
Formal XAI via Syntax-Guided Synthesis

Katrine Bjørner1, Samuel Judson2, Filip Cano3(B), Drew Goldman4,
Nick Shoemaker2, Ruzica Piskac2, and Bettina Könighofer3

1 New York University, New York, USA
kbjorner@nyu.edu

2 Yale University, New Haven, USA
{samuel.judson, ruzica.piskac, nick.shoemaker}@yale.edu

3 Graz University of Technology, Graz, Austria
{filip.cano, bettina.koenighofer}@iaik.tugraz.at

4 University of Virginia, Charlottesville, USA
dag5wd@virginia.edu

Abstract. In this paper, we propose a novel application of syntax-
guided synthesis to find symbolic representations of a model’s decision-
making process, designed for easy comprehension and validation by
humans. Our approach takes input-output samples from complex
machine learning models, such as deep neural networks, and automati-
cally derives interpretable mimic programs. A mimic program precisely
imitates the behavior of an opaque model over the provided data. We
discuss various types of grammars that are well-suited for computing
mimic programs for tabular and image input data.

Our experiments demonstrate the potential of the proposed method:
we successfully synthesized mimic programs for neural networks trained
on the MNIST and the Pima Indians diabetes data sets. All experiments
were performed using the SMT-based cvc5 synthesis tool.

Keywords: Syntax-Guided Synthesis (SyGuS) · Explainable Machine
Learning · Program Synthesis · Programming by Example (PbE)

1 Introduction

Complex machine learning models, such as deep neural networks have achieved
remarkable success across various domains, including image recognition [29], nat-
ural language processing [15], and control [18]. However, the inherently complex
and opaque nature of deep neural networks renders insightful human evaluation
of their opaque decision logic a challenge. In domains like healthcare, autonomous
vehicles, and financial systems, where decisions can have profound consequences
on human lives and societal well-being, the explainability of the model’s decision
making becomes a crucial requirement [25].

K. Bjørner and S. Judson—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Steffen (Ed.): AISoLA 2023, LNCS 14380, pp. 119–137, 2024.
https://doi.org/10.1007/978-3-031-46002-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46002-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-46002-9_7

120 K. Bjørner et al.

Explainable AI. The field of explainable AI encompasses a range of method-
ologies aiming to provide human-understandable insights into complex AI mod-
els [1,4,16]. Global interpretation methods, such as feature importance and par-
tial dependence plots, focus on understanding the overall behavior of a model
across the entire input space [30]. Local interpretation methods provide expla-
nations for the model’s predictions on a case-by-case basis. Many local inter-
pretation techniques, such as LIME [35] and SHAP [26] are based on training a
local surrogate model. Surrogate models are simplified models, such as rule-based
models, linear models, or decision trees, that approximate the decision-making
of a black-box model locally. For example, LIME generates a surrogate model
by perturbing the features of an input data point, observing how the model’s
predictions change, and then fits a linear model to these perturbed instances.
Decision trees can serve as surrogate models for local interpretability by train-
ing them on a local dataset [12,34]. Decision trees are constructed by recursively
partitioning the data based on the most significant features. At each node of the
tree, a decision is made based on a specific feature and its corresponding thresh-
old. These decisions create a path from the root node to a leaf node, resulting
in a set of if-then rules. Analysing the path for a particular output of the model
can reveal the reasons behind the model’s decision.

Our Contribution - Mimic Programs. In this paper, we propose to use quantifier-
free formulas in first-order logic to explain the model’s decisions for a given
data set. We call such a formula a mimic program.1 Given a set of data points
Pts = {(x, y) | x ∈ R

d, y ∈ {0, 1}} sampled from a model f , i.e., f(x) = y for all
(x, y) ∈ Pts, a mimic program Pf gives the same output as f for any data point
in Pts, i.e., Pf (x) = f(x) = y for all (x, y) ∈ Pts.

Synthesis of Mimic Programs. We formulate the problem of computing an
explainable mimic program Pf as a syntax-guided synthesis (SyGuS) problem [3].
SyGuS augments the synthesis problem with a grammar, also called a syntactic
template, from which the mimic program is to be constructed. The syntax-guided
synthesis problem then is to find an implementation Pf that respects a given
grammar and satisfies the semantic constraints given in form of Pts.

The syntactic constraints of SyGuS serve two purposes. First, it renders the
search space tractable for the synthesizer. Picking a good grammar is essential for
the scalability of the synthesis tools. A grammar that is too large might result in
a large search space, while one that is too small may make the synthesizer unable
to find a solution [24]. Second, it applies syntactic restrictions on the space of
the mimic programs being searched such that the resulting mimic programs are
easy to understand for humans.

In the paper, we discuss suitable grammars for the synthesis of mimic pro-
grams. Inspired by the structure of decision trees, we use grammars that allow
conditionals (if-then-else control flow). In case the input data is tabular data,

1 Note that the mathematical expressions of the formula can easily be translated into
a programming language such as Python.

Formal XAI via Syntax-Guided Synthesis 121

we allow the comparisons between variables and constants. Since the set of con-
stants allowed for comparison heavily influences the search space, we discuss
several heuristics for selecting those constants. For image data, we pick a sim-
pler grammar that allows the comparison between variables, but does not allow
the comparison with constants. This not only makes the search simpler but
also ensures that the classification of the mimic program remains robust against
changes in image brightness.

Experimental Evaluation. In our experiments, we synthesize mimic programs
for neural networks trained on the MNIST data set [23] and the Pima Indians
diabetes data set [40]. We use the cvc5 SMT solver [6] for the synthesis pro-
cedure. For the obtained mimic programs, we provide the results of evaluating
programs with respect to their interpretability, computation times and accuracy.
As a baseline, we compare to surrogate models obtained from training decision
trees with the off-the-shelf tool scikit-learn [33].

Outline. In Sect. 2, we discuss an illustrating example in which we compute
mimic programs for small image input data. We give the background on SyGuS
in Sect. 3. We discuss the synthesis of mimic programs in Sect. 4 and report our
experimental results in Sect. 5. Finally, we discuss related work in Sect. 6 and
conclude in Sect. 7.

2 Illustrative Example

1

2

3

4

5

6

7

1 2 3 4 5 6

x1 x2 x3

Fig. 1. Illustrative example - mimic programs for an image classification task.

We showcase how mimic programs can be used to explain the decisions of
a model trained on image data. In this example, we are given a set of three
images that depict handwritten digits, as illustrated in Fig. 1. Additionally, we
have given the classification of each image obtained by a model f . Our goal is
to compute a mimic program for this data set that explains the decisions of f .

In particular, the images are of size 6 × 7 pixels and are flattened into a
vector [p1,1, . . . , p6,7] ∈ R

42. Each pixel is a real valued number in [0, 1], where

122 K. Bjørner et al.

0 is white and 1 is black. A given black-box model f classifies the picture x1 as
the digit 7 and the pictures x2 and x3 as the digit 1.

We start by computing a mimic program Pf,1,2 for the dataset Pts1,2 =
{(x1, 7), (x2, 1)}. In order to compute Pf,1,2 via SyGuS, we need to define both
the semantic constraints and the syntactic constraints (the grammar). The
semantic constraints are defined by Pts1,2. Thus, we require that Pf,1,2(x1) = 7
and Pf,1,2(x2) = 1. For the syntactic constraints, we use a simple ITE-grammar
that allows as conditions Boolean combinations of comparisons between pixels
values. Invoked on this problem, a SyGuS solver might instantiate the following
program:

Pf,1,2 := if p4,2 > p4,3 then 7 else 1.

Pf,1,2 is an interpretable program that mimics the decision making of f for the
two given examples. However, it is not a correct mimic program for x3. Therefore,
we extend the set of examples: Pts1−3 = {(x1, 7), (x2, 1), (x3, 1)}. Using SyGuS,
we might now get the synthesized program

Pf,1−3 := if (p4,2 > p4,3 ∨ p4,2 > p4,4) then 7 else 1.

Note that both programs, Pf,1,2 and Pf,1−3, only compare the values of two and
three pixels respectively, and so their decision logic is easily comprehensible.
Another valid mimic program P

′
f,1−3 for the set of points Pts1−3 would be

P
′
f,1−3 := if p2,2 > p2,3 then 7 else 1.

This demonstrates a strength of our approach: adding more input-output exam-
ples does not imply a more complicated mimic program. On the contrary, given
a large data set of input-output examples, SyGuS finds (for many practical
instances) relatively small and interpretable programs that only compare data
values relevant to the classification.

3 Preliminaries

A Syntax-Guided Synthesis (SyGuS) [3] problem is specified with respect to a
background theory T, such as linear real arithmetic (LRA) or linear integer arith-
metic (LIA), that fixes the domain of variables and the types and interpretations
of the used functions and predicates.

SyGuS searches for an implementation Pf in form of a quantifier-free first-
order logic formula within the theory T that satisfies two types of constraints:

i Semantic constraints. In classical SyGuS, the semantic constraints are given
as an arbitrary formula ϕ built from symbols in the theory T. We work with
a special instance of the SyGuS problem, called Programming-by-Example
(PbE) [21,31], where the semantic constraints are given as a set of input-
output examples Pts = {(x, y) | x ∈ Xd, y ∈ {0, 1}}, where X is the domain
defined within the theory T.

Formal XAI via Syntax-Guided Synthesis 123

ii Syntactic constraints. The syntactic constraints are given as a (possibly infi-
nite) set E of expressions from T specified by a context-free grammar G.

The Syntax-Guided Synthesis Problem for Programming-by-Example: The com-
putational problem is then to find an implementation Pf , that is permitted by
a grammar G, and such that ∀(x, y) ∈ Pts it holds that Pf (x) = y within the
theory T.

The grammar G = (V,N,R, S) is a context-free grammar, where V is a set of
symbols in the theory T, N is a set of non-terminals, R is a set of production rules
such that R : (N ∪S)∗ → (N ∪V)∗ and S is the start-symbol. G must also ensure
that every sentence generated by the grammar is well-formed for the considered
logic. For example, a grammar for synthesizing linear real arithmetic programs
must guarantee that no boolean variable is used in an addition operation.

Most SyGuS solvers work in a counterexample-guided refinement loop. Can-
didates for Pf are enumerated and checked through SMT solving, with the resul-
tant counterexamples informing the adaptive construction of the next candidate.

4 Synthesizing Mimic Programs

In this section, we define mimic programs and discuss their computation. A
mimic program serves as a surrogate model for complex opaque models. It is
computed from a set of input-output data points sampled from the original
model and replicates the decisions of the model in these data points precisely.
Additionally, due to the declarative nature of the mimic program and the syn-
tactic restrictions on its structure, the computed mimic programs are generally
easy for humans to understand and to analyse.

Definition of Mimic Programs. To replicate machine learning models like deep
neural networks, we consider input-output examples of type Pts ⊆ R

d × {0, 1}.
We use the theory of linear real arithmetic (LRA), since that theory both cap-
tures the arithmetical statements used in statistical inference and has decision
procedures available for determining satisfaction modulo T. Within LRA, each
variable is either a boolean or a real, and the vocabulary consists of boolean and
real constants, standard boolean connectives, addition (+), comparison (≤), and
conditionals (If-Then-Else). We define mimic programs as follows:

Definition 1. Let G be a context-free grammar, f : Rd → {0, 1} be a model,
and Pts ⊆ R

d × {0, 1} be a set of points of size |Pts| = n that are consistent
with f , i.e., f(x) = y for all (x, y) ∈ Pts. A mimic program Pf on Pts is a
well-formed formula within the theory of LRA that is permitted by the grammar
G and satisfies that

∀(x, y) ∈ Pts. Pf (x) = f(x) = y.

124 K. Bjørner et al.

Synthesis of Mimic Programs. To compute a mimic program Pf using syntax-
guided synthesis (SyGuS), we fix LRA as background theory and define a set of
input-output data points Pts to form the semantic constraints and a grammar
G that Pf needs to satisfy. In the following, we give details regarding both the
selection of the data points and the grammar.

4.1 Semantic Constraints for Mimic Programs

A mimic program Pf gives the same output as a model f for a given set of data
points Pts, i.e., for all (x, y) ∈ Pts we have Pf (x) = f(x) = y. Depending on
the Pts from which the mimic program was created, Pf might also serve as a
good approximation for the decision-making of the model f in data points not
included in Pts.

If Pts is a large enough set that was uniformly sampled on the entire data
set, the mimic program can serve as a global surrogate model for f . If Pts was
sampled locally around a given data point x∗, the mimic program may serve
as a local surrogate model to explain the classification of data points close to
x∗. Different strategies, like distance sampling and feature manipulation strate-
gies [35], can be applied to compute samples close to x∗. Note, that Pf gives no
correctness guarantees for any data points that are not contained in Pts.

4.2 Syntactic Constraints for Mimic Programs

Designing an effective grammar G is likely to be at least domain- and possibly
even dataset- and model-specific. In order to mimic f , G must enable Pf to
include statements able to express (approximations of) the statistical patterns
that f depends on. But this reliance does not necessarily demand G be complex,
as we will show in this section for both image data and tabular data.

Syntactic Constraints for Mimic Programs from Image Data
For image data, we suggest using a very simple grammar that only supports ITE
branching and comparison between variables.

We assume that the image data is in a domain of Rm × R
n, where m × n is

the size of the input images in pixels. For a given instance x ∈ R
m × R

n, the
value xi,j represents the value of the pixel at position i, j. We use the following
grammar Gimage to compute mimic programs for image data:

B := 	 | ⊥ | R ≤ R | if B then B else B,
R := xij .

Using a simple grammar Gimage has several advantages:

– Scalability. Due to the high-dimensionality of image data, synthesizing mimic
programs from images is particularly challenging. A simple grammar limits
the search space for Pf . Allowing slighter richer grammars can already have
huge negative performance impacts.

Formal XAI via Syntax-Guided Synthesis 125

– Robustness. A mimic program Pf that is permitted by Gimage is robust to
monotonic transformations applied uniformly to the whole image, since it does
not allow the comparison of pixels to absolute values. For example, applying
the transformation xij �→ αxij + k for constants k, α > 0 on the entire image
would make the image brighter, but otherwise leave its structure intact, and
the mimic program would still be correct.

– Interpretability. More complex rules may also be more difficult for humans to
understand. For example, it might be easier to understand the relevance of
a branching condition xij > xi′j′ , than the reasoning behind a condition like
xij + 0.29 > xi′j′ − 0.12.

Syntactic Constraints for Mimic Programs from Tabular Data
The most important distinction between tabular and image data is that tabular
features are not homogeneous, as is the case for image data. Each features of
tabular data has its own meaning and can represent a different quantity and
distribution. This makes it difficult to interpret the meaning of comparing the
values of different features. Therefore, we consider a grammar that only allows
the comparison of individual features with constants.

We assume that the tabular data is in some domain R
d, where d is the

number of features (i.e., columns in a dataset). For an instance x ∈ R
d, the

value xi represents the value of the i-th feature. We use the following grammar
Gtabular to compute mimic programs for tabular data:

F0 := m0,1 | m0,2 | · · · | m0,k0

· · ·
Fd := mn,1 | mn,2 | · · · | mn,kd

FC0 := F0 ≤ x0 | x0 ≤ F0

· · ·
FCd := Fd ≤ xd | xd ≤ Fd

BC := FC0 | FC1 | · · · | FCd.
B := 	 | ⊥ | if BC then B else B

For each feature xj , we define for it a feature-specific set of constants Mj =
{mj,1 . . . , mj,kj

}. Having feature-specific constants offers two benefits. First, it
allows for the comparison of feature values with constants that are relevant for
the meaning and distribution of the feature. Second, it restricts the search space
more than having one joint set of constants that every feature value is allowed
to compare to. As for image data, restricting the search space can have a crucial
impact on the synthesis performance.

Different heuristics can be applied for selecting feature-specific constants.
One such heuristic is to use quantiles as constants, for example, quartiles that
divide the data into four sections, or octiles that divide the data into eight sec-
tions. Other summary statistics and domain-specific knowledge are other possible
sources of good constants.

126 K. Bjørner et al.

5 Experimental Evaluation

We computed mimic programs for both the MNIST [23] and Pima Indians dia-
betes [37] datasets. They are widely-cited benchmarks for image and socially-
consequential tabular data classification tasks respectively. For both, we imple-
mented an opaque classifier as a deep neural network trained using Tensorflow
(Keras). We employed a standard 80/20 train-test split. All reported results are
averaged values over 10 execution runs.

For mimic program synthesis, we used cvc5 [6]. The semantic constraints that
encode the input-output examples, as well as the grammar, were written in SMT-
LIBv2 format and fed to cvc5 to obtain the corresponding mimic program Pf . As
a baseline comparison, we also build mimic programs by training binary decision
trees over the same Pts sets as the mimic programs and study them as surrogate
models. For such decision trees, we used the off-the-shelf implementation from
scikit-learn [33]. We executed all experiments on an AMD Ryzen 9 5900x CPU,
with 32GB of RAM and a Nvidia GeForce RTX 3700Ti GPU, running Ubuntu
20.04. Our code for both training the neural network and performing all synthesis
experiments is publicly available.2

5.1 MNIST Dataset

The MNIST dataset of handwritten digits [23] is a well-known benchmark in
image classification problems. Each instance is a vector x ∈ R

784 encoding a
28 × 28 greyscale image, each representing a digit in {0, 1, . . . , 9}. In our case-
study, we use the subset of all instances of the digits 1 and 7. This gives us a data
set with 15170 instances. For the model f we used a trained deep neural network
from [11] with two convolutional and two max-pool layers, followed by a dropout
layer and a fully connected layer. With a total of 34k trainable parameters, the
network achieves a 99% test accuracy when fully trained.

We computed mimic programs using the grammar defined in Sect. 4.2 for
an increasing number of data points and evaluate the resulting programs with
respect to synthesis times, interpretability, and global accuracy. As a baseline,
we compare our results in runtime, interpretability, and accuracy to the ones
obtained by training a binary decision tree on the same set of examples Pts. We
use the off-the-shelf decision tree classifier from scikit-learn [33].

Results - Synthesis Times. Figure 2a shows the synthesis time to compute the
corresponding mimic programs as a function of n = |Pts|, averaged over 10 runs.
Even though each input data has the high dimension of R784, cvc5 was still able
to find mimic programs for relatively large sizes of Pts in a reasonable time. For
example, computing a mimic program for |Pts| = 100 took an average 19 seconds.
However, the steep growth of the curve highlights the challenge of using SyGuS
on high-dimensional image data, even when using very restricted grammars. On
the other hand, scikit-learn manages to learn decision trees orders of magnitude
faster.
2 https://github.com/kbjorner/synthesis.

https://github.com/kbjorner/synthesis

Formal XAI via Syntax-Guided Synthesis 127

Fig. 2. Results on synthesis times and program sizes for MNIST with growing size of
Pts, for both mimic programs and decision trees.

Fig. 3. Tree representation of the decision logic for Pf,100.

Results - Interpretability. We consider two measures of interpretability: program
size and program depth. For the program size, we consider the total number of If-
Then-Else statements in the program. The program depth is the maximum depth
of nested If-Then-Else statements. In Fig. 2b, we report the average program
size and depth of the computed mimic programs for an increasing number of
data points n = |Pts|. The results show that the computed mimic programs are
quite small and are therefore well suited for humans to analyse the decision-
making of f . Our results also show that the mimic programs produce smaller
(i.e. more interpretable) surrogate models than the decision trees produced by
scikit-learn. On average, the mimic programs only need to compare the values
of 13 pixels to mimic the classification of 100 images, while this number goes up
to 51 for decision trees. We observed that the depths of the resulting programs
are relatively high compared to the size of the program, with no improvement
with respect to decision trees. We leave the guidance of the synthesis procedure
to obtain programs with smaller depths for future work.

The grammar Gimage that we use to synthesize mimic programs for image
data allows to represent the program as a tree. Figure 3 gives a graphical rep-
resentation of a mimic program Pf,100 computed from |Pts| = 100 data points.
The resultant tree (of depth = 6) has only 19 branching nodes and compares

128 K. Bjørner et al.

the values of 23 pixels. The decision logic of f for a given input data in Pts can
be analyzed by following the corresponding path in the tree.

Fig. 4. Graphical explanation of a mimic program as well as accuracy results.

Figure 4a gives alternative graphical representations of Pf,100 to facilitate
interpretability. Figure 4a (left) illustrates which pixels are compared by Pf,100

for a given input image when following the left-most path through the tree (the
background is an exemplary digit from the MNIST dataset). In the Appendix in
Fig. 8, we give the representation of the full tree with a graphical visualisation
of the pixel comparisons in every node. Figure 4a (right) gives the heat map of
all pixels used in Pf,100. The darkness of each pixel corresponds to the number
of times it appears in a guard within Pf,100.

The graphical representations in Fig. 4a may show which areas of the image
are highly relevant for the classification performed by f . For the classifica-
tion between 1 and 7, it captures the intuition that the distinguishing features
between the two digits are the width of the horizontal stroke as well as the slant
and depth of the vertical.

Results - Global Accuracy. We also evaluated how well the trained mimic pro-
grams globally approximate the classifications of f for data points outside of
Pts. To do so, we build mimic programs Pf,n for different numbers of examples
n and compare the predictions given by Pf,n with the predictions given by f . In
Fig. 4b we plot the accuracy of the mimic program for different sizes n = |Pts|.
We perform each evaluation by uniformly sampling 10 data points over the entire
data set and checking whether the outputs of Pf,n and f match, and average the
results of 10 runs. Our results show that mimic programs computed from only 40
images already reach an accuracy of about 90%. Therefore, the mimic programs
serve as a reasonably good approximation for the classification distinguishing
between the 1’s and 7’s of f . The same experiment for decision trees shows that
they are less accurate than our mimic programs.

Formal XAI via Syntax-Guided Synthesis 129

5.2 Pima Indians Diabetes Dataset

In a second set of experiments, we computed mimic programs for the Pima
Indians diabetes dataset [37]. Each data point is composed of a feature vector
x ∈ R

8 encoding medical data, with a binary output that represents a diabetes
diagnosis. The entire data set consists of 768 data points. For the model f we
used a simple feedforward neural network architecture with three dense layers
with ReLU activation, followed by a last sigmoid layer. With a total of 722
trainable parameters, the model achieves an accuracy on the test set of about
78%, which is close to optimal for this dataset.

For the synthesis of mimic programs, we use the grammar Gtabular described
in Sect. 4.2. We perform experiments with four different sets of feature-specific
constants. The first three grammars use statistical measures of the data set to
define the feature-specific constants. In particular, we use the following sets:

– Quartiles. For each feature, we use the three quartiles (Q1, Q2, Q3) for the
feature constants.

– Sextiles. For each feature, we use the five sextiles as feature constants.
– Octiles. For each feature, we use the seven octiles as feature constants.

Lastly, we also use the constants obtained from a trained decision tree as feature-
specific constants for a fourth grammar. Concretely, we train the decision tree
over the test fraction of the dataset, and use the values of the tree splits as
feature-specific constants. We perform this experiment mainly to study the
effects of selecting good constants on the synthesis times and sizes of the result-
ing mimic programs, under the assumption that state-of-the art methods for
training decision trees find good constants for branching conditions. We use the
off-the-shelf decision tree classifier from scikit-learn [33] with default parameters
to train the decision tree. We refer to the grammar using the constants obtained
from the decision tree as the bootstrapped grammar.

Finally, as a baseline comparison, we train decision trees with scikit-learn on
the same set of examples Pts as the mimic programs, and study their properties
as surrogate models in terms of runtime, interpretability, and both global and
local accuracy.

Results - Synthesis Times. Figure 5 gives the synthesis times to compute the
mimic programs, averaged over 10 runs, for the four grammars and decision
trees, over an increasing number of data points (i.e., different sizes of the set
Pts). For each run, the data points are sampled uniformly at random from the
data set. The experiments show that SyGuS is able to find mimic programs in
less than one second for this tabular dataset, with only the bootstrapped grammar
struggling in some queries with a large number of examples. As with the case of
image data, scikit-learn is orders of magnitude faster.

Results - Interpretability. Figure 6 presents the results for the four different gram-
mars and decision trees over an increasing number of data points. We observe
that for all grammars, the size of the mimic program grows linearly and the depth

130 K. Bjørner et al.

20 40 60 80 100 120 140 160 180 200
Number of Examples (n)

0.0

0.1

0.2

0.3

0.4

R
un
tim

e
(s
ec
on
ds
)

Quartiles
Sextiles
Octiles
Bootstrap
Decision Tree

Fig. 5. Synthesis times for Pima dataset.

of the program grows logarithmically. Note that a mimic program restricted by
Gtabular can also be graphically represented as a tree. Since the depth of the
program grows slowly, the mimic program is well suited to analyse individual
decisions of the model f . As for the decision trees, in this case we observe that the
size of the tree is the same as the size of the mimic programs, while being signifi-
cantly shallower. Observe that this different size-to-depth ratio between decision
trees and mimic programs was already present in the MNIST experiments, with
scikit-learn produced more balanced trees than our mimic programs.

20 40 60 80
Number of Examples (n)

0

10

20

30

P
ro
gr
am

Si
ze

(N
o.

no
de
s) Quartiles

Sexiles
Octiles
Bootstrap
Decision Tree

(a) Size of Mimic Programs.

20 40 60 80
Number of Examples (n)

2.5

5.0

7.5

10.0

12.5

P
ro
gr
am

D
ep
th

Quartiles
Sexiles
Octiles
Bootstrap
Decision Tree

(b) Tree-depth of Mimic Programs

Fig. 6. Interpretability and runtime for different grammars with growing size.

Results - Global and Local Accuracy. Next, we evaluate how well the trained
mimic programs approximate (locally and globally) the decisions of f for data
points outside of Pts.

Therefore, we randomly select a data point x∗ from the training data set,
and select the n closest training data points (with corresponding classification
from f) to obtain Ptsx∗ . From Ptsx∗ , we compute local mimic programs for x∗.

Formal XAI via Syntax-Guided Synthesis 131

0 100 200 300
Evaluation distance (r)

60

80

100
A
cc
ur
ac
y
(%

)
Octiles (Local)
Octiles (Global)
Bootstrap (Local)
Bootstrap (Global)

(a) n = 20

0 100 200 300
Evaluation distance (r)

60

80

100

A
cc
ur
ac
y
(%

)

Octiles (Local)
Octiles (Global)
Bootstrap (Local)
Bootstrap (Global)

(b) n = 40

0 100 200 300
Evaluation distance (r)

60

80

100

A
cc
ur
ac
y
(%

)

Quartiles (Local)
Quartiles (Global)
Decision Tree (Local)
Decision Tree (Global)

(c) n = 20

0 100 200 300
Evaluation distance (r)

60

80

100

A
cc
ur
ac
y
(%

)

Quartiles (Local)
Quartiles (Global)
Decision Tree (Local)
Decision Tree (Global)

(d) n = 40

Fig. 7. Global vs. local accuracy evaluation for the octiles and bootstrapped grammars,
as well as for the quartiles grammar and for decision trees.

Additionally, we compute global mimic programs from n uniformly sampled data
points from the training data set.

For the accuracy evaluation, we pick the r closest points from the test data
set with their classification from f , and evaluate the accuracy of local and global
mimic programs on these data points, as well as local and global decision trees as
surrogate models. Figure 7(a) and Fig. 7(b) give the accuracy results for global
mimic programs and local mimic programs computed from the n = 20 and
n = 40 closest data points to x∗, respectively. We evaluate the accuracy for an
increasing number r of closest points to x∗ in the test data set.

In analogous terms, in Fig. 7(c) and Fig. 7(d) we illustrate an accuracy com-
parison between mimic programs and decision trees. In this case, the mimic
programs are built from the quartiles grammar. To provide a clear comparison,
we have illustrated accuracy results by comparing two approaches side by side.
Since the results obtained by grammars using quantiles as feature constants are
very similar, we have omitted the results for sextiles.

132 K. Bjørner et al.

The results show that for our case study, the obtained mimic programs serve
as good approximations of f . As expected, the local mimic programs have a
slightly higher accuracy on local test data points then the global mimic programs.
With increasing r, the accuracy of the local mimic programs decreases. For higher
distances (r ≥ 240) the global mimic programs have a slightly higher accuracy
than the local ones. We also observe that the bootstrapped grammar performs
slightly better in accuracy compared to the quantiles-based grammars, and these
ones, in turn, perform slightly better than scikit-learn decision trees. However,
note that the accuracy is in general high for all test instances.

6 Related Work

Explainable artificial intelligence (XAI) has been receiving significant attention
across multiple application domains [2,10]. The ability to explain the decision
making of an opaque model has become a standard requirement for the develop-
ment of trustworthy AI systems to be applied in critical domains. Consequently,
an increasing number of XAI methods and tools have been proposed both in
industry and academia. We refer to recent surveys that classify and discuss var-
ious state-of-the-art XAI techniques [14,28,30].

Formal Methods for XAI. Most existing XAI techniques rely on stochastic meth-
ods without any correctness guarantees for the provided explanations. In con-
trast, there have been several recent works that use formal methods to generate
provably correct explanations [7,19,27]. Several of these approaches build upon
the verification of deep neural networks (DNN). These approaches typically com-
pute a minimal subset of input features which by themselves already determine
the classification produced by the DNN [20,36]. There are also recent approaches
using formal methods specifically for explainable reinforcement learning and poli-
cies Markov decision processes (MDP) [8,9,39].

Several works exist to make the decision-making of black-box systems used
for control explainable. Automata learning refers to techniques that infer a sur-
rogate model (e.g., in the form of an input-output automaton [41], a timed
automaton [13] or an MDP [38]) from a given black-box system by observing its
behavior. The tool dtControl [5] learns decision trees for hybrid and probabilis-
tic control systems, and has been recently extended to support richer algebraic
predicates as splitting rules with the use of support vector machines [22]. While
not a direct comparison with dtControl, our experimental baseline (scikit-learn)
uses the same kind of binary decision trees as surrogate models.

Formal XAI via Syntax-Guided Synthesis 133

Our approach follows this line of research on formal XAI, studying classi-
fication problems for image and tabular data. We rely on syntax-guided syn-
thesis (SyGuS) [3] to generate provably correct explanations. In particular, we
use SyGuS via formulating the semantic constraints as input-output exam-
ples [21,31]. The concept of Programming-by-Example is well known due to
the success of the FlashFill [17] feature in Microsoft Excel spreadsheet software.
The broad acceptance of FlashFill is due to the fact that it is very simple to use:
the user only has to provide the examples. Our approach for computing formal
explanations from examples follows this idea. Neider et al. [32] followed a similar
direction and proposed to use a combination of probably approximately correct
learning (PAC) and syntax-guided synthesis (SyGuS) to produce explanations
that with a high probability make only few errors. In contrast to our work, [32]
does not compute explanations for image data.

7 Conclusion

In this paper, we synthesize formal explanations for the decisions of opaque
machine learning models used for classification tasks. From a given set of data
points and the corresponding classification of the opaque model, we compute a
mimic program in the form of a quantifier-free first-order logic formula that pro-
duces the same output as the given model for all given examples. We formulate
the synthesis problem as SyGuS problem and use if-then-else grammars to obtain
mimic programs that can be represented as decision trees. For future work, we
want to perform more comprehensive case studies on tabular data, since we see
the most potential of our method in analysing such data. In particular, we want
to investigate the effect of richer grammars on the size of the explanations.

Acknowledgements. This work was supported in part from the European Union’s
Horizon 2020 research and innovation programme under grant agreement N◦ 956123
- FOCETA, by the State Government of Styria, Austria - Department Zukunftsfonds
Steiermark, by the United States Office of Naval Research (ONR) through a National
Defense Science and Engineering (NDSEG) Graduate Fellowship, and by the United
States National Science Foundation (NSF) award CCF-2131476. The authors thank
Benedikt Maderbacher and William Hallahan for their assistance with SyGuS encod-
ings, and Timos Antonopoulos for his helpful comments on an earlier draft.

134 K. Bjørner et al.

Appendix

Fig. 8. Decision logic representation for an MNIST mimic program Pf,100, showing the
progression of pixel comparisons.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

Formal XAI via Syntax-Guided Synthesis 135

2. Ahmed, I., Jeon, G., Piccialli, F.: From artificial intelligence to explainable artificial
intelligence in industry 4.0: a survey on what, how, and where. IEEE Trans. Ind.
Inf. 18(8), 5031–5042 (2022)

3. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. IEEE (2013)
4. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,

opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
5. Ashok, P., Jackermeier, M., Křet́ınský, J., Weinhuber, C., Weininger, M., Yadav,

M.: dtControl 2.0: explainable strategy representation via decision tree learning
steered by experts. In: TACAS 2021. LNCS, vol. 12652, pp. 326–345. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 17

6. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2022), pp. 415–442 (2022)

7. Bassan, S., Katz, G.: Towards formal XAI: formally approximate minimal expla-
nations of neural networks. In: TACAS (1). Lecture Notes in Computer Science,
vol. 13993, pp. 187–207. Springer, Heidelberg (2023). https://doi.org/10.1007/978-
3-031-30823-9 10

8. Cano Córdoba, F., et al.: Analyzing intentional behavior in autonomous agents
under uncertainty. In: Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, IJCAI-23, pp. 372–381 (2023)

9. Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable rnn-based policies for par-
tially observable markov decision processes. J. Artif. Intell. Res. (JAIR) 72, 819–
847 (2021)

10. Chaddad, A., Peng, J., Xu, J., Bouridane, A.: Survey of explainable AI techniques
in healthcare. Sensors 23(2), 634 (2023)

11. Chollet, F.: Simple MNIST convnet (2015). https://keras.io/examples/vision/
mnist convnet/. Accessed 19 July 2023

12. Costa, V.G., Pedreira, C.E.: Recent advances in decision trees: an updated survey.
Artif. Intell. Rev. 56(5), 4765–4800 (2023)

13. Dierl, S., et al.: Learning symbolic timed models from concrete timed data. In:
Rozier, K.Y., Chaudhuri, S. (eds.) NASA Formal Methods, vol. 13903, pp. 104–
121. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33170-1 7

14. Dwivedi, R., et al.: Explainable AI (XAI): core ideas, techniques, and solutions.
ACM Comput. Surv. 55(9), 194:1–194:33 (2023)

15. Fathi, E., Shoja, B.M.: Deep neural networks for natural language processing. In:
Handbook of Statistics, vol. 38, pp. 229–316. Elsevier (2018)

16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A
survey of methods for explaining black box models. ACM Comput. Surv. (CSUR)
51(5), 1–42 (2018)

17. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Commun. ACM 55(8), 97–105 (2012)

18. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

19. Ignatiev, A.: Towards trustable explainable AI. In: Bessiere, C. (ed.) Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020, pp. 5154–5158 (2020). https://www.ijcai.org/

20. Izza, Y., Huang, X., Ignatiev, A., Narodytska, N., Cooper, M.C., Marques-Silva,
J.: On computing probabilistic abductive explanations. Int. J. Approx. Reason.
159, 108939 (2023)

https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/978-3-031-30823-9_10
https://doi.org/10.1007/978-3-031-30823-9_10
https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
https://doi.org/10.1007/978-3-031-33170-1_7
https://www.ijcai.org/

136 K. Bjørner et al.

21. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering (ICSE 2010), vol. 1, pp. 215–224 (2010)

22. Jüngermann, F., Kret́ınský, J., Weininger, M.: Algebraically explainable con-
trollers: decision trees and support vector machines join forces. CoRR
arXiv:2208.1280 (2022)

23. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database (1998). http://yann.
lecun.com/exdb/mnist. Accessed 13 Aug 2022

24. Li, M., Chan, N., Chandra, V., Muriki, K.: Cluster usage policy enforcement using
slurm plugins and an HTTP API. In: Jacobs, G.A., Stewart, C.A. (eds.) PEARC
2020: Practice and Experience in Advanced Research Computing, Portland, OR,
USA, 27–31 July 2020, pp. 232–238. ACM (2020)

25. Liang, W., et al.: Advances, challenges and opportunities in creating data for trust-
worthy AI. Nat. Mach. Intell. 4(8), 669–677 (2022)

26. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
NIPS, pp. 4765–4774 (2017)

27. Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In:
AAAI, pp. 12342–12350. AAAI Press (2022)

28. Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N.: Explainable artificial intelligence:
a comprehensive review. Artif. Intell. Rev., 1–66 (2022)

29. Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classifica-
tion using deep learning neural networks for brain tumors. Future Comput. Inf. J.
3(1), 68–71 (2018)

30. Molnar, C.: Interpretable Machine Learning, 2 edn. (2022). https://christophm.
github.io/interpretable-ml-book

31. Morton, K., Hallahan, W.T., Shum, E., Piskac, R., Santolucito, M.: Grammar
filtering for syntax-guided synthesis. In: AAAI, pp. 1611–1618. AAAI Press (2020)

32. Neider, D., Ghosh, B.: Probably approximately correct explanations of machine
learning models via syntax-guided synthesis. arXiv preprint arXiv:2009.08770
(2020)

33. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

34. Ranjbar, N., Safabakhsh, R.: Using decision tree as local interpretable model in
autoencoder-based LIME. In: CSICC, pp. 1–7. IEEE (2022)

35. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD 2016), pp.
1135–1144 (2016)

36. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian net-
work classifiers. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19
July 2018, pp. 5103–5111 (2018). https://www.ijcai.org/

37. Smith, J.W., Everhart, J.E., Dickson, W., Knowler, W.C., Johannes, R.S.: Using
the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Pro-
ceedings of the Annual Symposium on Computer Application in Medical Care
(1988)

38. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L*-based
learning of markov decision processes (extended version). Formal Aspects Comput.
33(4–5), 575–615 (2021)

http://arxiv.org/abs/2208.1280
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
http://arxiv.org/abs/2009.08770
https://www.ijcai.org/

Formal XAI via Syntax-Guided Synthesis 137

39. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: International Conference on Machine Learning
(ICML), pp. 5045–5054. PMLR (2018)

40. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harvard J. Law Tech-
nol. 31, 841 (2017)

41. Wang, F., Cao, Z., Tan, L., Zong, H.: Survey on learning-based formal methods:
taxonomy, applications and possible future directions. IEEE Access 8, 108561–
108578 (2020)

	Formal XAI via Syntax-Guided Synthesis
	1 Introduction
	2 Illustrative Example
	3 Preliminaries
	4 Synthesizing Mimic Programs
	4.1 Semantic Constraints for Mimic Programs
	4.2 Syntactic Constraints for Mimic Programs

	5 Experimental Evaluation
	5.1 MNIST Dataset
	5.2 Pima Indians Diabetes Dataset

	6 Related Work
	7 Conclusion
	References

