
with increased reliability. These goals are specified as spec =
req∧ action∧ cons. req is a requirement parameter. It can
be a) rcg > t, which means the smallest risk groups in the
deployment should contain more than t elements, b) fp < α,
which means the failure probability should be lower than some
threshold α, or c) a combination of both. While DEPBOOSTER

currently only supports constraints like failure probability and
the size of risk groups, more constraints, e.g., key paths, are
easily added.

+

+

Target system fault

+

Agg1 fault Core1 fault Agg2 fault

S2 faultS1 fault

1/2 5/8 1/2

+

Target system fault

+

Agg1 fault Core1 fault Agg2 fault

S2 faultS1 fault

Core1a fault

1/2 1/2

1/2

Core1b fault

1/2

+

Core1c fault

1/2

Figure 7: Transforming G by adding virtual leaf nodes.

DEPBOOSTER first assesses whether rcg > t and fp < α

already hold on the current snapshot. (Computing whether
rcg > t is achieved using SNAPAUDIT, which we described
in §3; we defer the algorithm for computing whether fp <
α to §4.2.) If both predicates hold, DEPBOOSTER reports so
and terminates. Otherwise, it uses the strategies in action
and the constraints in cons to generate improvement plans.
action specifies an extensible set of basic actions to generate
improvement plans with. Currently, DEPBOOSTER supports
1) mov{r, A→B}, which moves a service replica r from a
node A to another node B; 2) add{r, A}, which instantiates
an additional replica r on node A; and 3) link{A, B}, which
adds a network link between network components A and B.
DEPBOOSTER then performs a search for improvement plans
based on the basic actions. cons contains positive and negative
constraints which specify that certain components must or
must not be used in an improvement plan.

Example. We now provide a concrete example based
on the scenario in Figure 1. Here, the operator provides
DEPBOOSTER with a goal: spec = {rcg > 1∧ fp < 0.08} ∧
{mov} ∧ {Agg3}, which specifies that a) the smallest risk
groups should contain more than one elements, and b) the fail-
ure probability should be lower than 0.08. If the current snap-
shot does not meet either of these two goals, DEPBOOSTER

will generate a set of improvement plans. Moreover, the spec
requires DEPBOOSTER to generate improvement plans by only
moving replicated instances from the current replica servers
to other servers. Finally, any improvement plan must still
use the switch Agg3, as specified in cons. For this speci-
fication, DEPBOOSTER has generated two potential plans: a)
mov{CinderDB, S1->S4}, and b) mov{CinderDB, S2->S4}. In
other words, if we migrate the Cinder DB instance on S1 or
S2 to S4, then new deployment would meet the desired goals.

4.2 Computing Failure Probability

We now describe how DEPBOOSTER computes the failure
probability of a service snapshot. A strawman solution would
be to derive the failure probability of the root node from these
of the leaf nodes step by step, which is equivalent to comput-
ing the conditional probability of a Markov chain [63]. As we
will show later, this is a time-consuming operation over large

2

4 5

AND

AND OR AND OR

OR

...

3

6 7

AND

AND OR AND OR

OR

...

1
AND OR

Figure 8: DEPBOOSTER searches through combinations of
AND/OR gates to approximate a given probability.

deployments, infeasible to be performed in real time. Instead,
DEPBOOSTER uses two techniques to address this.

Technique #1: Model counters. DEPBOOSTER sidesteps the
need for Markov chain computation by encoding this into a
model counting problem. Suppose that the Boolean formula
of the fault graph G is φ. A model counter [20] can find M—
the number of satisfying assignments of φ. Assuming for now
that all leaf nodes have a failure probability of exactly 1

2 ,
then the failure probability of G is simply M/2n, where n is
the number of leaf nodes in G. Since model counting does
not need to compute the solutions themselves, but only the
number of satisfying assignments, this is much more efficient
than solving a Markov chain.

Technique #2: Virtual leaf nodes. However, another chal-
lenge arises: in practice, not all leaf nodes have the same
failure probability, and such a probability is typically much
lower than 1

2 . We address this by adding “virtual nodes” in
the fault graph and reducing the problem again into the plain
version of model counting. At a high level, we achieve this
by substituting a node with failure probability of p with a
subtree of virtual nodes, where all virtual nodes have a failure
probability of 1

2 , and the failure probability of the entire vir-
tual subtree evaluates to p with a user-defined precision ε. For
instance, in the example shown in Figure 7, our goal would
be to transform the node with p = 5

8 (i.e., Core1 fault) into
a virtual subtree.

Figure 8 shows the solution space that DEPBOOSTER

searches through to find a combination of gates that approxi-
mates a given failure probability. At any point in the search,
the path from the root to a node n represents the current com-
bination of gates. These gates further connect virtual nodes of
failure probability 1

2 (not shown in the figure). For instance,
the path from the root to node 5 consists of an AND gate and
then an OR gate, so the formula would be (v1 AND v2) OR
v3, where v1-v3 are virtual nodes with a failure probability
of 1

2 . The failure probability of n5 can then be computed
as p(n5) = ((1

2 ×
1
2)+

1
2)− (1

2 ×
1
2)×

1
2 = 5

8 . Our algorithm
performs a BFS over the solution space, and constructs a com-
bination of gates based on the path from the root to the current
node. If |p(n j)− p|< ε holds for the current node, the search
stops and we use the current combination to approximate
a given probability. This transformation converts the fault
graph G to a larger fault graph G′ with (roughly) the same

mov(S1 → S3)

mov(S1)

mov(S1 → S4)

mov(S2 → S4) mov(S2 → S3) mov(S2 → S4) mov(S2 → S3)

mov(S2)

Constraint
violation

Figure 9: An example state-space tree.

failure probability that can be solved by model counters—i.e.,
p = M′/2n′ , where M′ is the model counter output for G′ and
n′ is the number of leaf nodes in G′.

4.3 The DEPBOOSTER Algorithm
If the current deployment already meets the reliability goals,
DEPBOOSTER directly terminates. Otherwise, it generates im-
provement plans by searching through a state-space tree. Each
node in this tree represents one concrete move in action, and
a path from the root to a leaf represents an improvement plan.
Since there could be a large number of possible improve-
ment plans, DEPBOOSTER uses two techniques to accelerate
the search. Below, we use Figure 9 as an example to illus-
trate how DEPBOOSTER generates improvement plans for our
running example in §4.1.
Technique #3: Network compression. We use the observa-
tion that datacenter network topologies tend to be highly sym-
metric, and can be “simplified” to equivalent topologies much
smaller in size [17]. This enables DEPBOOSTER to perform
the search on the smaller networks, and then map the solution
back onto the original topologies. Driven by this observation,
DEPBOOSTER transforms the input network topology D to a
simplified topology d while preserving its original connec-
tivity and reachability. Briefly, this is achieved by collapsing
symmetric network structures (i.e., routers and paths) and slic-
ing away irrelevant structures. For instance, Figure 9 shows
how the symmetric branch at S2 has been pruned. We refer
interested readers to the original paper [17] for proofs.
Technique #4: Iterative deepening. DEPBOOSTER then gen-
erates the state-space tree Td based on the simplified topology
d. It never materializes Td in its entirety, but only explores it
step by step. Concretely, DEPBOOSTER performs an Iterative
Deepening Depth-First Search (IDDFS) [46] on Td starting
from the root. For each traversed node n, DEPBOOSTER checks
whether n or any of n’s children violates the specified con-
straints. If any constraint is violated, then the corresponding
branches are pruned. For example, in Figure 9, the branch
mov(S2 -> S3) under mov(S1 -> S3) is pruned because mov-
ing Cinder DB instances on S1 and S2 to S3 violates the con-
straint that Agg3 must be used in the new deployment. For
the remaining nodes, DEPBOOSTER runs INCAUDIT and the
failure probability computation approach (designed in §4.2)
to check whether the size of risk groups and failure proba-
bility meet the specified goals. For instance, in Figure 9, we

do not need to check any branches below the state mov(S1 ->
S4), since moving the Cinder DB instance on S1 to S4 has
already satisfied the specified goals.

DEPBOOSTER can be configured to a) produce improvement
plans with the smallest number of actions, b) find the first t
improvement plans, and c) run until a timeout occurs. In the
running example, we have used b) to find four improvement
plans: 1) mov{CinderDB, S1->S4}, 2) mov{CinderDB, S2-
>S4}, 3) mov{CinderDB, S1->S3}, mov{CinderDB, S2->S4},
and 4) mov{CinderDB, S2->S3}, mov{CinderDB, S1->S4}.
The first two plans correspond to those shown in §4.1.

5 Limitations and Discussions
We discuss three high-level limitations of CloudCanary and
potential ways to address them.

Quality of inputs. CloudCanary takes two types of inputs
as given: a) dependencies, and b) failure probabilities; so it
would be limited by the accuracy of the inputs (see §6.5 for a
concrete example). For instance, an operator might not know
that two upstream ISPs share the same undersea fiber, and that
a fiber cut would bring down both networks; or an operator’s
estimate of the failure probabilities might not be perfectly
accurate. In such cases, CloudCanary cannot automatically
identify these inaccuracies. However, CloudCanary can bene-
fit from advances in dependency collection systems or failure
estimation algorithms: enhancement to CloudCanary’s inputs
always leads to improved utility.

Dependency granularity. CloudCanary is also limited by
the dependency granularity of its data acquisition system; it
currently cannot reason about more fine-grained dependen-
cies such as configuration files. If a misconfigured component
handles two upper-layer services differently, the current ver-
sion of CloudCanary would not be able to identify that. This
is somewhat akin to the previous limitation, and could benefit
from a similar solution—e.g., enhancing the fault graphs to
capture configuration files.

Non-deterministic failures. The logic gates in CloudCa-
nary’s fault graph are deterministic, which assumes that if
two services depend on a common component, the failure of
the component would affect both services. This assumption
does not capture well non-deterministic and/or partial failures,
e.g., when a bit flip in switch TCAM only affects a subset
of services but not others. Modeling such behaviors might
require extensions to the fault graph abstraction, which we
leave as future work.

6 Evaluation
Our evaluation aims to answer three high-level questions: (1)
How efficient and accurate is CloudCanary in identifying
the risk groups? (2) How quickly can CloudCanary generate
improvement plans? and (3) How well can CloudCanary shed
light on failure risks in real-world traces?

Table 2: The configuration of our deployments.
Deploy. A Deploy. B Deploy. C

Switch ports 24 64 128
Core routers 144 1,024 4,096
Agg switches 288 2,048 8,192
ToR switches 288 2,048 8,192
Virtual machines 3,456 65,536 524,288
Libraries/Microservices 4,492 79,824 638,592
Total # of components 8,668 150,480 1,183,360

Prototype implementation. We have developed a CloudCa-
nary prototype using a mix of C++, Python, and open-source
software libraries. Our system consists of three components:
a) fault graph generator, b) SNAPAUDIT, and c) DEPBOOSTER.
The fault graph generator uses NSDMiner [56] and TS [24] to
acquire network and software dependency data, and uses IN-
DaaS [70] to parse and generate fault graphs. Our SNAPAUDIT

prototype uses a) a high-performance MinCostSAT solver,
Maxino [6], for solving the Boolean formulas that encode the
fault graphs, b) the Z3 solver [27] for DNF conversion, and
c) a fault graph parser based on pyeda [7] to optimize the
encoding and transformation of formulas. Our DEPBOOSTER

prototype uses a scalable open-source SAT model counter,
ApproxMC [2], to compute failure probabilities.

6.1 Experimental Setup
We have emulated a datacenter network with a Clos
topology [59], and installed Apache Hadoop 3.2.0 and
ZooKeeper 3.4.0 as the cloud services. In the performance ex-
periments, we varied the service size from 8,668 to 1,183,360
software and network components using up to 524 k virtual
machines, as shown in Table 2. We also used a real failure
probability distribution trace for network devices in our exper-
iments. All machines have an Intel Xeon E5-1620 v2 Quad
Core HT 3.7 GHz CPU and 16 GB memory.

Baseline systems. Table 3 presents the three state-of-the-art
auditing systems that we have used as the baseline to compare
CloudCanary against. Among these systems, INDaaS [70] is
more accurate than RepAudit [71] and reCloud [22], but the
latter two are faster. This is because the minimal risk group al-
gorithm in INDaaS relies on an exhaustive search, which can
produce 100% accurate results but scales poorly. RepAudit
and reCloud trade accuracy for efficiency: the former uses a
simple MaxSAT solving that cannot guarantee that the identi-
fied risk groups are minimal1, and the latter uses sampling for
approximation, which may miss risk groups. Furthermore, we
have included a fourth baseline that we call ProbINDaaS [70],
which is a randomized version of INDaaS that also relies on
sampling for efficiency. We note that reCloud uses a more
advanced sampling algorithm (i.e., dagger sampling) than
ProbINDaaS (i.e., Monte Carlo), and that reCloud can addi-

1MaxSAT solving means: given an SAT formula with weight one to each
clause, find truth values for its variables that maximize the combined weight
of the satisfied clauses.

Table 3: All evaluated systems and their comparisons.
System Accurate? Efficient? Imp. Plans?

INDaaS [70] X × ×
ProbINDaaS [70] × X– ×

reCloud [22] × X– ×
RepAudit [71] X– X– ×
CloudCanary X X X

tionally provide the ability to generate a deployment from
scratch to meet a reliability goal. Unlike all these baseline
systems, CloudCanary can generate improvement plans based
on the current deployment, and it performs incremental audit-
ing while preserving accuracy. As shown later, CloudCanary
achieves 100% accuracy while outperforming all baselines.

6.2 Performance: SNAPAUDIT

We start by evaluating the performance of SNAPAUDIT using
the deployments in Table 2 (A: small, B: medium, C: large).
For each deployment, we measured a) the time each system
took to audit the service from scratch, and b) the time to audit
an updated snapshot when 10% of the hosts and links have
been affected. All audits asked for top-50 risk groups.

Efficiency. At service initiation, we observe that INDaaS is
the slowest, taking up to ∼5811 minutes on the largest de-
ployment. The two probabilistic approaches ProbINDaaS and
reCloud (both with 107 sampling rounds) also perform poorly
due to the large search space. RepAudit outperforms other
baselines and is slightly (∼1.3×) faster than SNAPAUDIT’s
FIRSTAUDIT. However, this is expected, because RepAudit
only audits the overall fault graph, whereas FIRSTAUDIT au-
dits both the overall fault graph and its subgraphs to create
reusable results for subsequent audits.

We then updated the three deployments by randomly
adding or removing 10% hosts and links, and ran the four au-
diting systems on the resulting deployments A′–C′. Figure 10
shows the turnaround time (X-axis) versus audit accuracy
(Y-axis). As we can see, SNAPAUDIT’s INCAUDIT consistently
outperforms INDaaS, ProbINDaas, reCloud, and RepAudit for
all subsequent audits. On deployment B, INCAUDIT is faster
than the second fastest system RepAudit by 200×.

Accuracy. Moreover, SNAPAUDIT always has an accuracy
of 100% across deployments—the same with INDaaS—
but RepAudit only has 96%, 83%, and 68% in deploy-
ment A′–C′, respectively. ProbINDaaS and reCloud are even
less accurate. Here, an inaccurate audit in RepAudit, re-
Cloud, and ProbINDaaS means that a) some risk groups
are missing from the output, and b) some risk groups gen-
erated by these systems are not minimal. For instance,
SNAPAUDIT outputs Σ = {{A},{B},{C,D}} as the top-3 risk
groups. An inaccurate system, however, may output Σ′ =
{{A,E},{C,D,E},{C,D,F}}, where {B} is missing and the
rest of the risk groups are not minimal. Therefore, even a low
inaccuracy rate (e.g., 100%−96%=4%) means that human
operators need to manually inspect the results to identify re-

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 512 2048

T
h

e
 t

o
p

-5
0

 c
ri
ti
c
a

l
 r

is
k
 g

ro
u

p
s
 d

e
te

c
te

d
 (

%
)

Turnaround time (minutes)

CloudCanary

RepAudit

INDaaS

reCloud (10
7
 rounds)

ProbINDaaS (10
7
 rounds)

(a) Deployment A′.

 20

 40

 60

 80

 100

 1 2 4 8 16 32 256 1024 4096

T
h

e
 t

o
p

-5
0

 c
ri
ti
c
a

l
 r

is
k
 g

ro
u

p
s
 d

e
te

c
te

d
 (

%
)

Turnaround time (minutes)

CloudCanary

RepAudit

INDaaS

reCloud (10
7
 rounds)

ProbINDaaS (10
7
 rounds)

(b) Deployment B′.

 20

 40

 60

 80

 100

 1 2 4 8 16 32 256 1024 4096

T
h

e
 t

o
p

-5
0

 c
ri
ti
c
a

l
 r

is
k
 g

ro
u

p
s
 d

e
te

c
te

d
 (

%
)

Turnaround time (minutes)

CloudCanary

RepAudit

INDaaS

reCloud (10
7
 rounds)

ProbINDaaS (10
7
 rounds)

(c) Deployment C′.
Figure 10: Performance evaluation of CloudCanary, INDaaS, reCloud (with 107 rounds of sampling) and ProbINDaaS (with 107

rounds of sampling), and RepAudit in one of the update snapshots.

 0.1

 1

 10

 100

 1000

 10000

 100000

Topology A Topology B Topology C

C
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
(m

in
u
te

s
)

SnapAudit
SnapAudit without fast DNF conversion

SnapAudit without caching
RepAudit

Figure 11: SNAPAUDIT microbenchmarks.

dundancy and reason about the possibility of unidentified risk
groups—a task that is time-consuming to perform at runtime.

Microbenchmarks. To further understand the performance
improvements of the incremental auditing algorithm in
SNAPAUDIT, we have performed a set of microbenchmarks
to break down the speedups. We used RepAudit as the base-
line, as it performs faster than other systems and is closest
to SNAPAUDIT in its use of SAT solvers. For each of the de-
ployments A′–C′, we measured the execution times for four
scenarios: a) SNAPAUDIT with all optimizations turned on, b)
SNAPAUDIT without the fast DNF conversion, c) SNAPAUDIT

further without caching previous results, and d) RepAudit. Fig-
ure 11 shows that, without any optimization, SNAPAUDIT per-
forms very similarly with RepAudit; the slight speedup comes
from the differences in the SAT formulations. The fast DNF
conversion led to speedups of 2×–40×, and reusing cached
results led to speedups of 4×–8×. These results demonstrate
that the optimization techniques in SNAPAUDIT can signifi-
cantly accelerate incremental auditing.

Degrees of update. A third observation is that the time IN-
DaaS, ProbINDaas, reCloud, and RepAudit took on each sub-
sequent audit is roughly the same with that on their first audits,
because they perform each audit from scratch. SNAPAUDIT’s
INCAUDIT, on the other hand, is significantly faster on subse-
quent audits than its first audit.

To further evaluate how the degree of updates affects the
auditing time of SNAPAUDIT, we tested updates that affect
10%–50% of the components in deployment C, and used
SNAPAUDIT to audit these five updates. As shown in Figure 12,
the turnaround time of CloudCanary increases roughly lin-
early with the update percentage. This is good news, because
a complete overhaul of a deployed service is rare. Most up-
dates only affect a small part of the service, and they can reap
the benefits of CloudCanary easily. On the contrary, since
RepAudit never used any incremental algorithm, the RepAu-

dit performance in Figure 10 reflects the update that affects
the majority of the deployment.

6.3 Performance: DEPBOOSTER

We now evaluate the performance of DEPBOOSTER for com-
puting failure probabilities and generating improvement plans.
For the first task, our baseline systems are INDaaS and RepAu-
dit, both of which solve a Markov chain to obtain the proba-
bility. For the second task, our baseline systems are reCloud
and RepAudit, although they are not designed to generate
improvement plans directly.

Failure probability computation. Figure 13 shows the time
DEPBOOSTER, reCloud (with 107 sampling rounds) and the
baseline system (Markov chain computation) took to compute
the failure probability of each deployment. For DEPBOOSTER,
we set the precision per leaf node to be 10−4 (defined in
§4.2) when adding virtual leaf nodes. As shown in Fig-
ure 13, DEPBOOSTER achieves a speedup of two to three or-
ders of magnitude compared to reCloud and the baseline. On
the largest deployment, DEPBOOSTER only took 2.5 minutes,
whereas the baseline and reCloud took more than 10 hours.
In terms of the failure probability precision, we found that
DEPBOOSTER approximates the probability of the baseline
system (which does not use any approximation) with an er-
ror of 10−3 for all tested deployments, whereas the error in
reCloud is 10−2 for all tested deployments.

Improvement plan generation. Next, we evaluate the perfor-
mance of DEPBOOSTER, using reCloud as the baseline. Each
deployment hosted the service instances on 50% of the servers,
and the query asked for improvement plans to reduce the fail-
ure probability to under 0.008 using the mov strategy. Fig-
ure 14 shows the results. We can see that DEPBOOSTER fin-
ished within 30 minutes across deployments, and outperforms
reCloud and RepAudit by at least one order of magnitude.
DEPBOOSTER can do better for two reasons. First, the model
counter-based failure probability computation (§4.2) speeds
up the result checking for each candidate solution. In fact,
Figure 13 can also be looked as the microbenchmark evalu-
ation for DEPBOOSTER, because the bottleneck operation of
DEPBOOSTER is failure probability computation. Second, the
pruning technique (§4.3) reduces the number of solutions
searched; thus, we can observe few failure probability com-
putations are needed.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

10% 20% 30% 40% 50%

C
o

m
p

u
ta

ti
o

n
 t

im
e

(m
in

u
te

s
)

Update percentage

Figure 12: Turnaround time on dif-
ferent degrees of update.

 0.1

 1

 10

 100

 1000

 10000

 100000

Deployment A Deployment B Deployment C

C
o
m

p
u
ta

ti
o
n
 t
im

e

(m
in

u
te

s
)

DepBooster
reCloud

Baseline

Figure 13: Performance: computing fail-
ure probability.

 1

 10

 100

 1000

 10000

Deployment A Deployment B Deployment C

C
o
m

p
u
ta

ti
o
n
 t
im

e

(m
in

u
te

s
)

DepBooster
RepAudit

reCloud

Figure 14: Performance: generating im-
provement plans.

6.4 Case Study
To better understand how the auditing (in)efficiency affects
real-time updates, we have performed a case study that em-
ulates a series of network and software updates. They con-
sisted of 52 updates over the span of one week—we col-
lected the update frequency and distribution from a large-
scale cloud provider. We adapted six of these updates from
realistic update scenarios [37, 48, 57] and from the Apache
issue tracker [13]. All other updates were randomly generated
and each of them affected 10% nodes in the deployment. This
set of experiments was conducted over a deployment with
576 64-port core routers, 1,152 64-port aggregation switches,
1,152 64-port top-of-rack switches, and 27,648 servers.

Figure 15 shows the results for the first six updates, which
we adapted from existing work.

• Snapshot S0. At service initialization, the operator set up
the entire service, and performed an audit from scratch
using the four auditing systems.
• Snapshot S1: Small updates [48]. The first update

changed 1% of network links.
• Snapshot S2: Large updates [57]. The second update

changed 20% servers and 20% links based on a network
update trace, and it is designed as “pressure test”.
• Snapshots S3 and S4: Frequent updates [37]. The subse-

quent two updates occurred within a short interval of seven
hours, designed as another pressure test.
• Snapshots S5 and S6: Software version updates. The

final two updates were to software dependencies, where
ZooKeeper was updated from version 3.4.0 to 3.4.6, and
then to 3.4.8. They were designed to test the systems’ abil-
ity to identify software-level risk groups.

Identifying risk groups. Figure 15 shows that existing sys-
tems are too inefficient for real-time auditing. INDaaS was
only able to finish the auditing for S0 (at service initialization)
and S6, but failed for all other updates, because its turnaround
time exceeded the intervals between them. RepAudit and re-
Cloud took roughly eight and sixteen hours per snapshot, and
they finished S0, S2, and S6, which happened to be spaced
out from their previous updates by more than sixteen hours,
But they failed to finish for S3–S5, which came close to each
other. Recall that, as explained in §6.2, RepAudit and reCloud
achieve this speedup by trading accuracy for efficiency, so
operators still need to manually reason about missing and
non-minimal risk groups after audits.

CloudCanary achieves 100% accuracy in all tested cases,
outputting the same results with INDaaS on scenarios where
INDaaS was able to finish. However, for each real-time audit,
it only took 4.7–6.5 minutes, outperforming INDaaS by 290×,
reCloud by 250×, and RepAudit by 150×–200×. The only
case where CloudCanary was slightly slower than RepAudit
was at service initialization—when auditing S0, CloudCanary
needs to audit all subgraphs in the fault graph from scratch.

Generating improvement plans. We then ran DEPBOOSTER

to generate improvement plans for each snapshot. Since the
strategies in CloudCanary do not involve changes to soft-
ware components, we only evaluated S0–S4, where the re-
liability can be improved using CloudCanary’s mov strategy.
Our reliability goal was specified as spec = {rcg > 5∧ fp <
0.008}∧{mov}, and we assigned the failure probability of
each switch or server to be 0.002 [36]. For S0–S4, CloudCa-
nary generated improvement plans in 4.87, 2.32, 5.77, 7.12
and 6.29 minutes, respectively. In all cases, CloudCanary fin-
ished well before the next update arrived. Furthermore, in
order to test the effectiveness of our improvement, we in-
jected errors via a chaos-monkey-like way, randomly killing
four components, because our constraints set rcg > 5. We
observed that the improved deployments never failed.

Overall success rates: We now report results for all 52 up-
date snapshots. Our metric is the success rate of a system,
defined as r = m

n , where m is the number of updates for which
the system finished on time, and n is the total number of up-
dates. In other words, m− n is the number of updates that
cannot be handled due to an audit system’s high turnaround
time. Overall, INDaaS failed on almost all cases (r = 1.92%)
due to its inefficiency. reCloud and RepAudit are faster, but
still only had a success rate of 3.85%. CloudCanary, on the
other hand, achieved a success rate of 100%, finishing all
audits with an average turnaround time of 5.23 minutes.

6.5 Identifying Real Risk Groups
Finally, we evaluate the usability of CloudCanary using a real-
world update trace collected from a major service provider.
The trace contains 300+ updates to its infrastructure, including
software microservices, power sources, and network switches.
The operators that executed these updates have already been
trained with best practices for service reliability, but system-
atically understanding service dependencies is always a chal-
lenging task. For each update in this trace, we have used
CloudCanary to identify the top-5 risk groups, and obtained

Figure 15: Results on a deployment running Hadoop 3.2.0 and ZooKeeper 3.4.0 in a Clos-topology datacenter with 27,648 hosts
and 880 routers. Si are service updates, which potentially lead to new risk groups.

feedback from the operators. Upon their request, the numbers
below are presented as 50+, 10+, and so on, by rounding off
their last digits. A key highlight here is that operators have
confirmed that 50%+ of these risk groups were previously un-
known to them, and that some of them actually caused service
downtime in the past.

Microservices. We found 50+ risk groups in the microser-
vice updates. The operators have confirmed that 96% of them
could lead to correlated failures; the rest 4% are due to false
positives of the dependency collection tool (see §5 for dis-
cussion on quality of inputs). One particularly risky example
from the operators’ feedback is an update that routes all re-
quests to the same authentication service on a single machine.
If this machine fails, this would lead to a major outage. The
operators can fix this risk group by replicating the authentica-
tion service across multiple machines.

Power sources. We found 10+ risk groups in the power
sources. Operators have confirmed that all of them could
lead to correlated failures, and, in fact, 30%+ of them did
trigger service downtime in the past. As a highlight, one of
the updates assigned primary and backup power sources in
the same cluster to serve several racks hosting a critical ser-
vice. The cloud provider had experienced multiple hours of
downtime due to a failure of these power sources.

Network. CloudCanary reported 30+ risk groups, including
ToR/aggregation switches and shared fiber, all of which have
been confirmed by the operators. As an example, we found
that multiple data centers in the same city shared the same
fiber bundles, which presents a risk of correlated failures.
These risks can be prevented by adding redundant fiber bun-
dles across different cities.

7 Related Work

Structural reliability auditing. The most relevant to
CloudCanary are structural reliability auditing systems, IN-
DaaS [70], reCloud [22], and RepAudit [71], which can con-
struct fault graphs from dependency data and perform au-
dits to prevent correlated failures. INDaaS and CloudCanary
have higher accuracy than RepAudit and reCloud, because
the latter two use approximate algorithms to trade accuracy
for efficiency. Moreover, different from all existing work,

CloudCanary is designed to perform incremental auditing
over service updates.

Network/System verification. Failure prevention can also
be achieved by formal analysis, such as configuration ver-
ification [16, 19, 31, 32, 50, 55, 60, 68], and synthesis/re-
pair [29, 30, 48, 52, 65]. Some of these systems also use in-
cremental verification for speedup when performing analy-
sis [40, 43, 44]. Compared to these systems, CloudCanary has
a very different goal—it aims at preventing correlated fail-
ures resulting from common dependencies—and also involves
completely different algorithms as a result. On the contrary,
network verification and synthesis systems primarily focus on
reachability and performance properties, such as host-to-host
connectivity. Similarly, software misconfiguration detection
tools like PCheck [67] also focused on configuration logic,
rather than failures caused by common dependencies.

Post-failure diagnostics. Many diagnostic systems [14, 15,
21, 23, 26, 28, 41, 42, 45, 56, 58] and provenance systems [66,
76,77] have been proposed for failure troubleshooting. Cloud-
Canary aims at a different goal from these efforts.

8 Conclusion
We have presented CloudCanary, a system that can perform
real-time audits to prevent correlated failures in service up-
dates. Our system can compute the risk groups in a service
snapshot using cached results from previous audits, and it
can generate improvement plans with increased reliability.
It achieves this using a set of novel techniques, such as in-
cremental auditing and network pruning. CloudCanary out-
performs state-of-the-art systems by 200× and can generate
improvement plans for large deployments within several min-
utes. Moreover, it can yield valuable insights over real-world
traces from production environments.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Meg
Walraed-Sullivan, for their insightful comments. We also
thank Nikolaj Bjørner and Bryan Ford for their valuable feed-
back on the earlier version of this work. This work was par-
tially supported by the National Science Foundation under
Grant Numbers CCF-1715387, CCF-1553168, CCF-1302327,
and CNS-1801884.

References
[1] Active Geo-Replication. https://docs.

microsoft.com/en-us/azure/sql-database/
sql-database-active-geo-replication.

[2] ApproxMC. http://www.cs.rice.edu/CS/Verification/
Projects/ApproxMC/.

[3] Correlated failures within EBS and EC2. https://aws.amazon.
com/message/680342/.

[4] Cost of Data Center Outages. http://datacenterfrontier.
com/white-paper/cost-data-center-outages/.

[5] Google: Gmail incident report. https://goo.gl/KY8mjp.

[6] Maxino: A fast MinCostSAT solver. https://github.com/
alviano/aspino.

[7] Pyeda. https://github.com/cjdrake/pyeda.

[8] Rack Awareness. https://www.aerospike.com/docs/
architecture/rack-aware.html.

[9] Rackspace Outage Nov 12th. https://goo.gl/J98iFz.

[10] Use Canary Tests to Test in Production. https://www.infoq.
com/news/2013/03/canary-release-improve-quality.

[11] Walks in the neighborhood: Correlated failure in dis-
tributed systems. http://psteitz.blogspot.com/2011/10/
correlated-failure-in-distributed.html.

[12] What I wish systems researchers would work
on. http://matt-welsh.blogspot.com/2013/05/
what-i-wish-systems-researchers-would.html.

[13] ZooKeeper Issue Tracker. https://https://issues.apache.
org/jira/projects/ZOOKEEPER.

[14] BAHL, P., CHANDRA, R., GREENBERG, A. G., KANDULA,
S., MALTZ, D. A., AND ZHANG, M. Towards highly reli-
able enterprise network services via inference of multi-level
dependencies. In ACM SIGCOMM (SIGCOMM) (Aug. 2007).

[15] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using Magpie for request extraction and workload modelling.
In 6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Dec. 2004).

[16] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D.
A general approach to network configuration verification. In
ACM SIGCOMM (SIGCOMM) (Aug. 2017).

[17] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D.
Control plane compression. In ACM SIGCOMM (SIGCOMM)
(Aug. 2018).

[18] BODÍK, P., MENACHE, I., CHOWDHURY, M., MANI, P.,
MALTZ, D. A., AND STOICA, I. Surviving failures in
bandwidth-constrained datacenters. In ACM SIGCOMM (SIG-
COMM) (Aug. 2012).

[19] CANINI, M., JOVANOVIC, V., VENZANO, D., NOVAKOVIC,
D., AND KOSTIC, D. Online testing of federated and heteroge-
neous distributed systems. In ACM SIGCOMM (SIGCOMM)
(Aug. 2011).

[20] CHAKRABORTY, S., MEEL, K. S., AND VARDI, M. Y. A
scalable approximate model counter. In 19th International
Conference on Principles and Practice of Constraint Program-
ming (CP) (Sept. 2013).

[21] CHEN, M. Y., ACCARDI, A., KICIMAN, E., PATTERSON,
D. A., FOX, A., AND BREWER, E. A. Path-based failure
and evolution management. In 1st USENIX Symposium on
Networked System Design and Implementation (NSDI) (Mar.
2004).

[22] CHEN, R., AKKUS, I. E., VISWANATH, B., RIMAC, I., AND

HILT, V. Towards reliable application deployment in the cloud.
In 13th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT) (Dec. 2017).

[23] CHEN, X., ZHANG, M., MAO, Z. M., AND BAHL, P. Automat-
ing network application dependency discovery: Experiences,
limitations, and new solutions. In 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (Dec.
2008).

[24] CHOTHIA, Z., LIAGOURIS, J., DIMITROVA, D., AND

ROSCOE, T. Online reconstruction of structural information
from datacenter logs. In 12th European Conference on
Computer Systems (EuroSys) (Apr. 2017).

[25] CIDON, A., RUMBLE, S., STUTSMAN, R., KATTI, S.,
OUSTERHOUT, J., AND ROSENBLUM, M. Copysets: Reduc-
ing the frequency of data loss in cloud storage. In USENIX
Annual Technical Conference (ATC) (June 2013).

[26] COHEN, I., CHASE, J. S., GOLDSZMIDT, M., KELLY, T., AND

SYMONS, J. Correlating instrumentation data to system states:
A building block for automated diagnosis and control. In
6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Dec. 2004).

[27] DE MOURA, L. M., AND BJØRNER, N. Z3: An efficient SMT
solver. In 14th Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (Mar. 2008).

[28] DUNAGAN, J., HARVEY, N. J. A., JONES, M. B., KOSTIC,
D., THEIMER, M., AND WOLMAN, A. FUSE: Lightweight
guaranteed distributed failure notification. In 6th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (Dec. 2004).

[29] EL-HASSANY, A., TSANKOV, P., VANBEVER, L., AND

VECHEV, M. T. Network-wide configuration synthesis. In
29th International Conference on Computer Aided Verification
(CAV) (July 2017).

[30] EL-HASSANY, A., TSANKOV, P., VANBEVER, L., AND

VECHEV, M. T. NetComplete: Practical network-wide con-
figuration synthesis with autocmpleteion. In 15th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (Apr. 2018).

[31] FAYAZ, S. K., SHARMA, T., FOGEL, A., MAHAJAN, R.,
MILLSTEIN, T., SEKAR, V., AND VARGHESE, G. Efficient
network reachability analysis using a succinct control plane
representation. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Nov. 2016).

[32] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN,
M., GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A
general approach to network configuration analysis. In 12th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI) (May 2015).

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-active-geo-replication
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-active-geo-replication
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-active-geo-replication
http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/
http://www.cs.rice.edu/CS/Verification/Projects/ApproxMC/
https://aws.amazon.com/message/680342/
https://aws.amazon.com/message/680342/
http://datacenterfrontier.com/white-paper/cost-data-center-outages/
http://datacenterfrontier.com/white-paper/cost-data-center-outages/
https://goo.gl/KY8mjp
https://github.com/alviano/aspino
https://github.com/alviano/aspino
https://github.com/cjdrake/pyeda
https://www.aerospike.com/docs/architecture/rack-aware.html
https://www.aerospike.com/docs/architecture/rack-aware.html
https://goo.gl/J98iFz
https://www.infoq.com/news/2013/03/canary-release-improve-quality
https://www.infoq.com/news/2013/03/canary-release-improve-quality
http://psteitz.blogspot.com/2011/10/correlated-failure-in-distributed.html
http://psteitz.blogspot.com/2011/10/correlated-failure-in-distributed.html
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-would.html
http://matt-welsh.blogspot.com/2013/05/what-i-wish-systems-researchers-would.html
https://https://issues.apache.org/jira/projects/ZOOKEEPER
https://https://issues.apache.org/jira/projects/ZOOKEEPER

[33] FORD, B. Icebergs in the clouds: the other risks of cloud
computing. In 4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud) (June 2012).

[34] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,
TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUIN-
LAN, S. Availability in globally distributed storage systems.
In 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Oct. 2010).

[35] FU, Z., AND MALIK, S. Solving the minimum-cost satisfia-
bility problem using SAT based branch-and-bound search. In
International Conference on Computer-Aided Design (ICCAD)
(Nov. 2006).

[36] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding net-
work failures in data centers: Measurement, analysis, and im-
plications. In ACM SIGCOMM (SIGCOMM) (Aug. 2011).

[37] GOVINDAN, R., MINEI, I., KALLAHALLA, M., KOLEY, B.,
AND VAHDAT, A. Evolve or die: High-availability design
principles drawn from Google’s network infrastructure. In
ACM SIGCOMM (SIGCOMM) (Aug. 2016).

[38] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYAMA, J., ELIAZAR, K. J.,
LAKSONO, A., LUKMAN, J. F., MARTIN, V., AND SATRIA,
A. D. What bugs live in the cloud? A study of 3000+ issues in
cloud systems. In 5th ACM Symposium on Cloud Computing
(SoCC) (Nov. 2014).

[39] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAKSONO, A.,
SATRIA, A. D., ADITYATAMA, J., AND ELIAZAR, K. J. Why
does the cloud stop computing? Lessons from hundreds of
service outages. In 7th ACM Symposium on Cloud Computing
(SoCC) (Oct. 2016).

[40] HORN, A., KHERADMAND, A., AND PRASAD, M. Delta-net:
Real-time network verification using atoms. In Proc. NSDI
(2017).

[41] KANDULA, S., KATABI, D., AND VASSEUR, J.-P. Shrink: A
tool for failure diagnosis in IP networks. In MineNet (Aug.
2005).

[42] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,
PADHYE, J., AND BAHL, P. Detailed diagnosis in enterprise
networks. In ACM SIGCOMM (SIGCOMM) (Aug. 2009).

[43] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G.,
MCKEOWN, N., AND WHYTE, S. Real time network policy
checking using header space analysis. In Proc. NSDI (2013).

[44] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND

GODFREY, P. B. VeriFlow: Verifying network-wide invariants
in real time. In Proc. NSDI (2013).

[45] KOMPELLA, R. R., YATES, J., GREENBERG, A. G., AND

SNOEREN, A. C. IP fault localization via risk modeling. In
2nd USENIX Symposium on Networked System Design and
Implementation (NSDI) (May 2005).

[46] KORF, R. E. Depth-first iterative-deepening: An optimal ad-
missible tree search. Artif. Intell. 27, 1 (1985), 97–109.

[47] LENERS, J. B., WU, H., HUNG, W., AGUILERA, M. K., AND

WALFISH, M. Detecting failures in distributed systems with
the Falcon spy network. In 23rd ACM Symposium on Operating
Systems Principles (SOSP) (Oct. 2011).

[48] LIU, H. H., WU, X., ZHANG, M., YUAN, L., WATTENHOFER,
R., AND MALTZ, D. A. zUpdate: updating data center net-
works with zero loss. In ACM SIGCOMM (SIGCOMM) (Aug.
2013).

[49] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA,
S., LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN,
L. CrystalNet: Faithfully emulating large production networks.
In 26th ACM Symposium on Operating Systems Principles
(SOSP) (Oct. 2017).

[50] LOPES, N. P., BJØRNER, N., GODEFROID, P., JAYARAMAN,
K., AND VARGHESE, G. Checking beliefs in dynamic net-
works. In 12th USENIX Symposium on Networked System
Design and Implementation (NSDI) (May 2015).

[51] MAJDARA, A., AND WAKABAYASHI, T. Component-based
modeling of systems for automated fault tree generation. Reli-
ability Engineering & System Safety 94, 6 (2009), 1076–1086.

[52] MCCLURG, J., HOJJAT, H., CERNÝ, P., AND FOSTER, N.
Efficient synthesis of network updates. In 36th ACM Confer-
ence on Programming Language Design and Implementation
(PLDI) (June 2015).

[53] MERKLE, R. C. Protocols for public key cryptosystems. In
IEEE Symposium on Security and Privacy (IEEE S&P) (Apr.
1980).

[54] NATH, S., YU, H., GIBBONS, P. B., AND SESHAN, S. Sub-
tleties in tolerating correlated failures in wide-area storage
systems. In 3rd USENIX/ACM Symposium on Networked Sys-
tems Design and Implementation (NSDI) (May 2006).

[55] PANDA, A., LAHAV, O., ARGYRAKI, K. J., SAGIV, M., AND

SHENKER, S. Verifying reachability in networks with mutable
datapaths. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (Mar. 2017).

[56] PEDDYCORD III, B., NING, P., AND JAJODIA, S. On the
accurate identification of network service dependencies in dis-
tributed systems. In 26th Large Installation System Adminis-
tration Conference (LISA) (Dec. 2012).

[57] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER,
C., AND WALKER, D. Abstractions for network update. In
ACM SIGCOMM (SIGCOMM) (Aug. 2012).

[58] REYNOLDS, P., KILLIAN, C. E., WIENER, J. L., MOGUL,
J. C., SHAH, M. A., AND VAHDAT, A. Pip: Detecting the
unexpected in distributed systems. In 3rd Symposium on Net-
worked Systems Design and Implementation (NSDI) (May
2006).

[59] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMIS-
TEAD, A., BANNON, R., BOVING, S., DESAI, G., FELDER-
MAN, B., GERMANO, P., KANAGALA, A., PROVOST, J., SIM-
MONS, J., TANDA, E., WANDERER, J., HÖLZLE, U., STUART,
S., AND VAHDAT, A. Jupiter rising: A decade of clos topolo-
gies and centralized control in google’s datacenter network. In
ACM SIGCOMM (SIGCOMM) (Aug. 2015).

[60] TIAN, B., ZHANG, X., ZHAI, E., LIU, H. H., YE, Q., WANG,
C., WU, X., JI, Z., SANG, Y., ZHANG, M., YU, D., TIAN,
C., ZHENG, H., AND ZHAO, B. Y. Safely and automatically
updating in-network ACL configurations with intent language.
In ACM SIGCOMM (SIGCOMM) (Aug. 2019).

[61] VEERARAGHAVAN, K., MEZA, J., MICHELSON, S., PAN-
NEERSELVAM, S., GYORI, A., CHOU, D., MARGULIS, S.,
OBENSHAIN, D., PADMANABHA, S., SHAH, A., SONG, Y. J.,
AND XU, T. Maelstrom: Mitigating datacenter-level disasters
by draining interdependent traffic safely and efficiently. In
13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Oct. 2018).

[62] VELEV, M. N. Efficient translation of boolean formulas to
CNF in formal verification of microprocessors. In Asia South
Pacific Design Automation (ASP-DAC) (Jan. 2004).

[63] VESELY, W. E., GOLDBERG, F. F., ROBERTS, N. H., AND

HAASL, D. F. Fault Tree Handbook. U.S. Nuclear Regulatory
Commission, Jan. 1981.

[64] WU, X., TURNER, D., CHEN, C.-C., MALTZ, D. A., YANG,
X., YUAN, L., AND ZHANG, M. NetPilot: Automating data-
center network failure mitigation. In ACM SIGCOMM (SIG-
COMM) (Aug. 2012).

[65] WU, Y., CHEN, A., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. Automated bug removal for software-defined networks.
In 14th USENIX Symposium on Networked System Design and
Implementation (NSDI) (Mar. 2017).

[66] WU, Y., ZHAO, M., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. Diagnosing missing events in distributed systems with
negative provenance. In ACM SIGCOMM (SIGCOMM) (Aug.
2014).

[67] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND

PASUPATHY, S. Early detection of configuration errors to
reduce failure damage. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI) (Nov. 2016).

[68] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. CrystalBall: Predicting and preventing inconsistencies in
deployed distributed systems. In 6th USENIX/ACM Symposium
on Networked Systems Design and Implementation (NSDI)
(Apr. 2009).

[69] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. SherLog: Error diagnosis by connecting clues
from run-time logs. In 15th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS) (Mar. 2010).

[70] ZHAI, E., CHEN, R., WOLINSKY, D. I., AND FORD, B. Head-
ing off correlated failures through Independence-as-a-service.
In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Oct. 2014).

[71] ZHAI, E., PISKAC, R., GU, R., LAO, X., AND WANG, X.
An auditing language for preventing correlated failures in the
cloud. In 32th ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA) (Oct. 2017).

[72] ZHAI, E., WOLINSKY, D. I., XIAO, H., LIU, H., SU, X., AND

FORD, B. Auditing the Structural Reliability of the Clouds.
Tech. Rep. YALEU/DCS/TR-1479, Department of Computer
Science, Yale University, 2013. Available at http://cpsc.
yale.edu/sites/default/files/files/tr1479.pdf.

[73] ZHAO, X., RODRIGUES, K., LUO, Y., STUMM, M., YUAN,
D., AND ZHOU, Y. Log20: Fully automated optimal placement
of log printing statements under specified overhead threshold.
In 26th ACM Symposium on Operating Systems Principles
(SOSP) (Oct. 2017).

[74] ZHAO, X., RODRIGUES, K., LUO, Y., YUAN, D., AND

STUMM, M. Non-intrusive performance profiling for entire
software stacks based on the flow reconstruction principle. In
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (Nov. 2016).

[75] ZHAO, X., ZHANG, Y., LION, D., ULLAH, M. F., LUO, Y.,
YUAN, D., AND STUMM, M. lprof: A non-intrusive request
flow profiler for distributed systems. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI)
(Oct. 2014).

[76] ZHOU, W., FEI, Q., NARAYAN, A., HAEBERLEN, A., LOO,
B. T., AND SHERR, M. Secure network provenance. In 23rd
ACM Symposium on Operating Systems Principles (SOSP)
(Oct. 2011).

[77] ZHOU, W., FEI, Q., SUN, S., TAO, T., HAEBERLEN, A., IVES,
Z. G., LOO, B. T., AND SHERR, M. NetTrails: a declar-
ative platform for maintaining and querying provenance in
distributed systems. In ACM International Conference on
Management of Data (SIGMOD) (June 2011).

http://cpsc.yale.edu/sites/default/files/files/tr1479.pdf
http://cpsc.yale.edu/sites/default/files/files/tr1479.pdf

	Introduction
	Overview
	Motivation
	Starting Basis: Fault Graphs
	State of the Art and Limitations
	Our Approach: CloudCanary

	The SnapAudit Design
	The First Audit
	Subsequent Audits
	blackThe MinCostSAT Solving
	Further Speedups

	The DepBooster Design
	The DepBooster Workflow
	Computing Failure Probability
	The DepBooster Algorithm

	Limitations and Discussions
	Evaluation
	Experimental Setup
	Performance: SnapAudit
	Performance: DepBooster
	Case Study
	Identifying Real Risk Groups

	Related Work
	Conclusion

