Analyzing Infrastructure as Code to Prevent
Intra-update Sniping Vulnerabilities

Julien Lepiller![0000—-0003—-2284-5488] 'Ryjzica Piskac!, Martin Schaf?, and
Mark Santolucito3[0000—0001-8646—4364]

! Yale University
2 Amazon Web Services
3 Barnard College, Columbia University

Abstract. Infrastructure as Code is a new approach to computing in-
frastructure management that allows users to leverage tools such as ver-
sion control, automatic deployments, and program analysis for infras-
tructure configurations. This approach allows for faster and more ho-
mogeneous configuration of a complete infrastructure. Infrastructure as
Code languages, such as CloudFormation or TerraForm, use a declara-
tive model so that users only need to describe the desired state of the
infrastructure. However, in practice, these languages are not processed
atomically. During an upgrade, the infrastructure goes through a series of
intermediate states. We identify a security vulnerability that occurs dur-
ing an upgrade even when the initial and final states of the infrastructure
are secure, and we show that those vulnerability are possible in Ama-
zon’s AWS and Google Cloud. We call such attacks intra-update sniping
vulnerabilities. In order to mitigate this shortcoming, we present a tech-
nique that detects such vulnerabilities and pinpoints the root causes of
insecure deployment migrations. We implement this technique in a tool,
Hayha, that uses dataflow graph analysis. We evaluate our tool on a set
of open-source CloudFormation templates and find that it is scalable and
could be used as part of a deployment workflow.

1 Introduction

Managing an infrastructure of thousands of hosts, with different software and
servers is nearly impossible to do manually. A relatively new approach to in-
frastructure management is called Infrastructure as Code (IaC). This has given
rise to many different tools with a shared goal: helping system administrators
manage their infrastructure in the same way as they manage code. Some tools,
like Ansible [20], Puppet [23] or Chef [6] are Configuration Management tools:
they allow the administrator to specify the entire configuration of one or more
running machines and automatically deploy it by connecting to that machine
and performing administrative tasks on behalf of the administrator. These tools
automatically detect and apply the steps necessary to switch from the current
state of a machine to the desired state, specified by the administrator. Similarly,
tools like Amazon’s CloudFormation [3] or Hashicorp’s Terraform [11] read a

(b) An insecure
update order

&

[73)
it

108
(a) The initial éﬁ (d) The target updated

deployment state
Aglefgiiy

(c) A secure update order

Fig. 1: A deployment of a computation (the orange lambda), accessing a database
(the blue disk stack), which is accessible to the outside world through an API
(the purple gateway). The upgrade should change the computation to access
more sensitive data (the lambda with the subscript 2), but be authenticated
through a user check (the red identification checks).

description of the desired infrastructure and automatically take the necessary
steps to deploy that infrastructure. In CloudFormation, an infrastructure con-
figuration is declared as a set of resources.

Benefits of IaC are well-known among practitioners: the entire infrastructure
is described accurately by a configuration file, making it easy to debug or vi-
sualize the infrastructure. This way the infrastructure can be version controlled
and documented as any other programming language. The tools help guarantee
identical configuration of hosts, making it an essential practice for security and
maintainability.

However, for all the benefits IaC brings, it also opens new security vulnera-
bilities. We have identified a new class of vulnerability issues that appear while
the tool is operating on the infrastructure. In order to decrease infrastructure
upgrade times, deployment tools typically will run many operations in parallel.
We argue that this parallelism, as well as the global naming used in these infras-
tructures, can lead to discrepancies during the upgrade that lead to a violation
of the intended security policy, even if the initial infrastructure and the target
infrastructure are both perfectly secure. We empirically validate our claims by
reenacting this vulnerability in both, Amazon’s AWS and in Google Cloud.

1.1 Proof of Concept

When upgrading the infrastructure, if operators do not provide enough depen-
dencies, ie. they do not impose an ordering on upgrade operations, a security

policy and a protected service might be upgraded in an order that exposes pri-
vate data. Consider an example given in Figure 1: an API service that replies
to any request with some benign information, as depicted in Fig. la. The ser-
vice is upgraded so that the API returns private information about users, and
the security policy is modified to allow only authenticated users to access the
service, as shown in Figure 1d. This architecture is a core architectural build-
ing block for serverless computing. This same configuration is recommended in
AWS’s “Well Architected” developer guideline series [1]. The upgrade code is
functionally correct and implements the desired change, but the user did not
specify ordering constraints. However, without such constraints, there are two
possible upgrade plans. First, as shown in Figure 1b, the backend computation
may be updated first. In this case, since the authentication has not yet been
added to the API, there is a short period of time where private data is publicly
accessible. The amount of time this information is exposed depends on the cloud
service provider and the particulars of the infrastructure, but typically ranges on
the order of seconds to minutes. We call this kind of attack intra-update sniping
vulnerability. The second possible upgrade order, shown in Figure lc, imple-
ments the desired secure update order. Enforcing the second ordering requires
the user to explicitly specify an ordering constraint that the authentication must
be added before the backend computation is updated.

Another instance of intra-update sniping vulnerability happens when compo-
nents are added or removed from an infrastructure, but no ordering constraints
are given between them and components that use them. As an example, suppose
a user is adding a lamda that reads data from a new S3 bucket. If no depen-
dency is specified, the lambda could be created and connected to the bucket
before CloudFormation recognizes that the bucket is already owned. The at-
tacker who owns this bucket may then inject their data into the user’s system
during the time it takes CloudFormation to notice the naming conflict and roll
back the migration. This is related to the issue of S3 bucket namesquatting [15].

Although this paper is mostly focused on Amazon’s infrastructure, we have
successfully reproduced a similar scenario in Google Cloud, demonstrating that
intra-update sniping vulnerabilities are not limited to one cloud provider. We
reported this issue to Google, and although they acknowledged the problem, they
explicitly stated that it is the responsibility of the user to ensure the security of
their deployment.

1.2 Detecting Intra-update Sniping Vulnerabilities

We propose a tool, Hayhé, that detects possible intra-update sniping vulnera-
bilities and proposes solutions to users. Hayha allows CloudFormation users to
check the security of planned updates to their infrastructure, before they ac-
tually deploy the update. Although our tool is specifically engineered to work
with CloudFormation, this class of vulnerabilities is not limited to it, and the
proposed solution is generic enough to be adopted in any other Infrastructure
as Code language.

The main challenge in detecting intra-update sniping vulnerabilities is in de-
termining the underlying issue with common deployment models that lead to the
security vulnerability. We identify parallelism and in-place upgrades as the root
causes, arguing there is a trade-off in Infrastructure as Code between security
and scalability. On the opposite side of this trade-off, some practitioners advo-
cate for Immutable Infrastructure [12] management, which re-builds the entire
infrastructures from scratch on each update and only switches atomically to the
new infrastructure when it is ready. This practice would guarantee atomicity of
updates to the infrastructure and the absence of intra-update sniping vulnera-
bilities. However, this comes with a huge cost in terms of scalability and does
not apply well when statefulness is required (for example, migrating an existing
database), making it a less attractive practice.

Naturally, there is a connection between intra-update sniping vulnerability
and the problem of data races and concurrent access. Our proposed solution, of
adding ordering constraints, is somewhat similar to generic tools in the concur-
rency domain, such as memory barriers or locks [19, 16, 24], that add constraints
to the order of execution of a program. However, the focus of our work are config-
uration files that describe infrastructure, not programs. We cannot simply apply
existing work, because these configuration files do not have a formal semantics,
creating this way an additional challenge for our problem domain.

In summary, we identify the following key contributions of this paper:

— The description of intra-update sniping vulnerabilities and how they arise in
TaC services, with examples in AWS and Google Cloud.

— An intermediate representation of IaC configurations that allows us to reason
about security and network properties of a deployment, as well as about
changes in deployments.

— A tool, Hayh& [17] that statically checks for potential intra-update sniping
vulnerabilities in a proposed infrastructure update.

— An evaluation of Hiayha on CloudFormation files scraped from GitHub, show-
ing Hayhéa scales and runs fast enough to be adopted into developer work-
flows.

2 A Model for Infrastructure as Code

Our tool, Hayha, detects the possibility of a sniping attack in future deployments.
It analyzes the given deployment and raises alarms when it detects potential
security issues. The tool follows steps that we further detail in this section.
Step 1: Internal representation. First, Hiyha reads the configuration of
the current and target infrastructure and translates them to the internal repre-
sentation. This representation is a dataflow graph identifying which component
of the infrastructure has access to which other components, and under which
security assumptions. Figure 2 shows two such simplified dataflow graphs that
our tool built from arch in Fig. 1. From this graph, Héyh& learns the desired
security level of each component. In this section we describe how to compute

security levels of resources in a given CloudFormation file: in Section 2.1 we de-
scribe the concrete syntax of a general CloudFormation file and how it applies
to other TaC tools; in Section 2.2 we describe how we model an infrastructure
in terms of network communication and security; finally, in Section 2.3 we show
the execution semantics and computation of the security level of resources in an
infrastructure.

Authorizer

PublicGet

’ PublicLambda ‘ ’ PrivateLambda ‘
(a) An Initial Dataflow Graph (b) A Target Dataflow Graph

Fig. 2: Dataflow graphs derived from an infrastructure

Step 2: Capturing all potential upgrade states. After the initial and
target configurations are converted to our model, Hayha builds an upgrade state,
designed to represent every possible intermediate infrastructure that could exist
during the upgrade. In Section 2.4 we formally define the upgrade semantics
from an initial state to a target state in terms of our model, while in Section 3.1
we show how the upgrade state is built in practice. Figure 3 shows such a state,
in form of a graph, which contains a path (Web to PublicGet to PrivateLambda)
allowing any user on the web to access a sensitive resource in a non-secure
manner. Finally, in Section 3.2 we discuss how dependency relations refine the
upgrade state.

‘Web

Authorizer

PublicGet PrivateGet

PublicLambda PrivateLambda

Fig. 3: Upgrade State with a Path Exposing a Security Vulnerability

Step 3: Analysis. (Section 3.3) Hiyh& computes an over-approximation of
the intermediate states and the security level of their nodes in order to answer
two questions: 1) is every node in every possible intermediate state at least as
secure as the corresponding node in the initial or target configuration? and 2)

does every node in every possible intermediate state communicate only with
existing nodes? Any possible violation is reported to the user so they can take
action and modify their target configuration accordingly. For example, using the
DependsOn keyword, one can enforce build orders in a CloudFormation file. For
Figure 3, Hayha reports the possible insecure access to PrivateLambda:

Resource PrivatelLambda is not sufficiently protected, it needs at
least Authorizer and is protected by None during upgrade. Add DependsOn
properties to ensure correct security.

2.1 CloudFormation Infrastructures

CloudFormation uses a declarative language in which users can specify the de-
sired state of their system. An example of a CloudFormation file is given on
the left side of Figure 4. It shows a simplified example of an infrastructure in
which an API can be called to access the result of running a Lambda (a sim-
ple function). There are no formal semantics for CloudFormation files [4,9] —
they are simply YAML or JSON files created from the given AWS CloudForma-
tion templates. Other tools, such as Terraform by HashiCorp, follow a similar
template-based design.

To formalize the behavior of IaC languages, we would also need to formalize
the precise behavior of components. However, these components are very diverse,
ranging from firewalls and HTTP servers to general purpose machines or even
entire network configurations. Fortunately, the intra-update sniping vulnerability
is independent from the precise behavior of individual components, and we only
need to analyze the network and security behavior of the infrastructure. We only
track the security level of requests, and abstract away from their content.

To describe our model, we need to introduce three fundamental concepts
used in TaC:

Resources. A component of the infrastructure is called a resource. Every
configuration file declares a set of resources and their configurations (e.g. Fig-
ure 4). Some resources, like the LambdaEzecutionRole and the LambdaPermis-
sion are security resources, and they prevent an unauthorized use of other re-
sources. Other resources, like the GreetingLambda and the GreetingRequestGET
are actual running processes, the later also being publicly accessible. Finally,
some resources do not correspond to a running process, but to a group of re-
sources such as GreetingApi that gives some configuration value to every resource
in the group.

References. A resource’s configuration may reference other resources, and
we record that information in our model. Based on the CloudFormation docu-
mentation, we distinguish different types of references that we list below:

— network references(r, r’) are directed network connections between two
components 7 and 7/, that allow r to send requests to ’, and receive answers.

— incoming protection references(r, s) protect all incoming requests to a
resource r, using a security resource s.

CloudFormation File

Corresponding Model

{ "Resources”: {
” LambdaPermission”: {
" Type”: ” AWS::Lambda::Permission”,
”Properties”: {
”FunctionName”: ” GreetingLLambda”,
”SourceArn”: ” Greeting Api”

}
}

”

reetingLambda”: {
”"Type”: ” AWS::Lambda::Function”,
”Properties”: {
”Role”: ” LambdaExecutionRole”
}
}

” GreetingRequest GET”: {
"Type”: ” AWS::ApiGateway::Method”
”Properties”: {
?Integration”: ” GreetingLambda”,
”RestApild”: ” Greeting Api”
}
2
” GreetingApi”: {
" Type”: ” AWS::ApiGateway:: Api”
h
” LambdaExecutionRole”: {
"Type”: ” AWS::IAM::Role”
”Properties”: {

M

LambdaPermission [security]
intrinsic security: LambdaPermission,

connection security(GreetingApi, Greet-

ingLambda, this)

GreetinglLLambda
intrinsic security: T

GreetingRequest GET [public]
intrinsic security: T,

network(this, GreetingLambda),
collects(GreetingApi, this)

GreetingApi [collection)
intrinsic security: T

Fig. 4: Mapping Between a CloudFormation File and our Model

— outgoing protection references(r, s) protect all outgoing requests from
a resource r, using a security resource s.

— connection protection references(r, r’, s) protect a specific connection
between two resources r and r’ using a security resource s.

— collection references(c, r) specify a resource r is in a specific collection

resource c.

Each of these reference types can be present in any resource, any number
of time. The resource it is declared in can take any role in the relation that it
defines, and we represent the resource as this in the model, as shown on the

right side of Figure 4.

Dependencies. In CloudFormation, a dependency is declared by using e.g. the
DependsOn keyword. A dependency restricts the order in which updates can oc-

cur: before a resource can be updated, all the resources it depends on must have
been updated.

2.2 Model of a CloudFormation Infrastructure

We now describe a model for a CloudFormation infrastructure. We define a
state S = (R, D) as a set of resources and a partial order that represents the
dependency relation between resources. A resource is a tuple composed of a name
(string), a type, an intrinsic security context, an origin flag, the different types
of references discussed above, and the original configuration of the resource.

With (id,id") € D we denote that id depends on id’, and that id cannot be
upgraded until id’ is upgraded.

The origin flag denotes whether the resource comes from the initial state or
the target state during an upgrade, but it is not used at all when dealing with
a single state. Similarly, the original configuration’s type is not further defined,
and depends on the vendor. It is not used for a single deployment, and we only
use it to check for equality of resources when updating an existing deployment.

Inspired by Abstract Interpretation [10], we define a security context as an
abstract domain with a partial order and some abstract operations: a top, a
bottom, a meet, and a join. When two security contexts are comparable (x C y),
we say that z is less permissive than y, or that = is more secure than y.

We define predicates that can help us to express some properties of resources
in a specific state S: collection(r), resp. security(r), means that r is a resource
whose type is that of a collection resource, resp. a security resource. We use
public(r) to denote when r is a resource whose type is that of a resource that
can be accessed from anywhere on the internet (although this might be restricted
with security references), or if it is contained in a collection that is itself publicly
accessible.

Definition 1 (connection). A connection is possible between two resources
when there is a network reference between them or resources that collects them.
network reference(c,c’)
ref(r,r") < Je,. A ¢ r=cVcollects(c,r)
r’ = Vcollects(c,r")

The security of a connection is the minimum security level a request from
r must have to be able to reach r’ directly. This definition reflects the fact
that, when a connection is secured by multiple security resources, it must have
sufficient authority to be accepted by all of them.

Definition 2 (connection security).

incoming protection(c, s)
de, .V { outgoing protection(c, s)
security(r,r’) <= 1< sec(s) connection protection(c,c’, s)

) (r =cV collects(c,r))
with A { (r' = V collects(c',r"))

2.3 Execution Semantics

The execution semantics for our intermediate representation is given below. The
semantics explains which resources are allowed to talk to which resources, and
under which security level. When we write L - r — 7/, it means that r is allowed
to send a request to v/, under the security level L.

A request can come from the internet (represented with the constant W)
and reach a public resource 7’ if it has a sufficient security level L. Similarly, a
request can come from a resource r and reach r’ if it has a sufficient security
level, 7’ is not a collection, and both resources have an adequate configuration
that allows them to communicate.

r" € R —collection(r’) L C security(W,r') public(r')
LEW — ¢/

OutsideRequest

(r,r") € R?2 —collection(r') L C security(r,r’) ref(r,r")
LEr—o

InternalRequest

A path P is a finite sequence of resources whose first resource is public,
and subsequent resources can be reached from the previous, using the above
semantics under some security level. The security of a path is then defined as
the minimal security level under which every node can be reached in the above
semantics:

security((ri,...,rn)) = Ny security(ri—1,7;)

with rg = W. We note W —* r the set of paths whose last element is 7.
Similarly, the security of a node is defined as the minimal security level under
which the node can be reached by at least one path:

Sec(r) = V {security(P)|P ¢ W =" r}

When the infrastructure, under which we consider the security of resources,
is not clear from the context, we clarify that with a subscript Secg(r).

Definition 3 (Substate). When comparing two states, S1 and Sz, we say that
S1 C Sy when

— FEvery resource of S1 is a resource of Sy and
— For every pair of resources v,r’ in Sy, if Lt r — ' holds in S1, then it also
holds in Ss.

Our first lemma states that, when a state is a substate of another, its nodes
are at least as secure as the other.

Lemma 1 (Substate Security).
VSl,Sg. Vid € 51. 51 C Sy — S(’,CS1 (Zd) C 56052 (Zd)

Proof. We note that by definition, id is in both states. Additionally, any path in
S1 is also a path in S5, and since the security of connections in 57 is more secure
than the same connections in Ss, the security of paths in S is greater than the
security of the same paths in Ss.

The security of a node is the meet of the security of paths that lead to it in
the state. Paths that lead to id is S; are the paths that lead to it in S7, and
potentially additional paths. Therefore, the security of id in Sy is greater than
in SQ.

2.4 Upgrade Semantics and Security Policy

In TaC tools, an upgrade changes a given infrastructure state to a new state. This
is done by upgrading each node that needs to be changed as specified by the
new configuration. Generally, nodes are upgraded in an unspecified order, even
in parallel, to improve deployment speed. Node updates are sent asynchronously
to every service that needs to be updated, and there are dozens if not hundreds
of steps each service must take to complete its update. When these upgrades
are sent in parallel, it is difficult to reason about the state of the system as the
running time for a node upgrade depends on the latency of the service. To model
this behavior, we define an interleaving semantics for upgrades.

An upgrade starts in an initial state S; and ends in a target state Sy. Ad-
ditional dependency ordering information is provided by the relation D of the
target state.

The configuration of an identifier can be updated if all its dependencies are
already updated (Vid', (id,id") € R = S(id') = S,(id")), and it has not been
updated yet:

S(id) # Sy(id) Vid, (id,id) € R = S(id') = S(id’)
S — S[id + S;(id)]

UpgradeConf

A new resource can be created under the same conditions, if it was not present
in the initial state:
id¢ S Vid,R(id,id") = S(id') = S¢(id")
S — S[id + Si(id)]

An identifier can be removed, if it is not in the target state:

UpgradeAdd

id¢ Sy ideS
S — S\id

We collect every accessible intermediate state in a set denoted by Acc:

UpgradeDel

. SecAcc S— 95
Acclnit——— AccNext
cett S; € Acc cenex S" e Acc

Note that, in the absence of any dependency, Acc contains every combination
where each resource is either at its initial or target configuration, leading to 2"
possible intermediate states when n is the number of changed resources.

We next show that, when two identifiers are in a dependency relation, some
intermediate states are not possible. For ease of expressing this lemma, we extend
equality to also check whether id is in the domain of S. If id is neither in S nor
S, we have S(id) = S’(id). Otherwise, id must be in both and associated to the
same configuration for the equality to hold.

Lemma 2 (Dependency Restriction).

V(id,id'") € R,S € Acc = S(id) # Si(id) v S(id") # S;(id") vV S¢(id) =
S;(id) Vv Sy (id") = S;(id)

Proof. If the initial and target states have the same configuration for id or for
1d’, the property is true when considering any intermediate state.

Let us assume that id and id’ have a different configuration in S; and S;. By
induction on S € Acc, we first consider the case of S;. In the initial state, we
have, by hypothesis S;(id) # S;(id), so the property holds.

Now suppose that we have S € Acc that respects the property, and S — S”.
We need to consider two cases, depending on the inequality that applies in .S:

If S(id) # Si(id), we have three rules by which S — S’ so let us consider all
three cases:

— UpgradeConf: an identifier’s configuration is updated. This could be id, id’
or an unrelated identifier. If it is id’ or unrelated, we still have S(id) # S (id)
and the claim holds. If it is id, then we must have S(id’) = Sy (id’) # S;(id’)
(id' is already updated) because of the premises of the rule that applies, and
the claim holds.

— UpgradeAdd: the identifier was not present in S and is added is S’. If the
identifier is not id, we still have S(id) # S¢(id) and the claim holds. If the
identifier is id, we must have S(id') = S;(id") # S;(id") and the claim holds.

— UpgradeDel: the identifier is not present in S; and is removed from S. This
cannot affect id as an identifier in R must be present in Sy, so the inequality
is preserved and the claim holds.

If S(id') # S;(id’), we have three rules by which S — S’. In the first two
cases, id’ cannot be updated as it is already in its target configuration in S, so
S'(id") = S(id") # S;(id’). In the last case, id’ cannot be removed because an
identifier in R must be present in Sy, so the inequality is preserved and the claim
holds.

In all cases, S’ respects the property.

We now define the security policy as:

Definition 4 (Security Policy). A deployment from S; to Sy is secure iff:

Sec(S,id) C Sec(S;, id) if S;(id) = S(id)
VS € Ace,Vid, ¢ Sec(S,id) C Sec(St,id) if St(id) = S(id)
Sec(S,id) = L otherwise (id is not in S)

Our work focuses on security issues that happen during upgrades, assuming
that the initial and target states are both secure. We require that in any inter-
mediate state any resource is at least as secure as their counterpart in the initial
or target state, depending on where their configuration comes from.

3 Architectural Design of the Hayha Tool

3.1 Upgrade States

To verify the security of intermediate states, we could compute all the possible
intermediate states and pass them to existing tools that could check the secu-
rity of such states. However, this approach has two main drawbacks. First, we
would need to construct 2™ intermediate states, which does not scale for large
infrastructure changes. Second, the result of such tools would not be easy to
understand for end users, as they would report issues with states that are not
defined or even considered by the user. Our goal is a tool that is both scalable
and able to provide suggestions on how to change the target configuration, not
some hidden intermediate configuration.

Web Web Web
Authorizer Authorizer VT =T
GET GET GET
’ lambda’ ‘ ’ lambda™ ‘ ’ lambda’ ‘ ’ lambda™ ‘

(a) Graphical (b) Graphical Rep- (c) Graphical Representation of the
Representation of resentation of the Upgrade State
the Initial State Target State

Fig.5: Example Upgrade State

To address scalability we introduce upgrade states which represent multiple
states on which we can apply the same execution semantics. Recall that a state
is composed of a list of resources with their origin, type and references, and
of a dependency relation. An upgrade state is composed in the same way. The
set of resources is the union of the resources from the initial and target states,
excluding initial resources that only differ from their target counterpart by their
provenance flag. When resources are added or removed from an infrastructure,
we introduce an empty resource for each of them. They represent the absence of
these resources. The dependency relation of the upgrade state is the dependency
relation of the target state.

The execution semantics of an upgrade state is the same as the execution
semantics of a normal state. Since the upgrade state represents multiple versions
of the same resources at the same time, we need to change the definition of the
security level of a connection between resources. An example of an upgrade state
is given in Figure 5. The initial state has an API, a GET method and a lambda,
and everything is public. The target state modifies the lambda and adds an
authorizer. The upgrade state is comprised of the API (which did not change),
the target authorizer (with an empty resource as its initial counterpart), the

GET method (which did not change), and the two variants of the lambda. The
connection to the GET method is protected either by the empty node (T) or
the target authorizer. The minimal security level for this connection is therefore
T.

In summary, when a security resource is relevant for a connection, we need
to consider its counterpart that has a different provenance flag. If it is also
relevant, the connection is protected by the disjunction of the security level of
these resources (they cannot both exist at the same time, but one of them exists
at any given time). If it is not relevant, the upgrade state represents at least one
case where the security resource is not relevant, meaning that the connection
is protected by the disjunction of the first security level and T, which is T
(no security at all). If the counterpart is an empty resource, the upgrade state
represents at least one case where the security resource was deleted (or not yet
added), so the connection is also unprotected. If there is no counterpart, the
connection is simply protected by the resource, because it does not change in
any way during the upgrade.

We denote by U(S;,S;) the upgrade state created from the initial state S;
and the target state S;. We now show that this state indeed collects all possible
intermediate states.

Lemma 3 (Upgrade Graph is an Overapproximation).
VS € Acc.S CU(S;, St)

Proof. First of all, from the upgrade semantics, we see that the resources of S
are resources that belong either to S; or to S;. Since U collects all of them,
resources of S are also resources of U.

Then, let us take L,r and 7/, such that L+ 7 — 7/ in S.

If the request from r to 7’ is allowed by the OutsideRequest rule, 7 = W and
we need to prove that in U, —container(r'), public(r’) and L C security(W,r').
The first two are straightforward, as they are precondition of the derivation in S.
We also know that L C security(W,r') holds in S, but security in U is defined
as the disjunction of all the relevant security resources, which might not all be
in S.

In U, we build the security level by finding the set of relevant security re-
sources. For those that come in pair, one element of the pair is necessarily found
in S. For those that do not come in pair, but have no other alternative, they are
also in S. For those that do not come in pair, but have an alternative, they may
or may not be in S.

Security resources that are relevant in S are relevant in U, because security
relations are only added by references in resources, and cannot be removed. So,
if a state has additional resources (such as U compared to S), it can only have
more relevant resources (or exactly the same).

Since security resources that are relevant in .S are relevant in U, the security
level in S is stronger than in U, as for each element of the security level in S, we
have a corresponding element (either directly or as a conjunction) or the element
is not present in the security level in U, so we have L C security(W,r') in U.

If the rule is InternalRequest, we need to prove that in U, —container(r’),
ref(r,r’) and L C security(r,r’). As before, the first two are straightforward.
With the same reasoning, the third is also valid, which proves the lemma.

3.2 Splitting Dependencies

We have seen that the upgrade state created from the initial and target configu-
rations is an over-approximation of all the intermediate states, when we do not
consider dependencies. Because dependencies reduce the number of intermedi-
ate states, the upgrade state might not be precise enough and might produce a
warning when no actual intermediate states violate the security policy.

Variants. When the state has two nodes A and A’ with the same identifier,
but a different label, we call them a variant of one another. When A belongs to
the initial configuration and A’ to the target configuration, (A, A’) is called an
upgrade pair.

We refine the upgrade state by splitting it along a dependency. Considering
a state S, its dependency relation D, and two target resources (A’, B') € D,
the split of S, split(S, A’, B') is a set of upgrade states. Suppose A’ and B’ are,
respectively, part of an upgrade pair (A, A’) and (B, B’). Then, split(S, A’, B")
is the set of three upgrade states, where only one of A or A’ remains, and only
one of B or B’. We exclude the case where A’ and B remain. When any of these
nodes does not exist, the number of possible combination is reduced. When only
A’ and B exist in S, we have found an impossible situation, and the result of
splitting is the empty set.

Although this process creates an exponential number of states, the number of
dependencies tends to be limited in practice, because they slow upgrades down.
At the same time, a big number of dependencies actually reduces the number of
possible intermediate states, until every node is in a dependency, in which case
there are exactly n intermediate states.

We now prove that splitting the upgrade state is correct, in the sense that
the set of states split(S) still contains all the possible intermediate states (Acc):

Theorem 1 (Correct Split).
VS € Ace. Ju € split(U(S;, St)). S Cu

Proof. Let us take a state S € Acc from the set of all possible intermediate
states. Since splitting a state according to a dependency preserves the states
from Acc (Lemma 4 below), we can consider every dependency and split them
in any order.

Initially, it holds that S C U(S;, St), using Lemma 3.

Consider an upgrade state u such that S C w and D(id,id’). By Lemma 4,
we can find a state v’ € split(u,id,id’) such that S C .

After applying this for each dependency, 1’ is one of the states resulting from
split(U(S;, St)), and the claim of the theorem holds.

The following intermediate lemma is needed to prove the correction of the
split. It states that if a state contains one of the accessible states, splitting a

dependency in it results in a set of states, where one of them still contains this
intermediate state.

Lemma 4 (Split Graphs). VS € Acc. V(id,id') € D. S Cu = 3/ €
split(u,id,id'), S C u’

Proof. Take (A, A") the upgrade pair whose identifier is i¢d. Similarly, take (B, B’)
the upgrade pair whose identifier is id’. Since S € Acc, A’ and B cannot both
exist at the same time in S (Lemma 2). Since S C u, we also know that u has
at least one variant of id and one variant of id’, the ones that are present in S.

The states from split(u,id,id’) are composed of the same nodes as u, except
for id and id’, where they all have one of the four possible combinations of
initial and target states, except for the pair A’, B. Since S doesn’t have them
both either, one states has the same variants of id and id’ as S, and we call it
u'.

We now show that S C u’.

First, we note that v’ has the same nodes as u, except for those with identifier
id and id’. For any resource in S, the resource was present in u, so it is also in
u’, unless it has identifier id or id’. For this last cases, we note that u’ is defined
to contain the same variants as S, so the resources of S are also resources of u’'.

Second, if we take L - r — 7/ in S, we can use the same reasoning as in
Lemma 3 to conclude that is also holds in u'.

This is enough to conclude that S C u’.

3.3 Finding Vulnerabilities

After Hayha constructs the upgrade state, the next step is to check for security
issues. Although we could split the upgrade state recursively until no dependency
remains, a more interesting strategy is to immediately check the upgrade state for
issues. If none is found, it is not necessary to refine the upgrade state. Otherwise,
we could try to find a relevant dependency and split the upgrade state on it,
running the analysis on the resulting states, splitting on other dependencies as
needed.

Our analysis detects two types of issues: first, if an empty node is accessible
(its security context allows some users to access it), it might be used by the
infrastructure at a point it is not registered by the owner of the infrastructure.
This is the case for a new node that is accessible before it is created. When that
node is a resource that can be claimed by a third party (such as an S3 bucket),
the attacker might be able to register it before the user. Similarly, for a deleted
resource, an attacker could register it for themselves before the user stops using
it.

Second, the security context of every node in the upgrade state is compared
to the security of the same node in the initial or target state (depending on its
provenance flag). When its security is strictly lower than the security of the node
in the state it comes from, or incomparable, we raise an alarm because there is
an intermediate step where the resource might not be sufficiently protected.

Using Lemma 1 and Theorem 1, when the security of a node in a possible
intermediate state (collected in Acc) is insufficient, the security of that node in
at least one split upgrade state is even lower. Therefore, if there is a violation of
the security property, our tool will detect it.

4 Experiments

Héyha is designed to be used before the deployment of a CloudFormation update,
and it is crucial that Hayha does not interrupt developer workflow. Our goal
was, therefore, to evaluate the scalability of Hayh& on a variety of real-world
CloudFormation updates. To do this, we collected 36 CloudFormation files from
GitHub, where each file had a history of updates (commits). We ran Hayha
against every update recorded in GitHub to that file, and measured the running
time. We found that our analysis completed within one seconds for all files — we
believe that these results indicate that Hayhéa could be integrated in developer
workflow with minimal disruption to the user. The details of the evaluation
dataset are given in Fig. 7 and summarized in Fig. 6. Point size is proportional
to the number of updated resources, which are between 0 and 31 for each file.

0.7 . -
0.6
05
g oa| I i . @
2 |
g .,
A !
: + i
SN A N
. Fy *
0.1 | * ! .0
s
RN

0 2 4 6 8 10 12
number of nodes with known type

Fig. 6: Analysis time of various CloudFormation files from GitHub

To collect the set of GitHub CloudFormation files used in our scalability
benchmark, we searched GitHub using the web search tool for code with the key-
word AWSTemplateFormatVersion - which is a required keyword for any Cloud-
Formation file. We then filtered by the .yaml extension, and further manually

filtered for valid CloudFormation files (as opposed to other languages with over-
lap). Since we wanted to track updates to these files, we also filtered manually
to find only files that had a revision history (> 2 commits for the file).

While we showed that Hayha scales well on real world data, we did not iden-
tify any instances of intra-update sniping vulnerability in these files. This is an
expected result, as the CloudFormation files we found on GitHub were generally
designed as templates that developers would customize to their own needs. We
believe application-focused CloudFormation files are not often uploaded, since
CloudFormation files can contain sensitive and proprietary information (e.g. in-
frastrucuture design). In order to run a large-scale analysis to check for past
instances of intra-update sniping vulnerability, we would need access to a repos-
itory of the private user data for many CloudFormation users.

5 Related Work

Following the development and use of Infrastructure as Code (Iac) practices,
many threats and security challenges were recognized [26, 27]. The security risks
that have been identified in IaC have thus far remained similar to existing vul-
nerabilities arising from poor security practices, such as infrequent key rotation
and hard-coded secret values [25]. Additionally, despite existing recommenda-
tions and good practices when dealing with cloud infrastructure, many existing
deployments are still left insecure by user misconfigurations. For example, stor-
age “buckets” which host files, should generally be configured by user to disallow
world readable/writable permissions. However, in practice, users struggle with
this [8]. Existing work has used SMT solver to automatically detect such vulner-
abilities and help users secure their resources [4, 9]. In contrast, the intra-update
sniping vulnerability we identify here is uniquely possible in the IaC setting. In
particular, we focus on the dynamic behavior of deployment updates that occur
when using IaC tools, and their effect on security configuration.

A foundation of Infrastructure as Code is the availability of virtual machines
whenever a user deploys a new infrastructure configuration. Without the shared
resources of cloud infrastructure, automated deployment of new infrastructure
(including new machines) would be impossible. Much work has focused on the
security of virtualization technologies based on attack models such as malicious
cloud users to compromised cloud providers, as summarized in [13]. In our work
however, we show an intra-update sniping vulnerability may occur even when
the virtualization technology being used is perfectly secure. We do not make any
assumption on the specific technology, as intra-update sniping vulnerabilities rely
mostly on timing and insecure configuration on the user’s side.

Our work is based on a graph model of the dataflow network of resources
created in an infrastructure configuration. Similarly, Al-Shaer et al [2] propose
a tool that is able to model and check network security using a graph-based
model of the network. As with other work on the network and infrastructure
security [5, 18], the focus of the analysis is on the security of static network
topologies, instead of the security of a moving topology, as we have in this

paper. The analysis of security in static networks and static information flow

Repository and file name # nodes|time (sec)
IndikaUdagedara/dotnet-lambda-extensions/ 3 0.037
CustomAuthorizer.yaml

0108612/LambFormation/UseCasePipeline.yaml 1 0.079
agustin-sarasua/gofit-companies-api/ 7 0.145
cloud-formation.yml
brianknight10/serverless-api-gatekeeper/gateway.yml 6 0.089
carprks/permissions/cf.yaml 9 0.167
dliggat/local-lambda-toolkit/template.yaml 1 0.063
elerch/update-cloudflare-ip/update-ip-cfn.yaml 2 0.046
fauberso/aws-ddns/aws-route53-ddns. yaml 3 0.070
haozzzzzzzz/go_lambda_learning/serverless-output.yaml 1 0.051
indrahrp/s4misc/apigateway.yaml 30 0.539
itsjeffro/microservice-api-gateway/serverless.yml 3 0.021
pmcdowell-okta/my-notes/ 1 0.030
03-sam-swagger—auth-template.yaml
pmcdowell-okta/simpleAwsApiGateway/template.yml 1 0.050
rajithII/sam-test2/inputTemplate.yaml 5 0.097
widdix/aws-cf-templates/account-password-policy.yaml 1 0.067
widdix/aws-cf-templates/al2-mutable-private.yaml 3 0.355
widdix/aws-cf-templates/al2-mutable-public.yaml 3 0.357
widdix/aws-cf-templates/ 1 0.065
alb-access-logs—-anonymizer.yaml

widdix/aws-cf-templates/alert.yaml 1 0.060
widdix/aws-cf-templates/auth-proxy-ha-github-orga.yaml 1 0.298
widdix/aws-cf-templates/ 1 0.077
cloudfront-access-logs-anonymizer.yaml
widdix/aws-cf-templates/cloudtrail.yaml 3 0.072
widdix/aws-cf-templates/cluster-cost-optimized.yaml 2 0.502
widdix/aws-cf-templates/cluster.yaml 2 0.530
widdix/aws-cf-templates/config.yaml 2 0.051
widdix/aws-cf-templates/ec2-auto-recovery.yaml 3 0.235
widdix/aws-cf-templates/jenkins2-ha-agents.yaml 4 0.789
widdix/aws-cf-templates/jenkins2-ha.yaml 4 0.414
widdix/aws-cf-templates/kms-key.yaml 1 0.049
widdix/aws-cf-templates/lambdaedge-index-document.yaml 1 0.050
widdix/aws-cf-templates/monitoring.yaml 1 0.038
widdix/aws-cf-templates/service-cloudmap.yaml 1 0.289
widdix/aws-cf-templates/service-cluster-alb.yaml 1 0.194
widdix/aws-cf-templates/service-dedicated-alb.yaml 1 0.229
widdix/aws-cf-templates/static-website.yaml 3 0.182
widdix/aws-cf-templates/wordpress-ha-aurora.yaml 9 0.496

Fig. 7: Data collected when we ran Hayh& on CloudFormation files from GitHub.

models [21] is complementary to our work, as we assume the initial and target
infrastructure are secure.

Beyond network configurations, there has been work in the analysis of con-
figuration files. In particular, static analysis has been used to check that IaC
configurations are idempotent [14,30], an important property for maintaining
reproducibility of infrastructure. The reproducibility of infrastructure is known
to be a challenge [7], despite IaC being declarative and version controlled. Further
efforts have used probabilistic modelling to learn constraints configurations [22,
28, 29]. However, static analysis for the detection of intra-update sniping vulner-
abilities in any configuration language has been thus far relatively unexplored.

6 Conclusion

We have identified a new class of vulnerability that applies to Infrastructure
as Code services, intra-update sniping vulnerabilities, that arise from a lack of
ordering in upgrading resources. We presented a tool, Hayha, that detects such
vulnerabilities in CloudFormation, and gives feedback to users on how securely
update their infrastructure deployment. Our evaluation shows the scalability of
Hayha by running it on existing configurations from GitHub and found that it
runs quickly enough to be usable in practice.

Acknowledgement

This work was completed while working on the grant supported by the National
Science Foundation under Grant No. CCF-1715387, and partially supported by
the Office of Naval Research under Grant N00014-17-1-2787.

References

1. Julian Wood: Building well-architected serverless applications: Control-
ling serverless API access. AWS Compute Blog, https://aws.amazon.com/
blogs/compute/building-well-architected-serverless-applications—
controlling-serverless-api-access-part-1/

2. Al-Shaer, E., Marrero, W., El-Atawy, A., ElBadawi, K.: Network configuration

in a box: towards end-to-end verification of network reachability and security. In:

2009 17th IEEE International Conference on Network Protocols (2009)

Amazon.com, Inc: CloudFormation, aws.amazon.com

4. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta, N.,
Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS access
policies using smt. In: 2018 Formal Methods in Computer Aided Design (FMCAD).
IEEE (2018)

5. Ball, T., Bjgrner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: Vericon: towards verifying controller programs in software-
defined networks. In: Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2014)

w

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24.

Chef misc, Inc: Chef, https://www.chef.io

Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An em-
pirical analysis of the docker container ecosystem on github. In: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE
(2017)

Continella, A., Polino, M., Pogliani, M., Zanero, S.: There’s a hole in that bucket!
a large-scale analysis of misconfigured S3 buckets. In: Proceedings of the 34th
Annual Computer Security Applications Conference. ACSAC ’18, Association for
Computing Machinery, New York, NY, USA (2018)

Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) Computer Aided Verification (CAV). Springer
International Publishing (2018)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
the 4th Symp. on Principles of Programming Languages. ACM (1977)

Hashicorp: Terraform, https://www.terraform.io

Hashicorp: What is mutable vs. immutable infrastructure?, https:
//www.hashicorp.com/resources/what-is-mutable-vs-immutable-
infrastructure/

Huang, W., Ganjali, A., Kim, B.H., Oh, S., Lie, D.: The state of public
infrastructure-as-a-service cloud security. ACM Comput. Surv. 47(4) (Jun 2015)
Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing idempotence for in-
frastructure as code. In: ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing. Springer (2013)
Tan Mckay: S3 Bucket Namesquatting - Abusing predictable S3 bucket names,
https://onecloudplease.com/blog/s3-bucket-namesquatting

Ponce-de Leén, H., Furbach, F., Heljanko, K., Meyer, R.: Portability analysis for
weak memory models porthos: One tool for all models. In: Ranzato, F. (ed.) Static
Analysis Symposium. pp. 299-320. Springer International Publishing, Cham (2017)
Lepiller, J., Piskac, R., Schaf, M., Santolucito, M.: Hayha (2021), https://
gitlab.com/rose-yale/hayha

Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang,
H., Cagcaval, C., McKeown, N., Foster, N.: P4v: Practical verification for pro-
grammable data planes. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. SIGCOMM ’18, Association for Comput-
ing Machinery, New York, NY, USA (2018)

Meshman, Y., Dan, A.M., Vechev, M.T., Yahav, E.: Synthesis of memory fences
via refinement propagation. In: Miiller-Olm, M., Seidl, H. (eds.) Static Analysis
- 21st International Symposium, SAS 2014, Munich, Germany, September 11-13,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8723, pp. 237-252.
Springer (2014)

Michael DeHaan and Contributors: Ansible, https://www.ansible.com

Parker, J., Vazou, N., Hicks, M.: Lweb: Information flow security for multi-tier web
applications. Proc. ACM Program. Lang. 3(POPL) (Jan 2019)

Piskac, R.: New applications of software synthesis: Verification of configuration
files and firewall repair. In: Podelski, A. (ed.) Static Analysis Symposium (SAS).
Springer International Publishing (2018)

Puppet, Inc: Puppet, https://wuw.puppet.com

Raad, A., Doko, M., Rozi¢, L., Lahav, O., Vafeiadis, V.: On library correctness un-
der weak memory consistency: Specifying and verifying concurrent libraries under

25.

26.

27.

28.

29.

30.

declarative consistency models. Proc. ACM Program. Lang. 3(POPL) (Jan 2019).
https://doi.org/10.1145/3290381, https://doi.org/10.1145/3290381

Rahman, A., Parnin, C., Williams, L.: The seven sins: Security smells in infras-
tructure as code scripts. In: 2019 IEEE/ACM 41st International Conference on
misc Engineering (ICSE) (2019)

Rahman, A.A.U., Williams, L.: misc security in devops: Synthesizing practition-
ers’ perceptions and practices. In: 2016 IEEE/ACM International Workshop on
Continuous misc Evolution and Delivery (CSED) (2016)

Rahman, A., Parnin, C., Williams, L.: The seven sins: security smells in infras-
tructure as code scripts. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). pp. 164-175. IEEE (2019)

Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., Piskac, R.: Synthesizing con-
figuration file specifications with association rule learning. Proceedings of the ACM
on Programming Languages 1(OOPSLA) (2017)

Santolucito, M., Zhai, E., Piskac, R.: Probabilistic automated language learning for
configuration files. In: International Conference on Computer Aided Verification.
Springer (2016)

Shambaugh, R., Weiss, A., Guha, A.: Rehearsal: A configuration verification tool
for puppet. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (2016)

