
Formal Correctness of Result Checking

for Priority Queues

by

Ruzica Piskac

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Department of Computer Science

Universit�at des Saarlandes

Supervisors: Prof. Dr. Harald Ganzinger

y

Prof. Dr. Andreas Podelski

Dr. Hans de Nivelle

February 3, 2005

dedicated to the memory of Harald Ganzinger

ii

Erkl�arung

Hiermit erkl�are ich, Ruzica Piskac, an Eides statt, dass ich diese Arbeit selbst�andig

verfasst und keine anderen als die angegebenen Quellen verwendet habe.

Saarbr�ucken, den 31.01.2005.

iii

iv

Acknowledgements

First and foremost, I would like to thank my �rst supervisor Harald Ganzinger

for giving me this interesting thesis subject, for the inspiring discussions, for

his support and his patience. I would like to thank him for being there until

the end. I am also grateful to Uwe Waldmann, who spent lots of time giving

me hints and suggestions for improvements. Then I am indebted to Andreas

Podelski for being willing to act as a supervisor. I would like to thank him for

his time, for his guidance and his valuable comments. I am also very grateful

to my second supervisor Hans de Nivelle, for giving helpful comments, for his

useful suggestions, for valuable debates and proofreading several draft versions

of this thesis. Without him this thesis would not be as it is. Special thanks go to

the members of AG2 at MPII for providing such a nice and productive working

atmosphere. Finally, I would also like to thank my family and my friends for

their constant support and encouragement that only made this thesis possible.

v

vi

Abstract

We formally prove the correctness of the time super-e�cient result checker for

priority queues, which is implemented in LEDA [17]. A priority queue is a data

structure that supports insertion, deletion and retrieval of the minimal element,

relative to some order.

A result checker for priority queues is a data structure that monitors the

input and output of the priority queue. Whenever the user requests a minimal

element, it checks that the returned element is indeed minimal. In order to do

this, the checker makes use of a system of lower bounds.

We have veri�ed that, for every execution sequence in which the checker

accepts the outputs, the priority queue returned the correct minimal elements.

For the formal veri�cation, we used the �rst-order theorem prover Saturate [25].

Contents

1 Introduction 3

2 Certifying programs and data structures 5

2.1 Certifying programs . 5

2.1.1 A witness example . 7

2.2 On-line and o�-line checkers . 8

2.2.1 Running times of checkers 9

3 The priority queue and its checker: the LEDA implementation 11

3.1 The priority queue data type . 11

3.2 Checking Priority Queues . 13

3.2.1 The Algorithm for the Priority Queue Checker 15

3.2.2 Some simple properties of lower bounds 16

3.3 Data structures to maintain the system of lower bounds 17

4 A mathematical model for the priority queue checker 19

4.1 Modeling LEDA code . 19

4.2 Modeling (un)-checked priority queues 21

4.3 Characterization of priority queues 21

4.4 Characterization of lists of lower bounds 22

4.5 Characterization of the correctness of the checker 23

5 A formal model 25

5.1 The speci�cation of a priority queue and its checker 25

5.1.1 Speci�cation of total order 25

5.1.2 Speci�cation of priority queues 26

5.1.3 Speci�cation of lists . 29

5.1.4 Speci�cation of lower bounds lists 30

5.1.5 Speci�cation of commands 31

5.1.6 Speci�cation of the function ex 31

5.1.7 Speci�cation of the function ex1 32

1

6 Automatic Veri�cation 33

6.1 Speci�cation of the correctness of the checker 33

6.2 The proof of the correctness of the checker 36

6.2.1 The General Induction Theorem 38

6.2.2 Preconditions Lemma . 40

6.2.3 Theorem1 . 42

6.2.4 Theorem1: speci�cation of natural numbers 42

6.2.5 Theorem1: speci�cation of the multiplicity 43

6.2.6 Theorem1: the formalization and the proof 44

6.3 Completeness of de�nitions . 51

6.4 The \create" command . 53

7 Conclusion and Future Work 56

2

Chapter 1

Introduction

Everyone who has ever programmed knows that the reliability of software is a

delicate issue.

One of the approaches for obtaining reliability is formal veri�cation. Veri-

fying a program means giving the formal mathematical proof of its correctness.

Veri�cation is theoretically the best approach, because it guarantees that the

program will behave correct on every given input. However, in practice, veri�ca-

tion is di�cult. Verifying a program is much harder than writing a program, and

it requires more skills. Small changes in the program may require a completely

new correctness proof.

Another approach is program result checking, which was proposed by Blum

[6, 7]. In program result checking, the result checking is automatized. The result

checker program is run in conjunction with the original program. The checker

con�rms correctness of the program's output or reports an error. It does not

verify whether or not the program is correct, in fact it does not look into the

program code, the checker veri�es that the output was correct on a given input.

There are many cases where checking a result is much easier than generat-

ing a result. The research on program result checking is very comprehensive;

the papers [24][21][6][22][8] give the mathematical theory behind it and sev-

eral new techniques are introduced to obtain the software reliability. Sullivan,

Masson and Bright [22, 8] proposed so-called certi�cation-trails. Briey, the

certi�cation-trail method consists of two phases: in the �rst phase the program

runs on the given input and produces an output and a trail of data. This data

is chosen in such a way that in the second phase another algorithm can easily

determine whether an error has occurred. Using this technique a certi�er for

sorting algorithm is formally proved [11].

A very important role plays checking of data structures: in [1] checking of

linked data structures is described. A certi�cation-trail method was also used

for data structures [23, 10], particularly for mergable priority queues [9].

Mehlhorn et al. used the ideas of the certi�cation-trail method and in [17,

3

15] a time super-e�cient checker for priority queues was introduced. By a

time super-e�cient checker, we mean that the running times of the checker are

asymptotically less than the running times of the priority queue itself. When the

priority queue is incorrect and returns a non-minimal element, this will not be

noticed immediately, but only at the moment when one of the smaller elements

is returned. Such a checker is called an o�-line checker.

In this thesis, we give a formal proof of the correctness of that checker. By

the correctness of the checker we assume that if during the run of the priority

queue the checker did not report any error, then all returned minimal elements

were correct. All proofs have been formally veri�ed using the Saturate system

[25].

The Saturate system [19, 3] is a �rst order theorem prover based on satu-

ration up to redundancy. The theoretical basis of the Saturate system includes

the superposition calculus [4, 2] and the chaining calculus [5]. The search space

is restricted by applying the rules for detecting redundancy of the clauses. Since

the chaining calculus treats transitive relations e�ciently, Saturate seemed to be

the best prover for dealing with the total orders which are used for the priorities.

The thesis is organized as follows:

Chapter 2 introduces the basic terminology of program checking and explains

the di�erence between checking the programs and checking the data struc-

tures;

Chapter 3 de�nes the abstract data type priority queues and describes the

algorithm and the data structures used as a priority queue checker;

Chapter 4 gives a mathematical model that we have developed in order to

establish the links between the LEDA code, priority queues and checked

priority queues. In this chapter the correctness of the checker is de�ned

and explained;

Chapter 5 contains the formal speci�cation of priority queues and their checker

in terms of �rst order logic. The speci�cation is written in the simpli-

�ed Saturate syntax. The theorem which validates the correctness of the

checker for priority queues is formalized;

Chapter 6 describes the formal proof of the correctness theorem. The proof

is done using the Saturate system and in this chapter we explain in detail

all lemmas and subtheorems we had to prove in order to validate the

correctness theorem. The Saturate �les are not included in the thesis, but

they are available

Chapter 7 gives a concluding overview and future work.

4

Chapter 2

Certifying programs and

data structures

In this chapter we introduce the basic concepts of program checking. We de�ne

a program correctness checker and explain the di�erence between checking the

program and checking the data structure. There are also some examples which

illustrate the introduced terminology.

2.1 Certifying programs

Let f be some problem. Following [16], it is important to distinguish an algo-

rithm and a program for f . An algorithm is de�ned as a description of a method

for solving the problem intended for a human reader. A program is de�ned as

a description intended for machine execution. While algorithms are described

and formalized in natural language and their correctness is proved, programs

are written in computer language and executed on machines. Since programs

are written by human programmers, it is very likely that mistakes could occur

in the program.

x
Program for f

y

Figure 2.1: The scheme illustrates the typical behaviour of program f . The user

can see input x and output y. Since he cannot be certain about the correctness

of f , he would like to be able to check whether indeed y = f(x)

5

A formal veri�cation is one way of proving the correctness of the program. In

formal veri�cation the states and the behaviour of the program are formalized in

the mathematical notation and its correctness is formally proved. Such proofs

assure reliability and they guarantee the correct behaviour of the program on

all possible inputs. Unfortunately, in practice such proofs were constructed only

for simple programs and even then it was unexpectedly di�cult.

Checking is considered to be a simpler task than veri�cation since in the

checking we do not have to con�rm that the given program returns the correct

output on every single input, but we have to con�rm that the program has

returned the correct output for a given input. In [6], which is one of the �rst

papers about checking program correctness, a program correctness checker was

de�ned as an algorithm for checking the output of computation.

Often it is easier to check whether y = f(x) than to calculate y. For exam-

ple, if our goal is to �nd the roots of an equation f(x) = 0, then it is easier to

check whether the returned value y is the root than to calculate it.

In order to make the checking easier, we require that the program should not

return only the output y, but also a correctness proof (so-called witness). The

main requirement of the introduced witness w is that it should make it easy to

check whether y = f(x). "Easy" means that the resource requirements of check-

ing should be lower than the requirements of the program itself. More about

that topic can be read in Section 2.2. "Easy" also means that the checker should

be simple enough so that we do not need to prove its correctness, otherwise we

could end up in an in�nite loop of checking: �rst we check the correctness of

the program, then the correctness of the checker, then checker's checker, . . .

Although, following [18], the algorithms used for checkers should be easy

and understandable such that their proof is not required, there is a footnote in

that paper which states that formal veri�cation of simple checkers might be a

realistic goal in the near future. In this thesis we will try to give this anticipated

formal proof that the priority queue checker implemented in LEDA is correct.

x
Program for f

y

w

Figure 2.2: A witness w is an auxiliary output which makes checking easier

The other important requirements of the witness w is that if y 6= f(x), there

should not exist w such that the triple (x; y; w) passes checking.

6

2.1.1 A witness example

In this section we give an example of a witness which is certifying the output

of a computation. The example comes from the graph theory: it is the problem

of �nding a maximum matching in the graph. Given an undirected graph G =

(V;E), a matching M in the graph G is de�ned as a subset of edges such that

every vertex v 2 V is incident to at most one e 2M . A maximum matching in

the graph G is a matching M

0

such that jM

0

j � jM j, for every matching M .

Since the maximummatching in the graph is not unique, in the case of a large

graph it is quite hard to be sure whether the returned matching is indeed the

maximum matching. The witness which certi�es that the program has returned

the maximum matching is an odd set cover. The whole idea of the odd set cover

originates from [13, 14], but to use the odd set cover as a witness was done in

LEDA ([17]).

Before we give a de�nition of the odd set cover, let us de�ne cov and cap:

De�nition 2.1.1. Let A � V such that jAj is odd number.

1. If jAj = 1, i.e. A consists of a singleton set fvg for some v 2 V , then

cov(A) = fe 2 E j e incident to vg and cap(A) = 1.

2. If jAj = 2k + 1 and k > 0, then cov(A) = fe 2 E j e has both endpoints

in Ag and cap(A) = k.

De�nition 2.1.2. Let A = fA

1

; A

2

; : : : ; A

k

g be the family of odd sized subsets

of V . A is called an odd set cover for the graph G if

cov(A) =

[

A2A

cov(A) = E:

If A is the odd set cover for G, then the capacity of A is de�ned as:

cap(A) =

X

A2A

cap(A):

Figure 2.3 illustrates the previously introduced de�nitions. Given a graph

G, the maximum matching and the odd set cover are already marked on G.

The whole theory behind the idea of using the odd set cover as a witness, can

be easily explained. Let A = fA

1

; A

2

; : : : ; A

k

g be the odd set cover for G.

If jA

i

j = 1, then in cov(A

i

) there is at most one edge which belongs to the

matching M . If jA

i

j = 2k + 1, then in cov(A

i

) there are at most k = cap(A

i

)

matching edges. Therefore, we conclude that cap(A) � jM j, for every matching

M and every odd set cover A.

Since cap(A) � jM j always holds, the witness that the returned matching

M is indeed maximum matching is the odd set cover such that cap(A) = jM j.

The fact that such an odd set cover A always exists and the construction of A

can be found in [17].

7

Figure 2.3: The thicker lines in the graph represent the edges which belong to

maximum matching. The circled subsets of vertices form the odd set cover.

2.2 On-line and o�-line checkers

Checking of data structures is a generalization of the checking concept intro-

duced in the previous chapter.

S
init

Parameters

Parameters
update

Results
function

Figure 2.4: The life-cycle of a data structure S

Figure 2.4 shows the life-cycle of the data structure S: After initialization,

the user may update the data structure and call functions returning results

that depend on the internal state of the data structure. Each time, a function is

called, the result of the function depends on the updates made so far. Using this,

it is possible to construct a checker for the data structure. However, contrary

8

to the input to an algorithm, the sequence of updates to a data structure is

not bounded in size. Therefore, the input to the function checking the data

structure is also not bounded.

As was the case for program correctness checking, one can also make use of

a witness. The witness is another data structure S

0

that is updated in parallel

with the updates on the original data structure S: It should be constructed in

such a way that it is easy to check whether the values returned by functions of

S; are correct, using S

0

:

Checking data structures is distinctive from checking programs because a

wrong output of a data structure does not necessarily have to be detected im-

mediately. It is also acceptable to detect it at a later moment, after some more

commands have been executed. Depending on the moment on which errors

are detected, one can distinguish two types of checkers: on-line and o�-line

checkers. A checker is called on-line when an incorrect value is detected at the

moment that is it returned. A checker is o�-line, when an incorrect value will

be detected eventually, but possibly at a later moment.

Often, o�-line checkers are more time-e�cient than on-line checkers. An

example of this is the o�-line checker for priority queues that we will de�ne

in Section 3.2. The checker has a complexity which is strictly less than the

complexity of the priority queue. In [15], it is shown that there exists no on-line

checker for priority queues with a complexity less than the complexity of the

data structure itself.

2.2.1 Running times of checkers

We distinguish checkers depending on how their complexity relates to the com-

plexity of the program (or data structure) being checked.

De�nition 2.2.1. Let P be a program or a data structure and let C

P

be a

checker for P . Then C

P

is

� time-e�cient if the running time of C

P

is asymptotically no more than

the running time of P

� time-ine�cient if the running time of C

P

is asymptotically more than the

running time of P

� time-supere�cient if the running time of C

P

is asymptotically less than

the running time of P

The same notions can be applied to space. Let us illustrate those de�nitions

with the maximum matching example from Section 2.1.1.

In LEDA there is a function MAX CARD MATCHING() which computes a max-

imum matching for a given graph G. The result of MAX CARD MATCHING() is a

list of edges M containing the edges in the maximum matching and an odd set

cover O. The odd set cover is represented by a list of nodes and to every node

is associated an integer label of the set to which the node belongs.

9

There is also a checking function CHECK MAX CARD MATCHING() which takes

three arguments: a graph G, a matching M and an odd set cover O; and which

returns a boolean value.

For the graph G = (V;E) the running time of MAX CARD MATCHING() is

(almost) O(jEj � jV j), while the running time of CHECK MAX CARD MATCHING()

is linear in the size of the graph. Therefore, this is an example of a time-

supere�cient checker.

10

Chapter 3

The priority queue and its

checker: the LEDA

implementation

In the previous chapters we have introduced the general concept of checking

data structures and in this chapter we will show how this principle works for

a concrete data structure, namely for priority queues. We will describe the

priority queue checker implemented in LEDA [17, 15]. LEDA is a C++ class

library for e�cient data types and algorithms. It provides algorithmic in-depth

knowledge in the �eld of graph and network problems, geometric computations,

combinatorial optimization and other. Several algorithms in LEDA certi�cate

the correctness of their results by providing a witness as an additional output

of the algorithm (cf. the maximal matching problem from the paragraph 2.1.1).

3.1 The priority queue data type

A priority queue is a data type that is used in many network and graph al-

gorithms. Typically it is used in the shortest path computation. Let us �rst

de�ne and describe some general properties of priority queues and later we will

describe the LEDA implementation of this data structure.

De�nition 3.1.1. Let (P;<) be a totally ordered set, and let I be any set.

A priority queue over I using (P;<) is a datatype that supports the following

operations:

� create: creates empty priority queue

� insert (i,p): inserts individual i 2 I with priority p 2 P

11

� delete min: removes an object (i; p) with minimal p

� �nd min: returns a pair (i; p) with minimal p

� contains(i,p): true i� the priority queue contains i 2 I with associated

priority p 2 P

Some priority queues also support the deletion of any element, not only those

with minimal priority. Since the focus in priority queues is on the minimal el-

ement, we assume that operations concerning the minimal element should be

implemented e�ciently.

Priority queues can be implemented in di�erent ways, but mostly they are

implemented as heaps: the priority queue can be implemented as Fibonacci

heap, pairing heap, redistributive heap, monotone heap, k -ary heap or binary

heap, but it can also be implemented as a list or a bucket. Every mentioned

type of the implementation has certain advantages. For example, with the Fi-

bonacci heap implementation the running time of both, insertion and deletion

of the minimal element, is O(logn). On the other hand, if we choose the list im-

plementation, the running time of insertion is then O(1), but the running time

of deletion of the minimal element is O(n). Therefore, choosing the appropriate

implementation mostly depends on how the data structure is going to be used.

Although there are many implementations of priority queues, all of them

provide the same user interface. This means that the user uses the same com-

mands to work with priority queues, independently of the implementation he

has chosen. The default implementation used in LEDA is the Fibonacci heap

implementation. The same implementation is used in the standard library of

C++.

The declaration p queue <P,I> Q creates a new instance Q of the priority

queue. The elements of Q are of the type I and their priority is of the type P.

The priority queue Q will be implemented using the Fibonacci heap implemen-

tation. In order to select an implementation di�erent from the Fibonacci heap

implementation, one has to use the following declaration:

_p_queue <P,I,new_implementation> Q(necessary_parameters);

It is also possible that the user could use his own implementation. In that case

the declaration looks the same, only instead of new implementation one has

to use the name of the class where the new priority queue implementation is

designed. This new implementation could also contain some errors. This yields

the need for checking the correctness of the output, but this will be explained

in more details in the next section.

Let us consider the following sequence of LEDA code:

p_queue <int,int> Q;

Q.insert (7, 0);

Q.insert (9, 0);

Q.insert (6, 0);

int p = Q.del_min();

12

Q.insert (8, 0);

Q.insert (3, 0);

int p = Q.del_min();

Q.insert (4, 0);

Notice that all the priority queue commands are implementation-independent,

i.e. independently which implementation we use, the commands for insertion

and deletion are the same. This sequence demonstrates all typical priority queue

commands, but there are more commands which are not presented in this seg-

ment of the code. For example, the following two commands

pq_item it = Q.find_min();

Q.del_item(it);

have the same impact as Q.del min(); .

In all the priority queue implementations we are working with the minimal

(or the maximal) element only, but never with both of them. It is again dic-

tated by implementation. There is no implementation which could handle both

the minimal and the maximal element e�ciently. Therefore, we cannot arbi-

trarily change the priority of an element: it can be only decreased. There are

implementations that support very e�ciently decrease of priorities but there

are no implementations that support very e�ciently decrease and increase. The

information part can be changed arbitrarily.

Q.change_inf(it, i1);

Q.decrease_p(it, p1);

3.2 Checking Priority Queues

As mentioned before, there is also a possibility that the user can use his own

implementation of priority queues. This implementation might be faulty, so

the user wants to be sure whether the result reported by Q.find min() and

Q.del min() is indeed the minimal element in the priority queue. The �rst idea

how to check it would be to compare priorities of all the elements in the prior-

ity queue with the reported minimal priority. Unfortunately, this idea defeats

the e�cient access to the element with the minimal priority. The access to the

element with the minimal priority usually takes O(logn). Therefore, our �rst

idea is not acceptable because the checking then would be more costly (O(n))

than the priority queue itself. It has been proven in [15] that there is no on-line

time-supere�cient checker for priority queues.

For the reason mentioned above, a checker which adds only small overhead

to priority queue operations has to be an o�-line checker. In this section we

explain the algorithm used for the checker, while in later chapters we will give

the formal proof of its correctness.

The class checked p queue implements a checker for priority queues. The

user interface for the checked p queue is the same as the interface for the

unchecked priority queue, so the user can use checked priority queues in the

13

same manner as he would use unchecked priority queues, without making any

changes in his code. The only di�erence is that the user has to declare the use

of checked priority queues:

_p_queue<P, I, new_impl> PQ;

checked_p_queue<P,I> CPQ(PQ);

The priority queue checker implemented in LEDA uses the encapsulation model

for checking the data structures. Sometimes in the literature it is also called

"the client-checker-server model" [15, 1].

Figure 3.1 describes the behaviour of such a model. The priority queue

checker is a program layer that acts as an intermediary between the user and

the priority queue. The checker monitors the behaviour of the priority queue

and if there was no error, it stays silent. In case of an error, the checker reports

the error to the user. This means that on the user level, if the priority queue

operates correctly, there is no di�erence between checked and unchecked priority

queues. Since the checker implemented in LEDA is not an on-line checker, but

an o�-line, a potential error will not be reported immediately but eventually.

OUTPUT

INPUT

OUTPUT

INPUT

Queue
Priority Checker User

possible
error

Figure 3.1: The client-checker-server model for checking priority queues

In the priority queue checker it is not necessary to consider all priority queue

commands. It is su�cient to consider only the following constructors:

� p queue <P,I> Q;

� Q.insert (p, i);

� Q.del item(it);

� P p = Q.del min();

since all other priority queue commands concerning priority manipulations could

be synthesized by some above mentioned commands. For example, Q.find min()

is synthesized by a Q.del min() and an insertion of the returned element. From

now on, we consider that the priority queue only supports those four commands

mentioned above.

The key idea of the checker is the fact that whenever we execute Q.del min()

all the remaining elements in the priority queue must have priority at least as

14

large as the reported minimum, if the implementation is correct. Therefore,

to each element of the priority queue we assign a lower bound, which should

indicate the smallest value of its priority, assuming that the implementation is

not faulty.

De�nition 3.2.1. A lower bound of an element at the time t is a maximal

priority reported by all Q.del min() operations performed between the moment

when the element was inserted into the priority queue and the time t.

Every time when some element of the priority queue is accessed (and this

can be done only via deletion), the checker compares the element to its lower

bound. If the element is greater or equal to its lower bound, no error is reported

and the checker remains silent. But, if the element is strictly smaller than its

lower bound, this indicates that an error occurred during the code execution

and the checker alarms the user. The resulting checker is an o�-line checker.

When Q.del min() returns a non-minimal element, this will be noticed only

when one of the smaller elements that are present in the queue is retrieved.

3.2.1 The Algorithm for the Priority Queue Checker

The lower bound of the element depends on all past Q.del min() operations.

Since the system of lower bounds is changing during the code execution accord-

ing to the reported minimums, let us explain how the lower bound of an element

evolves through the time.

The priority queue checker performes the following actions in parallel to the

operations in the priority queue:

� when the element is inserted into the priority queue, its lower bound is

initially set to �1, because nothing is known about it yet

� when the element is deleted from the priority queue, the checker compares

the element and its lower bound and in case that the element is strictly

smaller than its lower bound, reports an error

� when Q.del min() returns (i; p), the checker takes a priority p and sets

all lower bounds which are smaller than p to p. If the lower bound of

some element is greater than p, it remains unchanged. Since Q.del min()

also deletes the reported element from the priority queue, the checker has

to inspect whether the reported minimal element is greater than its lower

bound

Let us consider a fragment of code given in Paragraph 3.1 and let us assume

that the implementation is correct. After the code execution, the priority queue

build from it contains four elements. Figure 3.2 represents that priority queue

in a two-dimensional coordinate plane, where the x-axis corresponds to the time

and the y-axis corresponds to the priority value. The horizontal line in the plane

represents the lower bound.

15

t

p

Figure 3.2: The system of lower bounds build from the code fragment given in

Paragraph 3.1

3.2.2 Some simple properties of lower bounds

Let P be some LEDA code fragment concerning priority queues and let us

illustrate the execution of P in a two-dimensional coordinate plane, as before.

We observe that lower bounds are monotonically decreasing from left to right,

i.e. if an item it

1

was inserted into the priority queue before the item it

2

, then,

assuming the correct implementation of priority queues, the lower bound of it

1

must be at least as large as the lower bound of it

2

.

This follows from the de�nition of the lower bounds. Since it

2

was inserted

after it

1

, all the minimal elements that were used for computing the lower bound

of it

2

were also used for the lower bound of it

1

.

Following [17], the form of lower bounds is named a staircase of lower bounds.

Figure 3.3 illustrates the process of updating the staircase of lower bounds.

After the new minimal priority p is reported by the Q.del min() command, the

value of all the lower bounds which were smaller than p, is increased to p. The

staircase form is preserved in the updated system of lower bounds as well.

p

Figure 3.3: Updating the staircase of lower bounds after reporting a priority p

as a minimal element

16

3.3 Data structures to maintain the system of

lower bounds

In this section we shortly explain the data structures used for building and

updating a staircase of lower bounds. The more detailed explanation, templates

and running times can be found in [17], while here we give just a basic idea.

Figure 3.4 illustrates the data structures which were used to build and maintain

the whole system of lower bounds.

p

t

S

P

R

Q

Figure 3.4: Data structures used to maintain the system of lower bounds

Let Q be a priority queue. To every element in Q we associate an element

in the list R. The list R is a list of elements from Q which is linearly ordered by

the time of insertion of elements. A partition P divides the list R into blocks.

Let e be the element contained in P and let e

p

denote the lower bound of e. If

elements x and y are both contained in the same block of the partition P , then

x

p

= y

p

. The blocks of P are maintained in a linearly odered list S which is

odered according to the lower bounds of blocks in P .

De�ned in such a manner, the checker can easily maintain this whole system

17

of data structures. While the maintenance for the insertion and deletion of an

element is fairly simple, the maintenance of the Q.del min() command requires

more manipulations with the data structures. Let e

�

be the priority returned

as the output of the Q.del min(), performed on the priority queue Q. The

checker deletes e

�

from R and P and checks whether e

�

p

� e

�

. All blocks in P

whose "canonical" item is smaller than e

�

are united into the new block with

the canonical element e

�

.

18

Chapter 4

A mathematical model for

the priority queue checker

We are going to show that the algorithm used for the priority queue checker

works correctly, i.e. if the checker did not report any mistake, then no error

occurred during the code execution. In order to prove its correctness, we have

developed a mathematical model whose description is given in this chapter. In

the next chapter the model will be formalized in �rst order logic and using

Saturate syntax, but in this chapter we only establish a link between the LEDA

code, priority queues and checked priority queues.

4.1 Modeling LEDA code

The priority queue data structure is de�ned as a collection of items which are

built of two parts: the priority part and the information part. Let (p; i) be

such an item: then p is the priority from a linearly ordered data type P and

i is information of type I. I can be any data type. Since all priority queue

operations concern only the priority part, we model priority queues simply as

a collection of items from a linearly ordered data type Element. Erasing the

information part of the data structure does not lead to a loss of any functionality

as the information part is not signi�cant for priority queue outputs.

With this restriction and with the previously introduced reduction of all

the priority queue commands to insertion, deletion and deletion of an minimal

element only, we gain the following de�nition of LEDA code concerning priority

queues:

De�nition 4.1.1. Priority queue LEDA code is a word from the alphabet

19

� = fins(e); del(e); dmin j e 2 Elementg

Figure 4.1 demonstrates the transformation of a fragment of LEDA code P

into the corresponding word from the alphabet �. From now on, whenever we

talk about LEDA code, we refer to the word w which represents that speci�c

code fragment.

Q.insert (7, 0);

Q.insert (9, 0);

Q.insert (6, 0);

int p = Q.del min();

Q.insert (8, 0);

Q.insert (3, 0);

int p = Q.del min();

Q.insert (4, 0);

)

ins(7);

ins(9);

ins(6);

dmin;

ins(8);

ins(3);

dmin;

ins(4);

Figure 4.1: Translation of LEDA code into a word from the alphabet �

Every word from the alphabet � can be seen as a list whose domain is set

�. We assume the following inductive de�nition of lists with domain D:

De�nition 4.1.2. The empty list nil is a list with domain D. If l is a list with

domain D, then for every d 2 D, cons(l,d) is also a list with domain D. The

function cons(l,d) appends the element d at the end of the list l.

The de�nition of lists which we are using di�ers from the standard de�ni-

tion, since in the standard de�nition cons puts the newly added element at the

beginning of the list. The reasons for our approach are historical. Our earliest

models and speci�cation involved only priority queues and they were modeled

with appending the element at the end of the list. Later on, as we have intro-

duced a system of lower bounds and words over �, it was more natural to model

them in the same way as we have modeled priority queues. Since we already

had a developed model for priority queues, it was easier to rede�ne lists than

to rebuild the already existing models.

Not only the words from the alphabet � are modeled as lists, but we also

recognize a system of lower bounds as a list.

Let "." represent the concatenation of two words. Let w be a word from the

alphabet � and � 2 � be a letter: w:� denotes then the shortcut for w:f�g, i.e.

since words are modeled as lists, w:� is a shortcut for cons(w; �). The empty

word " corresponds to the empty list nil.

We assume that the following standard list operations are de�ned on every

word w: concatenation, pre�x and su�x.

20

4.2 Modeling (un)-checked priority queues

We de�ne priority queues also inductively, in a similar way as we de�ned lists,

only the constructors for priority queues are called empty and insert. Their

behaviour is identical to the behaviour of nil and cons.

Checked priority queues are modeled as lists. We use a list over Element�

(Element [f�1g) to represent a system of lower bounds. If (e

1

; e

2

) occurs in

a system of lower bounds, this means that e

1

has associated lower bound e

2

.

4 8−8 36967

Figure 4.2: Model of a checked priority queue built from the code shown on

�gure 4.1

Although this model is much simpler than the whole system of data struc-

tures which is used to maintain the system of lower bounds (cf. �gures 3.4 and

4.2), it is already powerful enough to specify and describe all the desired prop-

erties of the checker. Let us recall that our goal is not to verify the correctness

of the data structure but to check its output.

4.3 Characterization of priority queues

In the next two sections we will establish a link between the LEDA code, priority

queues and checked priority queues. Figure 4.3 shows the dependencies between

them.

Let Queues be the set of all priority queues de�ned over the linearly ordered

set Element. On the set Queueus we de�ne the following operations: insert,

delete and del min. We assume that the implementations of insert=delete are

correct, but we assume nothing about the correctness of del min. In order

to distinguish the implementation-dependent del min command from the cor-

rect del min command, we use the name del min impl. We only assume that

del min impl is going to delete some element from the queue and return its

value.

Let P be a code fragment using priority queues. In order to construct the

priority queue Q out of P , we de�ne a function ex (which stands for execute).

Function ex treats the implementation of priority queues as a black box: the

structure and inner states of Q are not visible to ex. It has two arguments: a

code fragment w and a priority queue q. The result should be the new priority

queue q

0

.

The function del min impl deletes the minimal element, but also return its

21

Sequence

commands

of
Priority

Queue

Lower bound
system

ex

ex1 output

Figure 4.3: Connection between code, priority queues and checked priority

queues

value. In order to deal with this case, the function ex will return an ordered pair

hq

0

; pi, where q

0

is the modi�ed priority queue and p 2 Element is the priority

value. We need an additional object � 62 Element (denoting undefined) which

is going to be used as the auxiliary output for insert and delete. Since the result

of the function ex is an ordered pair, we are going to use projection functions:

hq; ei:Q = q and hq; ei:E = e.

The function ex is de�ned as follows:

ex("; q) = hempty; �i

ex(w:ins(e); q) = hinsert(ex(w; q):Q; e); �i

ex(w:del(e); q) = hdelete(ex(w; q):Q; e); �i

ex(w:dmin; q) = del min impl(ex(w; q):Q)

4.4 Characterization of lists of lower bounds

In this section we de�ne a function ex1 that constructs the system of lower

bounds resulting from a code fragment w 2 �

�

.

The lower bound system is represented by a list and the operations de�ned

on the system of lower bounds should be all those operations that are used in

the algorithm for the checker:

� appending of an element to the end of the list

22

� deletion of an element from the list

� upraising of the system of lower bounds regarding the reported minimal

element

The function ex1 has two arguments: a code fragment w and a lower bounds

list l. The result is the new and modi�ed list l

0

. Since the operations on the

system of lower bounds do not return any values , there is no need that ex1

returns a pair. The execution of the function ex1 corresponds to the algorithm

for the priority queue checker, de�ned in Section 3.2.1.

ex1("; l) = nil

ex1(w:ins(e); l) = cons(ex1(w; l); (e;�1))

ex1(w:del(e); l) = remove(e; ex1(w; l))

ex1(w:dmin; l) = adjust(e

�

; remove(e

�

; ex1(w; l))),

where e

�

= del min impl(ex(w; empty)):E

The function adjust has two parameters: an element e and a list l and its

result is the new list l

0

. It assigns the value e to all lower bounds in l which are

smaller than e. It is actually the function which upraises the system of lower

bounds.

The value e

�

which is passed to the adjust function during code execution, is

the value which was returned by the del min impl operation. Thus, the system

of lower bounds is also modeled implementation-dependently.

4.5 Characterization of the correctness of the

checker

In previous sections we have described the models for priority queues and a

system of lower bounds and in this section we informally explain what it means

to prove the correctness of checker. The formal statement of the checker cor-

rectness can be read in Paragraph 6.1 (Theorem 6.1.1).

The implementations of priority queues are not veri�ed, but checked, i.e. we

do not analyze the code of the implementation but we test whether it returns

the correct output. What we prove is the following: If during code execution

the checker did not report any error, then every returned output was correct. In

other words, the element returned by every dmin operation in this code sequence

was indeed the minimal element.

Let w be a code fragment using priority queues. If during the execution

of w the checker did not report any error, then w is called an error-free code

sequence. Error-freeness of w can be easily characterized as: w is error-free if

and only if at any moment where an element e was deleted from the priority

queue, e was greater or equal than its lower bound.

It is not enough to have an error-free code sequence in order to conclude that

every dmin command returned the minimal element. The reason for this is that

23

lower bounds are only checked when the element is retrieved. In other words,

if dmin returns a non-minimal element, then some elements in the lower bound

system will have an incorrect lower bound. However this will be detected only

when these elements are retrieved. The code sequence is called complete if after

the code execution the resulting q contains no elements. Using these notions,

we can give the correctness statement:

For every code fragment w that is complete and error-free

the output of every dmin command was the minimal element.

The formal proof will follow in the next chapters.

24

Chapter 5

A formal model

In the previous chapter we have described models for priority queues and their

checker informally. In this chapter we will give an axiomatized speci�cation

of their behaviour written in terms of �rst order logic and using a simpli�ed

Saturate syntax [19, 25]. The Saturate System is a theorem prover for �rst-

order logic, primarily based on saturation. Its main focus is on the e�cient

treatment of transitive relations by term rewrite techniques [3, 4] and on the

restriction of the search space by applying techniques for detecting redundancy

of clauses. The Saturate System is written in Prolog and therefore its syntax

is similar to the syntax of Prolog: variables begin by a capital letter, function

symbols start with lower-case letter and other similarities.

5.1 The speci�cation of a priority queue and its

checker

The whole speci�cation of a priority queue and its checker consists of several

smaller modules, where every module can be seen as one conceptual compo-

nent of the speci�cation. The hierarchy of the modules is shown in �gure 5.1.

Arrows represent module dependencies. To give a complete description of the

speci�cation, we will use a Bottom-up approach.

5.1.1 Speci�cation of total order

A priority queue is modeled as a collection of elements from the totally ordered

set Elements. Therefore, the �rst module we have written is the one that

describes a totally ordered set. A total order is a relation < de�ned on the set

Element, with the following properties: < is irreexive, transitive and total.

We also de�ne the relation � as a reexive closure of the relation <. Moreover,

in the set Element we have speci�ed two special elements: �1 and 1. Those

25

string_predicates

ex1

ex

lb_lists

lists to commands

queues

Figure 5.1: The hierarchy of modules used in the speci�cation of priority queues

and their checkers

constants represent the minimal and the maximal element in the set Element.

Those requirements on a totally ordered set are formalized in terms of the �rst-

order logic.

5.1.2 Speci�cation of priority queues

We assume that a priority queue is de�ned by the following operations: insert,

delete, del min and del min impl. del min and del min impl are di�erent in

the sense that del min is always correct and always removes the minimal el-

ement from the queue, whereas del min impl is an implementation-dependent

operation and the only thing we know about del min impl is that it removes

some element from the queue. A priority queue containing no elements is rep-

resented by a constant empty.

26

functions:

�1 : Element

1 : Element

predicates:

<: Element�Element

�: Element�Element

axioms:

X < Y ^ Y < Z) X < Z

:X < X

X < Y _ Y < X _ X = Y

�1 � X

X � 1

X � X

X < Y) X � Y

X � Y) X = Y _ X < Y

Figure 5.2: to module

27

uses: to module

functions:

empty: Queues

insert: Queues�Element! Queues

delete: Queues�Element! Queues

del min: Queues! QE pair

del min impl: Queues! QE pair

queue: QE pair ! Queues

elem: QE pair ! Queues

predicates:

contains: Queues�Element

axioms:

empty 6= insert(Q;E)

(insert(Q

1

; E

1

) = insert(Q

2

; E

2

)), (Q

1

= Q

2

^ E

1

= E

2

)

:contains(empty;E)

contains(insert(Q;E

1

); E

2

), (contains(Q;E

2

) _ E

1

= E

2

)

queue(Q;E) = Q

elem(Q;E) = E

delete(empty; E) = empty

delete(insert(Q;E); E) = Q

E

1

6= E

2

) delete(insert(Q;E

1

); E

2

) = insert(delete(Q;E

2

); E

1

)

del min(empty) = (empty;�1)

del min(insert(empty; E)) = (empty; E)

E � elem(del min(Q)) ^ Q 6= empty) del min(insert(Q;E)) = (Q;E)

elem(del min(Q)) < E ^ Q 6= empty)

del min(insert(Q;E)) =

�

insert(queue(del min(Q)); E); elem(del min(Q))

�

del min impl(empty) = (empty;�1)

queue(del min impl(Q)) = delete(Q; elem(del min impl(Q)))

Q 6= empty) contains(Q; elem(del min impl(Q)))

Figure 5.3: queues module

28

We have restricted possible priority queue models to \term generated" mod-

els only. This means that only priority queues we will investigate are those that

are results of applying the above-mentioned queue operations on empty. For

example, one such a queue is delete(insert(insert(empty;E

1

); E

2

); E

1

). More-

over, since we axiomatize all queue operations using only empty and insert,

the further restriction would be that we do not investigate all term generated

models, but exclusively those that are modeled using only empty and insert.

Thus, the previous example would be represented with the following priority

queue: insert(empty; E

2

).

From now on, we only consider those priority queues that are modeled in-

ductively: empty is a priority queue. If Q is a priority queue, then for every

element E, insert(Q;E) is also a priority queue. The inverse case also holds:

every priority queue Q we investigate is either empty or there exists a priority

queue Q

0

and an element E such that Q = insert(Q

0

; E). The reason behind

this de�nition and this restriction lies in the fact that later every lemma about

some queue property can be proved using inductive reasoning and moreover it

reduces the induction step to the insert case only.

Since we were using empty and insert as constructors for other queue op-

erations and since we also want to reduce the queue induction step to the

insert case only, we have to prove that the result of applying delete, del min or

del min impl to a term of the form empty/insert is again a term of the same

form. More detailed explanations and proofs can be found in Paragraph 6.3

5.1.3 Speci�cation of lists

A list is de�ned in a fairly similar way as priority queues. A list has two construc-

tors: nil and cons, analogously to empty and insert. Again we have assumed

the completeness of such a de�nition (cf. 6.3) and we have expressed all list

operations through nil and cons. Although in most of the standard interpreta-

tions, cons puts the element at the beginning of a list, in our speci�cation we

assume that cons appends an element to the end of the list. In this module we

just give the general speci�cation for lists, without describing operations that

are speci�c for lower bounds lists. Complete speci�cation for lists in terms of

�rst-order logic can be found in [20]. Lists are used to represent a sequence of

commands as well as a system of lower bounds.

functions:

nil: Lists

cons: Lists�Domain! Lists

predicates:

pre�x: Lists� Lists

includes: Lists�Domain

29

axioms:

nil 6= cons(L;E)

(cons(L

1

; E

1

) = cons(L

2

; E

2

)), (L

1

= L

2

^ E

1

= E

2

)

prefix(L;L)

prefix(L

1

; L

2

)) prefix(L

1

; cons(L

2

; E))

prefix(L; nil)) L = nil

prefix(L

1

; cons(L

2

; E)))

�

L

1

= cons(L

2

; E) _ prefix(L

1

; L

2

)

�

:includes(nil; E)

includes(cons(L;E

1

); E

2

), (includes(L;E

2

) _ E

1

= E

2

)

Figure 5.4: lists module

5.1.4 Speci�cation of lower bounds lists

A system of lower bounds (LBS) is modeled as a list. We can formally de�ne

it in the following way: LBS = (Element � Element)

�

. All operations

on lists de�ned before are inherited here. We had to slightly modify some of

lists operations as here every list item consists of two elements: the underlying

priority queue element itself and its lower bound. The function remove deletes

an element from the list, while the function adjust lifts up the whole system of

lower bounds.

uses: lists module

functions:

remove: Element� LBS ! LBS

adjust: Element� LBS ! LBS

axioms:

�

(E

1

; E

2

) = (E

3

; E

4

)

�

, (E

1

= E

3

^ E

2

= E

4

)

remove(E;nil) = nil

remove(E

1

; cons(L; (E

1

; E

2

))) = L

E

1

6= E

2

) remove(E

1

; cons(L; (E

2

; E

3

))) = cons(remove(E

1

; L); (E

2

; E

3

))

adjust(E; nil) = nil

E

3

< E

1

) adjust(E

1

; cons(L; (E

2

; E

3

))) = cons(adjust(E

1

; L); (E

2

; E

1

))

E

1

� E

3

) adjust(E

1

; cons(L; (E

2

; E

3

))) = cons(adjust(E

1

; L); (E

2

; E

3

))

Figure 5.5: lb lists module

30

5.1.5 Speci�cation of commands

As we have already mentioned, a sequence of commands is also built as a list.

But before we will go into the description of how to execute one such a sequence

and build up the priority queue and the system of lower bounds, we have to

emphasize that all those commands (letters from the alphabet �) are di�erent.

We have already done a similar thing when we included axioms for equality of

queues and for equality of lists into the speci�cation. The reason for that is again

the automated theorem prover. Although our human way of thinking clearly

distinguishes between lists nil and insert(L;E), they can be interpreted to be

equivalent in some models and for that reason we had to implicitly introduce

(in)equality in the set of axioms.

axioms:

dmin 6= del(E)

dmin 6= ins(E)

ins(E1) 6= del(E2)

ins(E1) = ins(E2), E1 = E2

del(E1) = del(E2), E1 = E2

Figure 5.6: commands module

5.1.6 Speci�cation of the function ex

uses: queues, lists, commands modules

functions:

ex: �

�

�Queues! Queues� (Element [fokg)

axioms:

ex(nil; Q) = (empty; ok)

ex(cons(S; ins(E)); Q) = (insert(queue(ex(S;Q)); E); ok)

ex(cons(S; del(E)); Q) = (delete(queue(ex(S;Q)); E); ok)

ex(cons(S; dmin);Q) = del min impl(queue(ex(S;Q)))

Figure 5.7: ex module

The function ex is used to build a priority queue out of a sequence of com-

31

mands. One could naively assume that the type of the function ex should be

ex : �

�

� Queues ! Queues. But, the queue operation del min impl returns

two values: a modi�ed queue and an element, which means that we cannot use

the naive speci�cation. For that reason we use the constant ok as a supplemen-

tary output in other queue operations.

5.1.7 Speci�cation of the function ex1

The function ex1 is used to build a system of lower bounds. A system of lower

bounds cannot be built only from a sequence of commands, but it also needs

the output of an appropriate priority queue. This is because the system of lower

bounds is maintained by the output of the del min operations. The axioms for

the function ex1 fully describe the algorithm for the priority queue checker.

uses: lb lists, ex modules

functions:

ex1: �

�

� LBS ! LBS

axioms:

ex1(nil; L) = nil

ex1(cons(S; ins(E)); L) = cons(ex1(S;L); (E;�1))

ex1(cons(S; del(E)); L) = remove(E; ex1(S;L))

ex1(cons(S; dmin); L) = adjust(e

�

; remove(e

�

; ex1(S;L)));

where e

�

= elem(ex(cons(S; dmin); empty))

Figure 5.8: ex1 module

32

Chapter 6

Automatic Veri�cation

After the formal speci�cation of the system of lower bounds, we give a proof

of the correctness of the checker. This is also proved in the Saturate, but the

Saturate proofs are not included in this chapter. The proofs can be found in [27],

but we give detailed proof schemes for all major theorems. While describing

those schemes, we will mention di�culties we have faced during proving and

working with the automated theorem prover, and we will also describe how we

worked out those di�culties.

6.1 Speci�cation of the correctness of the checker

With the speci�cation of the function ex1 we have almost �nished the descrip-

tion of �gure 5.1. The purpose of the introduced speci�cation is to help us

state a theorem which will prove the correctness of the priority queue checker

implemented in LEDA. Let us recall that we need to con�rm that, if during the

code execution the checker did not report any error, then there was no error

at all, i.e. every element returned by a dmin operation is indeed the minimal

element.

In order to formalize and prove that theorem, we have to introduce some ad-

ditional predicates. A sequence of commands s is called error free if the checker

did not report any error, i.e. every time when some element is accessed, its

lower bound is less than or equal to the element itself. As an element in the

priority queue can be accessed only via deletion, we always have to compare the

element which we are about to delete and its lower bound.

A sequence of commands is called complete if ex(s; empty) = (empty; �),

where � can be arbitrary element of Element [fokg.

A sequence of commands is described as correct if every element returned

33

uses: ex1 module

predicates:

complete: �

�

error free: �

�

correct: �

�

axioms:

complete(S) , ex(S; empty) = (empty; �)

error free (nil)

error free (cons(S; ins(E))), error free (S)

error free (cons(S; del(E))),

(error free (S) ^ 8E

1

includes(ex1(S; nil); (E;E

1

))) E

1

� E)

error free (cons(S; dmin)),

(error free (S) ^ 8E includes(ex1(S;nil); (e

�

; E))) E � e

�

),

where e

�

= elem(ex(cons(S; dmin); empty))

correct(S),

8S

1

8S

2

�

(prefix(S

1

; S) ^ S

1

= cons(S

2

; dmin)))

elem(del min impl(Q)) = elem(del min(Q))

�

,

where Q = queue(ex(S

2

; empty))

Figure 6.1: The �rst part of the string predicates module

by a del min impl command was indeed the minimal element in the queue.

Let S be a sequence of priority queue commands and let us assume that the

checker did not report any error (error free(S)). We also have to assure that

every element which was inserted into the queue was at some point accessed,

otherwise there could be an element left in the queue whose lower bound is

greater than the element itself (complete(S)). Those two facts are united in the

formula complete(S) ^ correct(S). Since no error was reported and every ele-

ment which was inserted into the queue was at some point accessed, our goal is

to conclude that then the code sequence was executed properly, according to the

speci�cation of priority queues, and every element returned by a del min impl

command was the minimal element in the queue. This is described with the

predicate correct(S). In other words, we need to prove that the following for-

mula holds for every S, S 2 �

�

:

(complete(S) ^ error free(S))) correct(S) (6.1)

The formula (6.1) proves that the possibly incorrect implementation-dependent

34

output of del min operation is going to be reported by the priority queue checker.

To prove (6.1), we could try structural induction on S. But, clearly, it would

not work, as complete(cons(S; comm)) does not imply complete(S) and we can-

not apply the induction hypothesis. This means that we have to state a more

general theorem and then prove the formula (6.1) as that generalized theorem's

corollary.

In the generalized theorem we keep the predicate error free as it does not

have any signi�cant inuence on the induction hypothesis, but the predicate

complete has to be replaced. The predicate complete requires that all com-

mands from S are executed and that the priority queue built out of S is empty,

i.e. it does not contain any element. If we take an arbitrary error-free sequence

S, not necessarily the complete one, the priority queue built out of S might

contain some elements. Let us take the following error-free sequence: ins(1);

ins(2); dmin; and let us assume that the dmin command has returned the el-

ement 2. Then no mistake is reported although, the implementation is clearly

faulty. In order to assure that a generalized version of the predicate complete

will hold, we require that all elements left in the queue built out of S must be

greater or equal to their lower bounds. This corresponds to the queue operation

check() de�ned and used in [15].

We add two more predicate symbols to the speci�cation of string predicates.

The predicate symbol preconditions unites the operation check() and the error-

freeness of a sequence, while the predicate symbol both properties is only a

shortcut.

uses: ex1 module

predicates:

preconditions: �

�

both properties: �

�

axioms:

preconditions(S),

�

error free(S) ^ 8E

1

8E

2

(includes(ex1(S; nil); (E

1

; E

2

))) E

2

� E

1

�

both properties(S), (preconditions(S) ^ correct(S))

Figure 6.2: The second part of the string predicates module

Now we can state the main theorem we need to prove in order to show that

the algorithm used in LEDA works correctly:

Theorem 6.1.1. (The Correctness Theorem) Let S 2 �

�

be a sequence of

35

commands on a priority queue. Then

8S

�

preconditions(S)) correct(S)

�

(6.2)

6.2 The proof of the correctness of the checker

The rest of this thesis will be dedicated to the proof of theorem 6.1.1, since it

was our goal to prove the correctness of the checker and all the previously in-

troduced speci�cation developed in order to be able to state and prove theorem

6.1.1.

Figure 6.3 represents the proof scheme for the formulas (6.1) and (6.2). Both

formulas were proved using The Saturate System. The complete speci�cation

and complete proofs for every theorem from �gure 6.3 can be found in [27]. In

parallel with reading the next sections concerning the automated proof of the

theorem, the reader could also execute the Saturate �les.

Names in the �gure represent the formulas (for example, the name corollary

represents the formula (6.1)), while arrows in the �gure represent \interaction".

Let us briey explain what do we have in mind when we use the term \inter-

action". Sometimes in the proof of a theorem T we were using already proved

theorems T

1

, T

2

,. . . In that case theorem T

i

is asserted as a valid formula in the

module containing theorem T and the theorem prover treats T

i

as an input.

When in �gure 6.3 an arrow points from the theorem T

1

to the theorem T

2

, the

theorem T

1

was already proved and it is used to prove the theorem T

2

.

corollary

theorem0main
theorem

steps
induction preconditions

lemma

Figure 6.3: The scheme for the proof of the main theorem and its corollary

A new predicate symbol main theorem was introduced only as a shortcut

for the formula (6.2):

main theorem(S), (preconditions(S)) correct(S))

36

Therefore our goal is to show that main theorem(S) holds for every S,

S 2 �

�

. Because of inductive de�nition of the sequences, this fact was proved

by structural induction: �rst we have con�rmed that main theorem(nil) holds

and then we proved induction step: if main theorem(S) holds, then also, for

every comm 2 �, main theorem(cons(S; comm)) holds. To prove the induc-

tion step, we have been using two theorems that have already been proved:

general induction step and preconditions lemma (cf.�gure 6.3).

The general induction step was the very �rst theorem we proved in the Sat-

urate System and it states that the formula (6.3) holds for every S 2 �

�

and

for every comm 2 �:

(both properties(S) ^ preconditions(cons(S; comm))))

correct(cons(S; comm))

(6.3)

In the preconditions lemma we have proved that

preconditions(cons(S; comm))) preconditions(S) (6.4)

for every S 2 �

�

and for every comm 2 �.

More detailed proofs of the formulas (6.3) and (6.4) are discussed in para-

graphs 6.2.1 and 6.2.2, while theorem0 is described in Paragraph 6.2.3. theorem0

says that every element which is contained in the priority queue is also included

in the lower bound system:

contains(queue(ex(S; empty)); E), 9E

1

includes(ex1(S;nil); (E;E

1

)) (6.5)

Both, theorem0 and main theorem are used to prove corollary which rep-

resents the formula (6.1). Its name comes from the fact that corollary is just a

special case of theorem (6.2).

(complete(S) ^ error free(S))) correct(S)

As a reminder, the interpretation of corollary is: let S 2 �

�

be some se-

quence of commands on priority queues. After executing S on empty the result

is empty again (the predicate complete). This means that every element in-

serted into a queue was accessed at some point, compared to its lower bound

and found greater or equal (predicate error free). In that case every result of

a dmin operation was the minimal element (predicate correct).

But, after reading the corollary �le, one can notice that we did not include

the entire string predicates module. The reason for this is strictly technical.

The whole theory of the string predicates module was too large for our the-

orem prover, the maximal number of auxiliary propositions was exceeded and

the Saturate System would terminate without �nding the proof.

Because of that, we have included four axioms only instead of the complete

theory. It is logically right to use only some subset of a theory rather than the

whole theory since if T

0

� T and T

0

j= F then also T j= F . In some other

theorem prover one could try to include the entire string predicates module

and then try to prove the formula (6.1). Depending on the system's resources

it could lead to a result.

37

6.2.1 The General Induction Theorem

Figure 6.5, similarly to �gure 6.3, represents the proof scheme for the formula

(6.3). Before we go deeper into the proof scheme, let us give some intuition

behind that formula. Our main goal was to prove theorem (6.2) and we tried

to prove it by induction. We applied the typical scheme used in the case of an

implication (�gure 6.4).

preconditions(S)

preconditions(cons(S,comm))

induction hypothesis

need to provepreconditions lemma

correct(cons(S,comm))

correct(S)

Figure 6.4: The scheme for an induction proof of the main theorem

Our inductive reasoning in the proof for formula (6.3) was the following: let

us assume that preconditions(cons(S; comm)) holds. Then there are two possi-

bilities: preconditions(S) holds true or it does not. In the case if preconditions(S)

holds, we can apply the induction hypothesis and we can conclude that correct(S)

also holds, i.e preconditions(S) and correct(S) both hold. This then means that

both properties(S) holds and then in order to prove the main theorem, we only

need to prove that correct(cons(S; comm)) holds. As a reminder, here is formula

(6.3):

(both properties(S) ^ preconditions(cons(S; comm))))

correct(cons(S; comm))

The fact that the other possibility (preconditions(S) does not hold) cannot

happen was proved in the preconditions lemma.

We named formula (6.3) \induction steps" or \the general induction theo-

rem", although it was not proved by induction; we have proved that it holds by

doing a case analysis for every single comm 2 �. The name \induction steps"

is used because it actually represents the step of a structural induction. For

comm 2 fins(E); del(E)g the formula (6.3) was proved smoothly and without

any interaction, but to prove it for comm = dmin we had to use the previously

proved lemma1 (6.6) and lemma2 (6.7) (cf. �gure 6.5).

preconditions(cons(S; dmin)))

8E

�

contains(queue(ex(S; empty)); E))

elem(del min impl(queue(ex(S; empty)))) � E

�

(6.6)

38

8E

�

contains(queue(ex(S; empty)); E))

elem(del min impl(queue(ex(S; empty)))) � E

�

)

elem(del min(queue(ex(S; empty)))) =

= elem(del min impl(queue(ex(S; empty))))

(6.7)

lemma2lemma1

steps
induction

lemma2Q

lemma2Q1

lemma2Q11

lemma11

lemma11Q

lemma2Q12

lemma2Q13

lemma11Q1 theorem1lemma12L

lemma12 theorem0

Figure 6.5: The scheme for the proof of the general induction theorem

Figure 6.5 also shows the main idea which we were using during the entire

proving process. Usually our task was to prove that a given formula is a logical

consequence of the module string predicates. If we were not able to prove the

formula directly, we tried to simulate the pen-and-paper proof. As a human

being we can immediately conclude some facts which cannot be so directly

concluded in machine reasoning. Those facts, which are usually some simpler

formulas compared to the one we have to prove, are then inserted as valid

formulas in the module containing the formula we want to justify. The inserted

formulas also have to be proved and we repeat the process until we have found

formulas which we are able to verify. Usually in that process we would move

down from the string predicates level to simpler levels: queues, lb lists, . . . If

in the name of a lemma a letter Q occurs, then this lemma proves a formula

which is a logical consequence of the module queues. If the letter L occurs, we

are dealing with lb lists module.

39

Let us demonstrate the described technique with the examples. lemma2 (the

formula (6.7)) was proved using the formula (6.8) (lemma2Q), which holds true

for every priority queue Q. The formula (6.8) is a logical consequence of the

module queues.

8E

�

contains(Q;E)) elem(del min impl(Q)) � E

�

) elem(del min(Q)) = elem(del min impl(Q)

(6.8)

The formula (6.6) (lemmma1) was proved with the help of three new theo-

rems (lemma11 (6.9), lemma12 (6.10) and theorem0).

8E

�

contains(queue(ex(S; empty)); E))

(contains(queue(ex(cons(S; dmin); empty)); E) _

elem(del min impl(queue(ex(S; empty)))) = E)

�

(6.9)

8E

1

8E

2

�

includes(ex1(cons(S; dmin); nil); (E

1

; E

2

)))

elem(del min impl(queue(ex(S; empty)))) � E

2

�

(6.10)

lemma11 and lemma12 were proved analogously to lemma2, by proving

some simpler formulas from smaller modules, while theorem0 is just a corollary

of theorem1, which is described in paragraph 6.2.3. lemma11 was veri�ed using

the corresponding formula (6.11) from the module queues and for lemma12 we

used the similar formula (6.12) from lb lists module.

8E

�

contains(Q;E)) (contains(queue(del min impl(Q)); E) _

elem(del min impl(Q)) = E)

�

(6.11)

8E 8E

1

8E

2

�

includes(adjust(E;L); (E

1

; E

2

))) E � E

2

�

(6.12)

Proving formulas in queues or lb lists modules is much simpler than proving

formulas in the string predicates module. First of all, queues and lb lists are

less complex than string predicates so there is a smaller chance that we will

have to reduce the size of the module. The other reason which is also of practical

nature, is structural induction. To prove that some formula holds for every

string S we need to prove that it holds for S = nil and we have to consider the

induction step for every comm 2 �. In order to prove that some formula holds

for every priority queue Q, we have to con�rm that it holds for Q = empty and

the induction step consists of only one case. The same reasoning holds for the

module lb lists.

6.2.2 Preconditions Lemma

The preconditions lemma was the last theorem we have proved, probably be-

cause it looked as a fairly simple theorem to prove. preconditions(S) symbolizes

40

preconditions
lemma

lemma1L lemma2L

lemma2L1

Figure 6.6: The proof scheme of the preconditions lemma

that whenever we were deleting an element E from the queue built out of S, E

was greater or equal than its lower bound and all elements that are left in the

queue were also greater or equal to their lower bound. preconditions lemma

was used to �nalize the reasoning in the induction step of the theorem 6.1.1. It

states that

preconditions(cons(S; comm))) preconditions(S)

The proof for the preconditions lemma was again done by a case analysis

for every comm 2 �. The proof scheme is not very complicated (cf. �gure

6.6). For comm = ins(E) the proof was done smoothly and without the need

to include some already proved theorems, while for comm 2 fdel(E); dming we

used lemma1L (the formula (6.13)) and lemma2L (the formula (6.14)).

8E

1

8E

2

�

includes(L; (E

1

; E

2

)))

8E (includes(remove(E;L); (E

1

; E

2

)) _ E = E

1

)

�

(6.13)

8E

1

8E

2

�

includes(L; (E

1

; E

2

))) 8E

(9E

3

(includes(adjust(E; remove(E;L)); (E

1

; E

3

)) ^E

2

� E

3

)

_ E = E

1

)

�

(6.14)

To verify lemma2L we used lemma1L and lemma2L1. Both, lemma2L1

and lemma1L were proved directly, by structural induction. In order to prove

that some lemmaL holds true for every list L, �rst we have to prove that

lemmaL(nil) holds true and then we have to prove that the following formula

is also valid:

8L 8E

1

8E

2

�

lemmaL(L)) lemmaL(cons(L; (E

1

; E

2

)))

�

:

41

6.2.3 Theorem1

theorem1 is probably the most complex theorem we have proved in this thesis.

The only purpose of theorem1 consists in proving theorem0. Actually, we tried

initially to prove theorem0 only, but we did not succeed. The reason for our

failure lies in the fact that queues and lists are modeled as multisets, so clearly,

we also had to introduce natural numbers in order to count the number of

occurrences of some element.

Let us remind that theorem0 states that for every element contained in an

original priority queue, that element is also a member of a checked priority

queue and vice versa.

contains(queue(ex(S; empty)); E), 9E

1

includes(ex1(S; nil); (E;E

1

))

In our attempt of proving theorem0 we were descending from the initial

formula to simpler ones in the manner described before and at one point the

only assumption that was left to verify was that formula (6.15) holds true for

every priority queue Q and for every list L:

8E(contains(Q;E), includes(L;E)))

8E

1

8E

2

(contains(delete(Q;E

1

); E

2

), includes(remove(E

1

; L); E

2

))

(6.15)

Although it looks like a correct formula at �rst sight, we must not forget that

formula (6.15) should hold true for every Q and for every L. Let Q consist of

two copies of an element E and let L only have one copy of the same element E.

Then the premise of formula (6.15) evidently holds true, but the conclusion does

not (after deleting E, L is an empty list, while Q still contains the element).

Since queues and lists are modeled as multisets, sooner or later we would

faced a problem similar to the one with formula (6.15). In the end we had to

introduce natural numbers.

In the theorem0 none of the predicates introduced in the string predicates

module did occur, so the module ex1 should already be su�cient to verify theo-

rem0. But ex1 does not cover the counting of element occurrences and we had

to enrich our speci�cation which we were using earlier.

theorem1, which is more general than theorem0, should be a logical conse-

quence of the module ex1 and the module that describes the counting of element

occurrences.

6.2.4 Theorem1: speci�cation of natural numbers

In order to describe �gure 6.7 we will start with the speci�cation for natural

numbers (module nat numbers). The complete speci�cation for natural num-

bers, including comparison and some simple operations (+,-,*,div, mod...) can

be found in [20] but here it would be overkill to include all that in our module.

We need natural numbers only for counting. In the module nat numbers we

only have introduced the de�nition and the equality of natural numbers and

42

lb_lists

lists to

queues

card

nat_numbers

Figure 6.7: The hierarchy of modules used for the proof of the theorem1

some simple axioms. The de�nition is again inductive, similar to the previous

de�nitions of priority queues and lower bound lists. Constructors for natural

numbers are 0 and the function symbol s. s stands for successor.

functions:

0 : number

p : number ! number

s : number ! number

axioms:

p(s(N)) = N

s(p(N)) = N

N 6= s(N)

N

1

= N

2

, s(N

1

) = s(N

2

)

Figure 6.8: nat numbers module

6.2.5 Theorem1: speci�cation of the multiplicity

The module card is used for counting occurrences of some element: cardQ(Q;E)

represents the multiplicity of the element E in the priority queue Q, while

cardL(L;E) represents the multiplicity of the element E in the list L. The �rst

two sets of axioms in this module describe how to calculate cardQ and cardL,

while the last set states that cardQ and cardL cannot be negative numbers. Ac-

tually, we formulated only that they cannot be �1, but it was already su�cient

for proving all properties we needed of multiplicities of elements.

43

functions:

cardQ : Queues� Element! number

cardL : Lists� Element! number

axioms:

cardQ(empty; E) = 0

cardQ(insert(Q;E); E) = s(cardQ(Q;E))

E

1

6= E

2

) cardQ(insert(Q;E

1

); E

2

) = cardQ(Q;E

2

)

cardL(nil;E) = 0

cardL(cons(L; lb(E;E1)); E) = s(cardL(L;E))

E

1

6= E

3

) cardL(cons(L; lb(E1; E2)); E3) = cardL(L;E3)

s(cardL(L;E)) 6= 0

s(cardQ(Q;E)) 6= 0

Figure 6.9: nat numbers module

6.2.6 Theorem1: the formalization and the proof

At this point, the speci�cation and the axioms we have developed are expressive

enough for formalizing and proving theorem1. theorem1 should be a logical

consequence of modules ex1 and card and its immediate consequence should be

theorem0. In theorem1 we do not only claim that the element contained in the

queue is also contained in the checked priority queue, but we also claim that

the number of occurrences of any element in the priority queue is equal to the

number of occurrences in the checked priority queue.

8E

�

contains(queue(ex(S; empty)); E), 9E

1

; includes(ex1(S; nil); (E;E

1

))

^ cardQ(queue(ex(S; empty)); E) = cardL(ex1(S; nil); E)

�

(6.16)

Notice that theorem0 is enclosed in theorem1 and with having theorem1 as

a valid theorem, it is easy to con�rm the validity of theorem0. One can see that

the proof of validity of formula (6.16) completes the proof of theorem 6.1.1 (The

Correctness Theorem). As we have already mentioned, theorem1 was probably

the most complicated theorem we have proved and �gure 6.10 represents only

one part of the proof, while �gure 6.11 represents the second part of the proof.

We have veri�ed the validity of theorem1 by structural induction. The com-

plete formalization of every theorem and every lemma used in the proof can be

read in [27], but here we are going to explain all the main ideas that we were

using in the proof process.

A new predicate symbol theorem1 was introduced as an abbreviation for:

theorem1(S) holds true i� formula (6.16) holds for S. Therefore, we had to ver-

44

theorem1

theorem2QLtheorem1QL tm1b_lemma1L

theorem1QLa
theorem1QLb

lemma1Q lemma2L lemma3Q

lemma2L1 lemma2L2 lemma3Q1 lemma3Q2

lemma1L lemma2Q lemma3L

lemma2Q1 lemma3L1

tm1b_lemma2L

4 extra theorems

Figure 6.10: The proof scheme for theorem1

ify that theorem1(S) holds true for every S 2 �

�

. The base case, theorem1(nil)

holds, was proved smoothly and easily, it was an immediate consequence of our

input axioms. The induction step was more complicated: we had to prove that

the following three formulas hold true for every S 2 �

�

:

theorem1(S)) 8E theorem1

�

cons(S; ins(E))

�

(6.17)

theorem1(S)) 8E theorem1

�

cons(S; del(E))

�

(6.18)

theorem1(S)) theorem1

�

cons(S; dmin)

�

(6.19)

Formula (6.17) was again proved smoothly, although the theorem prover was

using here a little bit more reasoning than in the base case for S = nil.

On the other hand in the proof of formula (6.19) we had to include several

simpler lemmas as valid facts: tm1b lemma1L (formula (6.20)) and tm1b lemma2L

(formula (6.21)). Those lemmas con�rm that during the operation adjust per-

formed on the lower bound list, no element was erased from the list: every

element which was in the list before the adjust command was performed, stays

in the list and its multiplicity also did not change.

8E8E

1

�

9E

2

includes(L; (E;E

2

))), 9E

3

includes(adjust(E

1

; L); (E;E3))

�

(6.20)

8E8E

1

cardL(L;E) = cardL(adjust(E

1

; L); E)) (6.21)

45

Not only that we had to include those two lemmas to get the proof of formula

(6.19), but we also have included formula (6.18) as a valid formula. We can prove

formula (6.16) in that way, since in the proof of formula (6.18) we did not use

formula (6.19) and we do not have a cycle. With those three formulas included

and using the fact from the priority queue speci�cation that del min impl op-

eration deletes some element from the queue, the theorem prover has found the

proof for the formula (6.19). Both lemmas, tm1b lemma1L and tm1b lemma2L,

were veri�ed directly using structural induction.

At this point only formula (6.18) is left to be veri�ed. As we did not succeed

in the direct proof, we have assumed the following formulas are valid:

8E

�

contains(Q;E), 9E

1

includes(L; (E;E

1

))

^ cardQ(Q;E) = cardL(L;E)

�

) (6.22)

8E 8E

1

�

contains(delete(Q;E

1

); E), 9E

2

includes(remove(E

1

; L); (E;E

2

))

�

8E

�

contains(Q;E), 9E

1

includes(L; (E;E

1

))

^ cardQ(Q;E) = cardL(L;E)

�

)

8E 8E

1

�

cardQ(delete(Q;E

1

); E) = cardL(remove(E

1

; L); E)

�

(6.23)

One closer look at the above formulas shows that although they characterize

the behaviour of queues and lists, they are actually verifying formula (6.18), only

we have moved from ex1 module to cardmodule. Unfortunately, this is again too

large for our theorem prover and once again we have to choose formulas from

the whole theory that are su�cient for the proof of formula (6.18). In order

to prove formula (6.18), having statements of formulas (6.22) and (6.23), we

only necessitate axioms that de�ne the execution of a priority queue command

del(E):

ex1(cons(S; del(E)); L) = remove(E; ex1(S;L))

queue(ex(cons(S; del(E)); Q)) = delete(queue(ex(S;Q)); E)

These two axioms, together with formulas (6.22) and (6.23) included as valid,

entail formula (6.18). Of course, in some other theorem provers one might not

need to reduce the size of the initial theory, it depends all on system resources

and abilities of the theorem prover.

Formula (6.22), which we called theorem1QL (cf. �gure 6.10), states the

following: let Q be a priority queue and let L be a list and let every element

contained in Q be also contained in L with the same multiplicity and vice

versa.Then, after removing any element from Q and removing the same element

from L, every element contained in Q is also contained in L and vice versa. Note

that here we do not count occurrences of elements after deletion: it is done in

theorem2QL (formula (6.23)). At this point we have descended from the top

most level of �gure 6.10 to the next level and theorem1QL and theorem1QL

are left to be proved.

46

We noticed that in the conclusion part of theorem1QL there is an equiv-

alence symbol, so in order to prove it, we introduced two simpler formulas:

theorem1QLa and theorem1QLb (formulas (6.24) and (6.25)) and we replaced

an equivalence symbol by two implication symbols.

8E

�

contains(Q;E), 9E

1

includes(L; (E;E

1

))

^ cardQ(Q;E) = cardL(L;E)

�

) (6.24)

8E 8E

1

�

contains(delete(Q;E

1

); E)) 9E

2

includes(remove(E

1

; L); (E;E

2

))

�

8E

�

contains(Q;E), 9E

1

includes(L; (E;E

1

))

^ cardQ(Q;E) = cardL(L;E)

�

) (6.25)

8E 8E

1

�

9E

2

includes(remove(E

1

; L); (E;E

2

))) contains(delete(Q;E

1

); E)

�

With these two formulas we gain a nice and simple proof of theorem1QL,

only we got two new theorems whose validity has to be checked and veri�ed.

But, theorem1QLa and theorem1QLb are fairly similar and their only di�er-

ence is that they have switched places of queues and lists. This means that if

we �nd a proof for one of them, we can only exchange places of queues and lists

and the proof for the other theorem is also found. For this reason we shall only

explain the proof procedure for theorem1QLa.

theorem1QLa was proved using three simple formulas: lemma1Q, lemma2L

and lemma3Q. Let Q be some priority queue and let Q

0

be the priority queue

which is the result of deleting some element E from Q. Then, every element con-

tained in Q

0

was also contained in Q. This simple fact was proved in lemma1Q

(formula (6.26)).

8E

1

8E

2

�

contains(delete(Q;E

2

); E

1

)) contains(Q;E

1

)

�

(6.26)

lemma2L (formula (6.27)) is the lemma that describes one simple property

of lists. Let L be some list and let L

0

be the list that is the result of removing

some element E from L. If L

0

does not contain the element E

1

, then E

1

was

also not contained in L or E

1

is exactly the element we have deleted from L

and it was contained in L in the only one copy.

8E

1

8E

2

�

8E

3

:includes(remove(E

2

; L); (E

1

; E

3

)))

8E

3

:includes(L; (E

1

; E

3

)) _ (E

2

= E

1

^ cardL(L;E

1

) = s(0))

�

(6.27)

The last lemma we have used for the proof of theorem1QLa was lemma3Q

(formula (6.28)). It states a simple fact about queues: if a priority queue Q

contains exactly one copy of an element E, then after deleting E from Q the

new queue does not contain E.

47

8E

�

(contains(Q;E) ^ cardQ(Q;E) = s(0))) :contains(delete(Q;E); E)

�

(6.28)

Those three lemmas were proved almost directly (cf. �gure 6.10 and [27]),

either with the help of even simpler lemmas or by induction. It completes the

proof of theorem1QLa. Rewriting those formulas by replacing queues and lists,

we also get the proof for theorem1QLb.

Probably now it is the right moment to explain how one can �nd the suitable

simpler formulas that are needed for completion of the proof of the original

formula.

Initially we always try to verify the given formula, but it might happen that

the theorem prover cannot �nd the proof. Sometimes the run of the prover does

not terminate. Although it is a bit tricky to claim that it does not terminate,

because we can only claim for sure that it did not terminate in some �nite time,

we cannot state accurately that it will never terminate. But, in practice if the

run takes too long, usually we conclude that it does not terminate. Again, it is

hard to de�ne what it is \too long". The case of an in�nite run is treated in

the same way as the case of termination without �nding a proof.

Sometimes the run terminates abnormally due to the insu�ciency of system

resources. In that case, we try to �nd axioms that are su�cient for the proof of

the formula and only include them instead of the whole module. We have seen

this case in most of our proofs.

On the other hand the run can terminate without �nding a proof. In that

case we have to concentrate on the output of theorem prover and construct a

model in which our initial formula is interpreted as false. During that phase we

can detect gaps in the axiomatization which cause that the given formula is not

entailed by the set of axioms. That problem can be easily solved by adding a

new axiom to the set of already existing axioms and then we try to verify that

the given formula is entailed by the new set of axioms. A typical omission of

axioms in the speci�cation were axioms for the base cases. For example, we

have speci�ed axioms for the behaviour of the del min command, but we have

not included the axiom for del min(empty).

Another thing that we have to keep in our mind is that the theorem prover

just cannot conclude some facts which human beings could during a pen-and-

paper proof. Unfortunately, those facts are usually essential for �nding a proof

and in that case we just add those facts as valid formulas.

In this section we will demonstrate by an example how one can �nd simpler

formulas needed for the proof. We consider theorem1QLa (formula (6.24)). In

the previous section we have introduced simpler formulas and here we are going

to describe how did we �nd them.

The attempt of verifying theorem1QLa by induction failed. We know that

the theorem prover veri�es that some set of axioms S entails formula F , S j= F ,

by checking whether S [:F is unsatis�able. Therefore in the �rst place we

48

have to negate formula (6.24). Formula (6.24) is an implication: by negating

it, we can conclude that the premise holds true (formula (6.29)), whereas the

conclusion is false (i.e. formula (6.30) holds true).

8E

�

contains(Q;E), 9E

1

includes(L; (E;E

1

))^ cardQ(Q;E) = cardL(L;E)

�

(6.29)

9E 9E

1

�

contains(delete(Q;E

1

); E) ^ 8E

2

:includes(remove(E

1

; L); (E;E

2

))

�

(6.30)

From the atom contains(delete(Q;E

1

); E) we cannot directly, as a conse-

quence of the axiom set, conclude anything since we know nothing about the

structure ofQ. But we need to raise the contradiction so we will try to contradict

formula (6.29). We could try to establish the link between contains(Q;E) and

contains(delete(Q;E

1

); E) and after we could do the similar thing with lists.

Therefore, we came up with lemma1Q and we derived that contains(Q;E)

holds.

The formula 8E

2

:includes(remove(E

1

; L); (E;E

2

)), the second part of for-

mula (6.30), is also not useful for �nding a contradiction with the current

set of axioms, since here again we cannot determine any new formulas. But

once again we use our human reasoning and we formulate lemma2L: either

8E

2

:includes(L; (E;E

2

)) holds or E = E

1

^ cardL(L;E

1

) = s(0). The �rst

possibility 8E

2

:includes(L; (E;E

2

)) together with lemma1Q clearly contra-

dicts the formula (6.29) and we conclude that only the second possibility is

true: E = E

1

^ cardL(L;E

1

) = s(0).

Let us see what we have gained from the negation of theorem1QLa. If we

include lemma1Q and lemma2L as valid formulas, the theorem prover can con-

clude that there exists an elements E such that contains(delete(Q;E); E) and

contains(Q;E) and cardQ(Q;E) = s(0). Immediately we see that those three

facts are contradictory, but still the theorem prover cannot derive ?. But after

the inclusion of lemma3Q as a valid formula, clearly we were able to derive ?.

If we return to �gure 6.10, we can see that the only theorem left to verify

is theorem2QL. theorem2QL is used in the proof of theorem1, namely in the

induction step for the case of the command del(E). While theorem1QL only

implies what happens with membership in the queue/list after the deletion of

an element, theorem2QL states what e�ects the deletion of an element has on

multiplicities of elements. Just as a reminder, theorem2QL says:

8E

�

contains(Q;E), 9E

1

includes(L; (E;E

1

))

^ cardQ(Q;E) = cardL(L;E)

�

)

8E 8E

1

�

cardQ(delete(Q;E

1

); E) = cardL(remove(E

1

; L); E)

�

One should notice that with the proof of theorem2QL the whole proof of

49

theorem1 is �nished. Since theorem2QL is a fairly complex formula, we did

not manage again to prove it without auxiliary lemmas. The proof scheme for

theorem2QL is shown on �gure 6.11.

theorem2QL

theorem1QL

already proved

lemma3Q2 lemma2L1theorem2Q theorem3Q theorem2L theorem3L

theorem2Q1 theorem2L1

Figure 6.11: The proof scheme for theorem2QL (theorem1)

In the proof process of theorem2QL, after we have noticed that we have to

use auxiliary lemmas, we focused on the formulation of theorem2QL in order

to �nd some simpler formulas that can be used as a valid input. theorem2QL

is an implication and again we negate it. From the negation of its conclusion

we could not derive any new knowledge, so we tried to prove it in a roundabout

way.

The premise of theorem2QL holds true and after applying theorem1QL, we

derive the following fact:

8E 8E

1

�

contains(delete(Q;E

1

); E), 9E

2

includes(remove(E

1

; L); (E;E

2

))

�

In order to prove theorem2QL, we try to establish a link between that fact

and the multiplicity of elements. If the element is not contained in the queue/list

then its multiplicity in that queue/list is 0. This simple observation was proved

in lemma3Q2 and lemma2L1 (formulas (6.31) and (6.32)).

8E

�

cardQ(Q;E) = 0, :contains(Q;E)

�

(6.31)

8E

�

cardL(L;E) = 0, 8E

1

:includes(L; (E;E

1

))

�

(6.32)

Since with these two lemmas we have proved theorem2QL for the case when

an element is not contained in the queue/list after the deletion, from now on,

we shall consider only the case when the element is contained. Let Q be some

priority queue, let E

1

be some element and let Q

0

be the queue which results

from deleting E

1

from Q. Then for every element E 2 Q

0

, either the multiplicity

of E in Q

0

did not change with respect to the multiplicity of E in Q, or E was

exactly the element deleted from Q and in that case the multiplicity of E in

Q

0

was decreased by 1. theorem2Q (formula (6.33)) and theorem3Q (formula

(6.34)) were used to express those facts:

50

8E8E

1

�

contains(delete(Q;E

1

); E))

(cardQ(delete(Q;E

1

); E) = cardQ(Q;E) _ E = E

1

)

�

(6.33)

8E

�

contains(delete(Q;E); E))

cardQ(delete(Q;E); E) = p(cardQ(Q;E))

�

(6.34)

Similar formulas ((6.35) and (6.36)) were proved about lists.

8E8E

1

�

9E

2

includes(remove(E

1

; L); (E;E

2

)))

(cardL(remove(E

1

; L); E) = cardL(L;E) _ E = E

1

)

�

(6.35)

8E

�

9E

1

includes(remove(E;L); (E;E1)))

cardL(remove(E;L); E) = p(cardL(L;E))

�

(6.36)

All those formulas were su�cient for the theorem prover to verify theorem2QL

after we have included them into the theorem2QL module. Their correctness

was veri�ed either directly, by induction, or they were proved by introducing

even simpler lemmas.

At this point we have �nished completely the proof of the initial theorem

which veri�es the correctness of the priority queue checker:

(complete(S) ^ correct(S))) safe(S)

All the missing lemmas and more detailed proofs can be found in [27].

6.3 Completeness of de�nitions

When we were de�ning priority queues, empty was de�ned as a priority queue,

and for every already de�ned priority queue Q and for every E 2 Element

insert(Q;E) was also de�ned as a priority queue. This de�nition is also consid-

ered as a complete de�nition in the sense that we restrict the priority queues that

we have investigated only on those priority queues that have the \empty/insert"

form. This means that every priority queue Q for us is either Q = empty or

there exists a priority queue Q

0

and an element E such that Q = insert(Q

0

; E).

Again recursively, Q

0

has to have the same \empty/insert" form. With this re-

striction on the priority queues which we study, we gain an inductive de�nition

of priority queues, which helps us in the proofs of all the lemmas about priority

queues. Because of the inductive de�nition, we can use structural induction.

In the speci�cation we were using empty and insert as constructors, i.e. the

behaviour of every priority queue operation was described through empty and

insert. In order to apply structural induction for proving priority queue proper-

ties, we have to verify �rst that the result of the priority queue operations delete,

del min and del min impl performed on priority queues of the \empty/insert"

51

form is again a priority queue of the same form. Without verifying that fact the

process of proving priority queue lemmas gets more complex, since we have to

verify the lemma then not only for insert, but also for all other priority queue

operations.

Let form be a predicate that describes that the priority queue Q has the

\empty/insert" form. Notice that if form(Q) holds, then form(insert(Q;E))

also holds for every E 2 Element.

Theorem 6.3.1. (Completeness of the delete operation) Let Q be a priority

queue such that form(Q) holds. Then, also form(delete(Q,E)) holds for every

E 2 Element.

Proof. The axioms for the delete operation are:

delete(empty; E) = empty

delete(insert(Q;E); E) = Q

E

1

6= E

2

) delete(insert(Q;E

1

); E

2

) = insert(delete(Q;E

2

); E

1

)

We shall prove theorem 6.3.1 by structural induction. If Q = empty,

then delete(Q;E) = empty and form(delete(Q,E)) holds. Let us assume that

form(Q) and form(delete(Q,E)) hold for every E and let Q

1

= insert(Q;E

1

).

We need to verify that form(delete(Q

1

; E

2

)) also holds for every E

2

. If E

1

= E

2

,

we apply the second axiom and then clearly form(delete(Q

1

; E

2

)) holds. If

E

1

6= E

2

, we apply the last axiom �rst and after that the induction hypothe-

sis. The remark about form(insert(Q;E)) con�rms that form(delete(Q

1

; E

2

))

holds true.

Theorem 6.3.2. (Completeness of the del min operation) Let Q be a priority

queue such that form(Q) holds. Then, also form(queue(del min(Q)) holds.

Proof. The proof is just a copy of the proof of theorem 6.3.1: we use structural

induction and axioms of the del min operation.

Theorem 6.3.3. (Completeness of the operation del min impl) Let Q be a pri-

ority queue such that form(Q) holds true. Then, form(queue(del min impl(Q))

also holds.

Proof. The speci�cation of the operation del min impl contains the following

axiom

queue(del min impl(Q)) = delete(Q; elem(del min impl(Q)))

Theorem 6.3.1 con�rms completeness of the delete operation.

Lists are de�ned in the same way as queues, only constructors have di�erent

names here: nil and cons. They behave in the same way as empty and insert.

Also, all operations on lists are expressed through these two constructors. Let

us recall that we were using cons in the same way as insert: instead of conven-

tionally putting the element at the beginning of the list, our cons appends the

52

element to the end. Therefore, proving that the result of every list operation on

a list of the form \nil/cons" is again a list of the form \nil/cons", is identical to

proving these properties in the case of queues.

The list operations we still have to investigate are remove and adjust. The

list operation remove has analogous axioms to the queue operation delete:

remove(E; nil) = nil

remove(E1; cons(L; (E1; E2))) = L

E1 6= E2) remove(E1; cons(L; (E2; E3))) = cons(remove(E1; L); (E2; E3))

Inductive reasoning, similar to the one in the case of queues, veri�es that

the result of the remove operation performed on the list of the form \nil/cons"

is again a list of the same form.

The axioms for the list operation adjust con�rm that in order to prove the

same statement for the operation adjust, we can apply the following inductive

reasoning:

adjust(E; nil) = nil

E3 < E1) adjust(E1; cons(L; (E2; E3))) = cons(adjust(E1; L); (E2; E1))

E1 � E3) adjust(E1; cons(L; (E2; E3))) = cons(adjust(E1; L); (E2; E3))

We have to use here one more argument, namely the totality of �.

6.4 The \create" command

The speci�cation presented in this chapter is not the same speci�cation and

the same model that we have initially developed. Initially, the alphabet � also

contained the letter create.

� = fcreate; ins(e); del(e); dmin j e 2 Eg:

In [27] there are two models available for download. One consists in the model

we have presented in this chapter, whereas the other one is the older version

which includes the create command. Although those two models are almost the

same, still there are some di�erences. In this paragraph we will describe two

main di�erences in the speci�cation of those two models.

Our �rst assumption was that every code fragment has to start with a create

command. create is used to build a new instance of empty. This model was

more appropriate for real world examples, since every new instance of a priority

queue is initialized with the command p queue <P,I> Q; where P is the data

type of the priority part and I is the data type of the item part of the priority

queue. As create was an element of the alphabet �, the �rst big di�erence was

that the speci�cation for the functions ex and ex1 had to change.

53

In the model presented earlier in this chapter, we assumed that code exe-

cution starts with an empty priority queue, which changes then according to

the program's code. Since create was an element in the alphabet, we have to

assume in the former model that independently with which priority queue we

start, the create command creates an empty queue. The old speci�cation for

the functions ex and ex1 was as follows:

ex(nil; Q) = (Q; ok) ex1(nil; L) = L

ex(cons(S; create); Q) = (empty; ok) ex(cons(S; create); L) = nil

.

The other commands did not change. Although initially this model was

more suitable for real world problems, we faced another di�culty: the com-

mand create could now occur on any place in a code sequence, not necessarily

only at the beginning. The execution functions ex and ex1 treat that problem

e�ciently: if there are more create commands in the code sequence S, only the

create command that occurred last in S creates a new empty queue; the whole

priority queue built from the pre�x that came before the last create command

is simply erased.

The second big di�erence between the model with included create com-

mand and the model without it, lies in the predicate error free. Let us re-

call that the predicate error free denotes the fact that whenever we have ac-

cessed an element during code execution, this element was greater than or equal

than its lower bound. The �rst attempt to specify error free(cons(S; create))

was to assume that it always holds. The reason for that is the fact that

ex(cons(S; create); Q) = (empty; ok), so since the whole priority queue Q

0

=

queue(ex(S;Q)) is erased, one could expect that also then the possible errors of

Q

0

will be erased. Unfortunately, this reasoning is not suitable for theorem prov-

ing since in such a case we cannot even prove that error free(cons(S; comm)))

error free(S), which is essential for proving the preconditions lemma, which

is again fundamental for the main theorem.

Thus, in a second attempt to specify error free(cons(S; create)) we have

considered the axiom error free(cons(S; create)) , error free(S). This was

still too weak to prove preconditions lemma, although this rule keeps track of

passed events. Let us consider the following code sequence S

S = create; ins(1); ins(2); dmin; create;

and let us assume that the result returned by the dmin command is 2. Let us

de�ne S

1

= create; ins(1); ins(2); dmin; Then, S = cons(S

1

; create). Note that

error free(S

1

) holds true, so therefore error free(S) also holds true. Since the

empty priority queue does not contain any element, preconditions(S) holds as

well. But preconditions(S

1

) does not hold since the priority queue built out of

S

1

contains 1 and its lower bound is 2. Thus preconditions(cons(S

1

; create))

does not imply preconditions(S), so S

1

violates the preconditions lemma and

our axiom for error free(cons(S; create)) was again not strong enough.

In order to be able to prove the preconditions lemma, we had to introduce

54

an even stronger axiom for error free(cons(S; create)), and the �nal axiom

that we have tried was error free(cons(S; create)) , preconditions(S) This

axiom was su�cient to prove that preconditions lemma also holds for the create

command.

There are no more big di�erences between the model without the create

command and the model with it. Although in the beginning we have proved

the correctness theorem in the model with the create command, we decided at

the end to remove it from the model. There are several reasons to do that: the

speci�cation becomes more natural and understandable and the proofs become

shorter and faster. The model without the create command corresponds to the

real world situations more than the model with the create command, since in

the model without it, the create command cannot occur anywhere in a code

sequence.

Even though in the end we have completely erased the create command,

implicitly it is still there: we have always assumed that every code sequence

starts with create which builds empty. The code sequence is then executed with

empty forwarded as a parameter to the function ex.

55

Chapter 7

Conclusion and Future

Work

The goal of this work was to two-fold: the �rst goal was to formally verify the

algorithm used for the priority queue checker. The second goal was to determine

what can be the role of saturation-based theorem proving in veri�cation.

The �rst goal was ful�lled successfully; we managed to develop the speci�ca-

tion and using this speci�cation, we were able to prove the correctness theorem.

As for the second goal, we have learnt that saturation-based theorem proving

is useful for veri�cation, but still Saturate needed a lot of guidance. For example,

in Figure 6.10, it can be seen that 22 lemmas were necessary in order to prove

theorem1. The reason for such a big number of auxiliary lemmas lies in the

inductive de�nition of priority queues and lists. Even fairly simple properties

of priority queues could not be proved directly. In order to prove them we had

to use even simpler lemmas.

Also, it is important to mention that one part of the automatic veri�cation

was done by hand: since Saturate is a �rst-order theorem prover and induction

is not a �rst-order property, all lemmas and theorems had to be proved in two

steps. First we veri�ed that the lemma holds for the base case and then we

had to prove validity of the induction step. The inductive de�nition causes that

we cannot prove directly that some formula holds for every priority queue. We

could do that only when we include as valid some simpler formulas, but at the

end those simpler formulas had to be veri�ed again in two steps.

One of the possible future directions of this work is to do the same veri�cation

in an interactive veri�cation system, for example PVS [26], and compare the

number of interaction needed. It would also be interesting to compare the

Saturate system to other theorem provers, to see whether the initial assumption

that the chaining calculus is the best strategy, is true.

Another direction of future research would be the generalization to other

56

data structures. The most natural candidate are multi-dimensional priority

queues [12]:

De�nition 7.0.1. Let (P;<

i

) be a totally ordered set for i 2 f1; : : : ; ng , and

let I be any set. A multi-dimensional priority queue over I using (P;<

1

; : : : <

n

)

is a datatype that supports the following operations:

� create: creates empty priority queue

� insert (i,p): inserts individual i 2 I with priority p 2 P

� delete min(j): removes an object (i; p) which has a minimal p with re-

spect to <

j

, j 2 f1; : : : ; ng

� �nd min(j): returns a pair (i; p) which has a minimal p with respect to

<

j

, j 2 f1; : : : ; ng

� contains(i,p): true i� the priority queue contains i 2 I with associated

priority p 2 P

Briey, in this case the checker would be implemented using several lower

bounds, for each of orders <

i

there should be a new lower bound de�ned in

the same manner as for standard priority queues. Thus, in the system of

lower bounds every element e 2 I � P would be represented with the tuple

(e; lb

1

; : : : ; lb

n

) 2 (I � P) � P � : : : � P . The priority lb

i

is representing the

lower bound of the element e with respect to <

i

.

57

Bibliography

[1] Nancy M. Amato and Michael C. Loui. Checking linked data structures. In

Proceedings of The 24th International Symposium on Fault Tolerant Com-

puting (FTCS-24), pages 164{73, 1994.

[2] Leo Bachmair and Harald Ganzinger. Completion of �rst-order clauses

with equality by strict superposition (extended abstract). In S. Kaplan

and M. Okada, editors, Conditional and Typed Rewriting Systems, 2nd

International Workshop, volume 516 of Lecture Notes in Computer Science,

pages 162{180, 1991.

[3] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem

proving with selection and simpli�cation. Journal of Logic and Computa-

tion, 4(3):217{247, 1994.

[4] Leo Bachmair and Harald Ganzinger. Rewrite techniques for transitive

relations. In Proceedings of the 9th IEEE Symposium on Logic in Computer

Science, pages 384{393. IEEE Computer Society Press, 1994.

[5] Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for �rst-

order theories of transitive relations. Journal of the ACM, 45(6):1007{1049,

1998.

[6] Manuel Blum and Sampath Kannan. Designing programs that check their

work. In Proceedings of the 21st annual ACM symposium on Theory of

computing, pages 86{97. ACM Press, 1989.

[7] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting

with applications to numerical problems. Journal of Computer and System

Sciences, 47(3):549{595, 1993.

[8] Jonathan D. Bright. Checking and Certifying Computational Results. PhD

thesis, John Hopkins University, 1994.

[9] Jonathan D. Bright and Gregory F. Sullivan. Checking mergeable priority

queues. In Digest of the 24th Symposium on Fault-Tolerant Computing,

pages 144{153. IEEE Computer Society Press, 1994.

58

[10] Jonathan D. Bright and Gregory F. Sullivan. On-line error monitoring for

several data structures. In Digest of the 25th Symposium on Fault-Tolerant

Computing, pages 392{401. IEEE Computer Society Press, 1995.

[11] Jonathan D. Bright, Gregory F. Sullivan, and Gerald M. Masson. A

formally veri�ed sorting certi�er. IEEE Transactions on Computers,

46(12):1304{1312, December 1997.

[12] Yuzheng Ding and Mark A. Weiss. The k-d heap: An e�cient multi-

dimensional priority queue (extended abstract). In Workshop on Algo-

rithms and Data Structures, volume 709 of Lecture Notes in Computer

Science, pages 303{313, 1993.

[13] Jack Edmonds. Maximum matching and polyhedron with 0,1 - vertices.

Journal of Research of the National Bureau of Standards, 69B:125{130,

1965.

[14] Jack Edmonds. Paths, trees and owers. Canadian Journal on Mathemat-

ics, 17:449{467, 1965.

[15] Ulrich Finkler and Kurt Mehlhorn. Checking priority queues. In Pro-

ceedings of the 10th annual ACM-SIAM symposium on Discrete algorithms

(SODA'99), pages 901{902. Society for Industrial and Applied Mathemat-

ics, 1999.

[16] Kurt Mehlhorn and Stefan N�aher. From algorithms to working programs on

the use of program checking in leda. In L. Brim, J. Gruska, and J. Zlatuska,

editors, MFCS, volume 1450 of Lecture Notes in Computer Science, pages

84{93, 1998.

[17] Kurt Mehlhorn and Stefan N�aher. LEDA: A Platform for Combinatorial

and Geometric Computing. Cambridge University Press, 1999.

[18] Kurt Mehlhorn, Stefan N�aher, Michael Seel, Raimund Seidel, Thomas

Schilz, Stefan Schirra, and Christian Uhrig. Checking geometric programs

or veri�cation of geometric structures. Computational Geometry, 12(1-

2):85{103, 1999.

[19] Pilar Nivela and Robert Nieuwenhuis. Practical results on the saturation of

full �rst-order clauses: Experiments with the saturate system. (system de-

scription). In C. Kirchner, editor, 5th International Conference on Rewrit-

ing Techniques and Applications (RTA), volume 690 of Lecture Notes in

Computer Science, 1993.

[20] Peter Padawitz. Computing in Horn clause theories. Springer-Verlag New

York, 1988.

[21] Ronitt A. Rubinfeld. A mathematical theory of self-checking, self-testing

and self-correcting programs. PhD thesis, University of California at Berke-

ley, 1991.

59

[22] Gregory F. Sullivan and Gerald M. Masson. Using certi�cation trails to

achieve software fault tolerance. In Digest of the 20th Symposium on Fault-

Tolerant Computing, pages 423{431. IEEE Computer Society Press, 1990.

[23] Gregory F. Sullivan and Gerald M. Masson. Certi�cation trails for data

structures. In Digest of the 21st Symposium on Fault-Tolerant Computing,

pages 240{247. IEEE Computer Society Press, 1991.

[24] Hal Wasserman and Manuel Blum. Software reliability via run-time result-

checking. Journal of the ACM, 44(6):826{849, 1997.

[25] http://www.mpi-sb.mpg.de/SATURATE/.

[26] http://pvs.csl.sri.com/.

[27] http://www.mpi-sb.mpg.de/~rpiskac/queues/.

60

