
DECISION PROCEDURES FOR

PROGRAM SYNTHESIS AND VERIFICATION

Ruzica Piskac

Thèse n. 5220 2011
présenté le 17 Octobre 2011
à la Faculté Informatique et Communications
Laboratoire d'analyse et de raisonnement
automatisés (LARA)
programme doctoral en informatique, communications
et information
École Polytechnique Fédérale de Lausanne

pour l'obtention du grade de Docteur ès Sciences
par

Ruzica Piskac

acceptée sur proposition du jury:

Prof Arjen Lenstra, président du jury

Prof Viktor Kuncak, directeur de thèse

Dr Nikolaj Bjørner, rapporteur

Prof Rupak Majumdar, rapporteur

Prof Martin Odersky, rapporteur

Lausanne, EPFL, 2011

Za mamu i tatu. . .

Acknowledgments
First and foremost, I would like to thank my advisor Viktor Kuncak for his support, without

which this dissertation would not have been possible. I very much enjoyed our discussions,

the challenges he put in front of me, even our little arguments (I still prefer "where" over "let").

Viktor is a person of great knowledge and a brilliant mind, he cares a lot about his students,

and I consider myself lucky and privileged for having the chance to work with him.

I am grateful to Arjen Lenstra, Nikolaj Bjørner, Rupak Majumdar, and Martin Odersky, for

agreeing to serve on my thesis committee. I thank them for their time, I am aware of their busy

schedules, and I thank them for their feedback on my thesis.

I would like to additionally thank Nikolaj Bjørner for being my mentor during a summer

internship in 2008 at Microsoft Research, Redmond. Working with Nikolaj in those three

summer months helped me to significantly increase my knowledge of the SMT world.

Special thanks go to Tim King. Tim agreed to proofread this thesis and found a number of

places where further clarifications were needed. I am thankful to Thomas Wies and Philippe

Suter for the discussions on the structure and some of the technical subtleties of my thesis. I

am further in debt to Utkarsh Upadhyay for his help on submitting and printing this thesis in

time.

During the past four years I had the pleasure to work with a number of amazing people around

the world. In particular, I want to thank all my colleagues with whom I co-authored a paper:

Nikolaj Bjørner, Tihomir Gvero, Viktor Kuncak, Mikaël Mayer, Leonardo de Moura, Philippe

Suter, Thomas Wies, and Kuat Yessenov.

One of the reasons why my PhD studies were so enjoyable is because of the great atmosphere

in the LARA group. I thank my colleagues Eva Darulová, Tihomir Gvero, Hossein Hojjat, Swen

Jacobs, Giuliano Losa, Andrej Spielmann, and Philippe Suter for creating such a motivating

working environment. I thank Danielle Chamberlain, Yvette Gallay, and Fabien Salvi for their

help with bureaucratic and technical tasks.

My road towards a PhD degree was long and winding. On this path I had an honor to work in

various groups, on various topics. I would therefore like to thank to all the great people with

whom I was working: I believe that the experience that I gained in each of those groups helped

me in completing this thesis. In particular, I am thankful to Dieter Fensel and his group at the

University of Innsbruck, late Harald Ganzinger and his group at the Max-Planck Institute for

Computer science in Saarbrücken, Tome Anticic and his group at the Institute Rudjer Boskovic

in Zagreb, and Robert Manger and his group at the University of Zagreb.

At the beginning of my studies at EPFL, I was a co-organizer of a workshop at the International

v

Acknowledgments

Semantic Web Conference in Busan, Korea. I would like to thank the other co-organizer, Frank

van Harmelen, for this unforgettable experience. I am also grateful to Manfred Jeusfeld for

introducing me to the world of on-line publishing.

I am grateful for the inspiring discussions with the outstanding people that I met during my

PhD studies. I thank Shankar Natarajan for being the kindest host. My first scientific visit was

to SRI International, and Shankar also made it one of the most memorable. His understanding

and kind attitude encouraged me to speak freely about my research. I met Rupak Majumdar

at EPFL, just when I was starting my PhD. I thank him for introducing me to the world of

semilinear sets, and without knowing it, helping me to solve some of the research questions

that I was working on. During my PhD studies I considered Sabine Süsstrunk as a mentor and

role model. I am grateful to her for finding time for me, for her wise advices and her support.

Finally, I want to thank my family and my friends for their support and their love through the

years. I thank my parents, Bernarda and Josip, and my brother, Tomislav, for being there for

me, even when we were physically apart. A very special thanks go to Thomas Wies. This final

gratitude also extends to the families Piskac, Slunjski, Puklavec, Wies and Wagner.

Lausanne, November 23, 2011 Ruzica Piskac

vi

Preface
Recent progress in verification technology has started to improve our ability to automatically

check the correctness of software systems. Yet an important challenge remains ahead of us:

can we verify deeper program properties, beyond the absence of low-level errors? Such

deep analysis requires reasoning that is specific to the software application being verified,

so analysis techniques that target particular classes of properties stop being sufficient. To

introduce application-specific reasoning into verification, it is promising to consider methods

that integrate software verification with software development. Among key methodologies

supporting this direction is compositional verification based on pre-conditions and post-

conditions.

To support such compositional techniques, the ability to reason about logical formulas is

essential, because formulas become part of the program itself. Dealing with formulas also

arises when modeling program semantics, both in approaches based on verification-condition

generation and in more automated approaches, such as counterexample-guided predicate

abstraction. Modeling programs with formulas allows us to achieve precision (for example,

path-sensitivity), scalability (because we can use efficient algorithms to explore exponentially

many program paths), and tool reuse (because we can develop tools largely independently

from the programming language semantics).

Due to the need to reason about formulas, theorem proving technology becomes an indispens-

able component of these verification approaches. The leading automated theorem provers

for these tasks are satisfiability modulo theory (SMT) solvers. They are among the most re-

markable reasoning tools developed, combining great expressive power with the ability to

handle megabyte-sized formulas. The key to this power is specialized reasoning based on

decision procedures and a principled technique to combine them, preserving soundness and

completeness. Interestingly, despite the great progress in the tools developed, the foundations

of decision procedures and their combination techniques has been evolving relatively slowly

since the introduction of the approach by Nelson and Oppen in the 1970ies. As a result, verifi-

cation tools must model many constructs using quantifiers, often resulting in unpredictable

reasoning and the inability to generate counterexamples.

This thesis introduces new theorem proving algorithms, qualitatively extending the reach

of existing technology. Much of these results is formulated in terms of decision procedures

for classes of constraints of interest, and immediately leads to more predictable verification.

Moreover, the thesis shows that, in many cases, these algorithms can also be used to directly

construct software fragments through a notion of synthesis procedure. In several cases, the

vii

Preface

class of logical constraints has not been identified as decidable before, whereas in others the

class was known to be decidable but the known algorithms were exponentially worse than the

optimal ones introduced in this thesis.

The thesis contributes a number of results in decision procedures. Chapter 2 presents deci-

sion procedures for multiset constraints, whereas Chapter 3 presents initial implementation

results. A number of extensions of this logic are the focus of Chapter 4. This includes relations,

resulting in a proper extension of an important description logic. Another direction are collec-

tions with fractional membership, which open up the possibility of applications in dealing

with uncertainty. A parametrized family of decision procedures for program termination are

the subject of Chapter 5. A new, more widely applicable method for composing decision

procedures of individual logical theories into a decision procedure for the combined (union)

theory is the subject of Chapter 6. We can broadly classify these results into two categories: 1)

new decidable logical fragments, and 2) new methods to combine decidable fragments. Both

kinds of results are a crucial starting point for the development of SMT solvers.

An example of contributions of the first kind are the results on decision procedures for multiset

constraints with the cardinality operator. This is a very natural fragment, because multisets

describe data structures while preserving element multiplicity. They are needed to precisely

describe, e.g., a sorting algorithm, or a precise external behavior of a data structure such as

red-black tree. The cardinality operator on multisets is a natural measure to describe many

data structure invariants. Yet, the very basic questions about the logics of multisets with

cardinality constraints were unanswered before this work. The work shows that quantified

multisets constraints with cardinalities are undecidable (in contrast to quantified set con-

straints with cardinalities). The most technically involved were the results on the complexity of

the quantifier-free constraints. These constraints previously had a decision procedure giving

NEXPTIME upper bound on the decision problem. Despite the exponential lower bound on

the sizes of explicit models, the thesis shows the decision problem to be in NP (using, among

others, a technique for proving the existence of sparse solutions of compactly represented

integer linear programming problems with bounded coefficients, and bounds on the sizes of

vectors in semilinear set representations).

An example of contributions of the second kind (complete combination methods), is the result

on combining theories that share set operations, presented in Chapter 6. The state-of-the

art method implemented in modern SMT solvers goes back to Nelson and Oppen, and could

be explained as (demand-driven) reduction of theories to the pure theory of equality. This

method works only if the equality is the sole shared symbol between the combined theories.

Chapter 6 shows how to reduce theories not to equality but to a richer logic, set algebra with

linear arithmetic (BAPA). Among the remarkable observations is that such reduction is possible

in many cases, including such important decidable logics as monadic second-order logic of

trees, as well as the two-variable logic with counting. As a consequence of this reduction

approach, we obtain decidability of a fairly rich specification language, supporting quantifier-

free combinations of two-variable logic and WSkS, as well as many other useful logics that can

express constraints on sets.

In addition to developing the algorithms and the foundations for constraint solving and

viii

Preface

synthesis, the thesis describes the implemention of the underlying automated reasoning and

synthesis tools. Chapter 3 shows the design and the development of the multiset reasoner

MUNCH; this is the only theorem proving tool capable of effectively handling multisets in the

presence of cardinality constraints.

Furthermore, the thesis makes substantial contributions to software synthesis. First explored

long ago by some of the greatest pioneers of computer science, software synthesis has received

increased attention in recent years thanks to new algorithms, new applications, and better

understanding of the boundary between tractable and intractable synthesis problems. For

synthesis of software it is particularly important to support specifications over domains such

as integers and collections of objects, because software implementations almost invariably

rely on such unbounded data types, in contrast to finite-state reactive systems. Manna and

Waldinger have already identified theorem proving technology as the main bottleneck for

future progress of software synthesis. Since then, software verification and advanced type

systems such as refinement types have experienced a revolution. This is in part thanks

to increasingly efficient SMT solvers. The idea behind the complete functional synthesis

approach, described in Chapter 7, is to extend the use of this successful SMT technology

to software synthesis. For this to happen, we must generalize decision procedures (which

give yes/no answers for formula satisfiability) into algorithms that produce actual satisfying

assignments. Moreover, if we wish our synthesized code to be efficient, we need procedures

that accept parametrized input and produce an entire family of parametrized solutions, in the

form of an efficiently computable function. Chapter 7 presents such procedure for the logic

that combines integer linear arithmetic and the set algebra with cardinality operators (we

call this logic Boolean Algebra with Presburger Arithmetic, or BAPA for short). The resulting

system rewrites the given specification of program fragments into a solved form that, given

inputs, compute the outputs that are guaranteed to satisfy the specification.

In addition to a sequence of results centered around decision procedures, the thesis presents

a glimpse of a fresh research direction: synthesis of code that combines method calls from

existing libraries. This synthesis approach, described in Chapter 8, is driven by type constraints

of an expressive type system, including generic types. Types are an abstraction of code which

is essential for the synthesized code to compile. The presented results suggest that synthesis

based on generic types, even though undecidable in general, has a practical solution that can

be deployed in the context of integrated development environments. A crucial part of this

solution is an approach to guide the search process using weights derived from a corpus of

code. The resulting approach promises development environments that deliver qualitatively

more than what we can expect today. Like the previous chapters, it presents algorithmic

advances with the potential to greatly improve programmer productivity in developing reliable

software systems.

Lausanne, November 2011 Viktor Kuncak

Assistant Professor, EPFL

PhD MIT, 2007

ix

Abstract
Decision procedures are widely used in software development and verification. The goal

of this dissertation is to increase the scope of properties that can be verified using decision

procedures. To achieve this goal, we identify three improvements over the state of the art in

decision procedures, and their use in software reliability tools.

First, we observe that developing new decision procedures increases the range of properties

and programs that are amenable to automated verification. In this thesis, we are particularly

interested in the verification of container data structures. Existing verification tools use

set abstractions to reason about the contents of data structures. However, set abstraction

loses any information about duplicate occurrences of elements in a container. We therefore

propose a new logic for reasoning about multisets with cardinality constraints. This logic

subsumes reasoning about sets and enables reasoning about duplicate elements in containers.

Cardinality constraints are useful for reasoning about the number of elements stored in a

data structure. Based on an extension of linear arithmetic (which we call LIA∗), we describe a

decision procedure for the logic of multisets with cardinalities. By investigating properties of

LIA∗, we prove that the satisfiability of multisets with cardinality constraints is an NP-complete

problem.

Second, we notice that verification conditions expressing properties of data structures often

can be decomposed into several well-understood logics. If the signatures of the component

theories are not disjoint (i.e., they share more than equality) then it is often unclear whether

such a reduction is possible, even if individual decision procedures for all component theories

are known to exist. We investigate how to combine non-disjoint theories that share set

symbols and operators. We state and prove a new combination theorem for such theories. Our

theorem states that the combination is possible if each component theory can be reduced

to the common theory, the theory of sets with cardinality constraints. We prove that many

theories satisfy this property. The resulting combined logic enables reasoning about complex

properties of data structure implementations that could not be expressed in any previously

known decidable logic.

Finally, we identify new applications of decision procedures in software reliability tools. We

describe how a model-producing decision procedure can be generalized into a predictable and

complete synthesis procedure. Given a specification, a synthesis procedure is an algorithm

that outputs the code that meets this specification. We demonstrate this approach in detail for

the concrete case of linear integer arithmetic. We further develop an orthogonal approach to

use decision procedure for program synthesis: we show how to reconstruct code snippets that

xi

Preface

satisfy given type constraints from a proof of unsatisfiability that was computed by a theorem

prover. The programmer then interactively selects the desired code snippet from a choice of

code snippets generated by the synthesis engine.

Together, our results provide the foundations of sound and predictable verification and syn-

thesis tools for integer arithmetic and container data structures.

Keywords: decision procedure, program verification, software synthesis, combination proce-

dure, automated reasoner for set and multisets, linear integer arithmetic, data structures

xii

Zusammenfassung
Entscheidungsverfahren haben vielfältige Anwendungen in der Software-Entwicklung und Ve-

rifikation. Das Ziel dieser Dissertation ist es, die Bandbreite der Eigenschaften zu erhöhen, die

mit Hilfe von Entscheidungsverfahren verifiziert werden können. Um dieses Ziel zu erreichen,

entwickeln wir drei Neuerungen in der Erforschung von Entscheidungsverfahren und deren

Anwendung in Werkzeugen, die die Zuverlässigkeit von Software sicherstellen.

Als erstes stellen wir fest, dass die Entwicklung neuer Entscheidungsverfahren die Bandbreite

der Eigenschaften und Programme erweitert, die der automatischen Verifikation zugänglich

sind. In dieser Dissertation befassen wir uns speziell mit der Verifikation von Container-

Datenstrukturen. Existierende Verifikationswerkzeuge verwenden Mengenabstraktionen, um

über den Inhalt von Datenstrukturen logische Schlußfolgerungen ziehen zu können. Jedoch

verlieren Mengenabstraktionen jegliche Information über Mehrfachvorkommen von Elemen-

ten in einem Container. Daher schlagen wir eine neue Logik für die automatische Deduktion

von Aussagen über Multimengen mit Kardinalitätsprädikaten vor. Diese Logik subsumiert

logisches Schlußfolgern über Mengen, aber ermöglicht darüber hinaus die präzise Behand-

lung von mehrfach vorkommenden Elementen in einem Container. Kardinalitätsprädikate

dienen dazu, Aussagen über die Anzahl der Elemente beweisen zu können, die in einer Daten-

struktur gespeichert sind. Basierend auf einer Erweiterung der linearen Arithmetik (die wir

LIA∗ nennen), beschreiben wir ein Entscheidungsverfahren für die Logik der Multimengen

mit Kardinalitätsprädikaten. Durch eine genaue Untersuchung der Eigenschaften von LIA∗

gelingt es uns zu beweisen, dass Erfüllbarkeit von Multimengen mit Kardinalitätsprädikaten

ein NP-vollständiges Problem ist.

Zweitens beobachten wir, dass Verifikationsbedingungen, die Eigenschaften von Datenstruk-

turen ausdrücken, sich oft in Teileigenschaften aufspalten lassen, die in wohlverstandene

Logiken fallen. Wenn die Signaturen dieser Komponententheorien nicht disjunkt sind (d.h.

sie teilen mehr als nur das Gleichheitssymbol), dann ist es häufig unklar, ob sich eine solche

Reduktion ausnutzen läßt, um die automatische Deduktion von Aussagen in der kombinier-

ten Theorie zu ermöglichen, selbst dann, wenn die individuellen Komponententheorien alle

entscheidbar sind. Wir untersuchen den Fall der nicht disjunkten Kombination von Theo-

rien die Mengen und Mengenoperationen teilen. Wir formulieren und beweisen ein neues

Kombinationstheorem für solche Theorien. Unser Theorem besagt, dass die Kombination

der Theorien möglich ist, wenn sich jede Komponenttheorie auf eine gemeinsame Theorie

reduzieren läßt, nämlich die Theorie der Mengen mit Kardinalitätsprädikaten. Wir zeigen, dass

viele Theorien diese Eigenschaft erfüllen. Die resultierende kombinierte Logik ermöglicht es

xiii

Preface

komplexe Aussagen über Datenstrukturen automatisch zu beweisen, die sich in keiner vorher

bekannten entscheidbaren Logik ausdrücken ließen.

Schließlich identifizieren wir neue Anwendungsfelder von Entscheidungsverfahren in Software-

Verifikationswerkzeugen. Wir beschreiben, wie sich modellerzeugende Entscheidungsver-

fahren zu vollständigen Syntheseverfahren generalisieren lassen. Der Programmierer stellt

eine formale Spezifikation zur Verfügung und unser Synthesewerkzeug berechnet den Code,

der diese Spezifikation erfüllt. Wir demonstrieren diesen Ansatz im Detail für den konkreten

Fall der linearen, ganzzahligen Arithmetik. Des Weiteren entwickeln wir einen orthogonalen

Ansatz zur Verwendung von Entscheidungsverfahren in der Programmsynthese: wir zeigen wie

sich Code-Schnipsel, die bestimmte Typvorgaben erfüllen, aus einem Unerfüllbarkeitsbeweis

rekonstruieren lassen, der von einem Theorembeweiser erbracht wurde. Der Programmierer

kann dann interaktiv den gewünschten Code-Schnipsel aus einer vom Synthesewerkzeug

generierten Auswahl von Code-Schnipseln wählen.

Zusammengenommen bilden unsere Resultate die Grundlage für fehlerfreie und berechenbare

Verifikations- und Synthesewerkzeuge für ganzzahlige Arithmetik und Container-Datenstruk-

turen.

Schlagworte: Entscheidungsverfahren, Programmverifikation, Software-Synthese, Kombinati-

onsverfahren, automatische Beweiser für Mengen und Multimengen, sowie lineare ganzzahli-

ge Arithmetik, Datenstrukturen

xiv

Résumé
Les procédures de décision sont couramment utilisées dans le cadre du développement et de

la vérification logicielle. La présente thèse s’intéresse à la question de l’extension du domaine

d’application des procédures de décision, à la vérification de propriétés complexes ainsi qu’à

la synthèse de programmes. Nous présentons trois améliorations par rapport à l’état de l’art

en matière de procédures de décision et faisons la démonstration de leur applicabilité en tant

qu’outils pour améliorer la fiabilité logicielle.

Premièrement, nous observons que le développement de nouvelles procédures de décision

entraîne une augmentation du nombre de programmes et de propriétés qui peuvent être

traités par des techniques de vérification automatisée. Dans cette thèse, nous nous intéressons

plus particulièrement à la vérification de structures de données représentant des collections.

Les outils existant utilisent typiquement des ensembles comme représentation abstraite des

éléments d’une collection. Cependant, une abstraction basée sur des ensembles ne permet

pas de tenir compte d’éléments dupliqués. Pour palier à ce problème, nous proposons une

nouvelle logique pour raisonner sur les multiensembles et leur cardinalité. Cette logique est

suffisamment expressive pour raisonner sur les ensembles, mais permet en plus d’encoder

correctement la multiplicité des éléments d’une collection. Les contraintes sur la cardinalité

des multiensembles sont utiles pour représenter le nombre d’éléments stockés dans les

structures de données. En nous basant sur une extension de l’arithmétique linéaire –que

nous appelons LIA∗– nous présentons une procédure de décision pour notre logique des

multiensembles avec l’opérateur de cardinalité. Une étude des propriétés de LIA∗ nous permet

de prouver que le problème de la satisfiabilité d’une formule dans cette logique est NP-

complet.

Deuxièmement, nous remarquons que les formules, souvent complexes, exprimant des condi-

tions de vérification pour des propriétés de structures de données peuvent souvent être

décomposées en plusieurs formules dans diverses théories logiques pour lesquelles une pro-

cédure de décision est disponible. Si les signatures de ces théories ne sont pas disjointes

(c’est-à-dire, si elles partagent d’autres symboles que l’égalité), alors la question de la satis-

fiabilité de la combinaison des théories est souvent ouverte. Dans cette thèse, nous étudions

la combinaison de théories non-disjointes qui partagent des symboles et des opérateurs se

rapportant aux ensembles. Nous formulons et prouvons un nouveau théorème pour la combi-

naison de telles théories. Notre théorème montre que la combinaison est possible si chacune

des théories peut individuellement être réduite à une théorie commune, dans notre cas, une

logique d’ensembles avec l’opérateur de cardinalité. Nous prouvons également que de nom-

xv

Preface

breuses théories connues remplissent cette condition. La logique résultant de la combinaison

de ces théories nous permet de raisonner au sujet propriétés complexes sur les structures de

données qui ne pouvaient être exprimées auparavant dans aucune logique décidable connue.

Finalement, nous identifions de nouvelles applications des procédures de décision pour la

fiabilité logicielle. Nous montrons comment une procédure de décision capable de produire

des modèles peut être transformée en une procédure de synthèse, prévisible et complète.

Une procédure de synthèse est un algorithme qui, à partir d’une formule exprimant une

relation entre des variables d’entrée et de sortie, produit du code qui calcule les variables

de sortie en fonction de celles d’entrée de telle sorte que la relation soit satisfaite. Nous

présentons cette approche en détails pour le cas de l’arithmétique linéaire des nombres

entiers. Nous présentons également une approche orthogonale de l’utilisation des procédures

de décision dans le cadre de la synthèse de programmes : nous montrons comment construire

des fragments de code qui satisfont certaines contraintes de typage en partant d’une preuve

d’insatisfiabilité produite par un prouveur de théorèmes automatisé. Le programmeur peut

ensuite choisir interactivement parmi une liste de fragments de code produits par notre outil

de synthèse.

Pris ensemble, nos résultats posent les fondations pour le développement d’outils robustes

et fiables pour la vérification et la synthèse, pour l’arithmétique des nombres entiers et les

structures de données.

Mots-clés : procédures de décision, vérification logicielle, synthèse de programmes, pro-

cédures de combinaison, raisonnement automatisé pour ensembles et multiensembles, arith-

métique linéaire

xvi

Contents
Acknowledgments v

Preface vii

Abstract (English/Deutsch/Français) xi

List of figures xx

Introduction 1

1 Introduction 1

1.1 Contributions . 4

1.1.1 Reasoning about Collections . 4

1.1.2 Combining Non-disjoint Theories . 5

1.1.3 Software Synthesis . 6

1.2 Outline of the Dissertation . 7

2 Decision Procedures for Multisets with Cardinality Constraints 9

2.1 Motivation . 9

2.2 Definition and Applications of Multisets . 10

2.3 Introduction to Logic through an Example . 11

2.4 Multiset Constraints . 15

2.4.1 Reducing Multiset Operations to Sums . 16

2.5 Linear Integer Arithmetic with Stars . 18

2.5.1 From Multisets to LIA* Constraints . 18

2.6 Deciding Linear Arithmetic with Sum Constraints 21

2.6.1 Formula Solutions as Semilinear Sets . 21

2.6.2 Computing Semilinear Sets and their Bounds 22

2.6.3 LIA Formulas Representing LIA∗ Formulas 24

2.7 Complexity of Linear Arithmetic with Stars . 25

2.7.1 Estimating Coefficient Bounds of Disjunctive Form 25

2.7.2 Size of the Solution Set Generators . 27

2.7.3 Selecting Polynomially Many Generators 27

2.7.4 Grouping Generators into Solutions . 28

2.7.5 Multiplication by Bounded Bit Vectors . 29

xvii

Contents

2.7.6 Estimating the Solution Size Bounds . 30

2.7.7 An NP-Algorithm for LIA∗ Satisfiability . 32

2.8 Complexity of Multiset Constraints . 33

2.9 Undecidability of Quantified Constraints . 33

3 Implementation: Automated Reasoner for Sets and Multisets 35

3.1 Motivation . 35

3.2 MUNCH Implementation . 35

3.2.1 System Overview . 36

3.2.2 Efficient Computation of Semilinear Sets 37

3.3 Examples and Benchmarks . 38

4 Decision Procedures for Fractional Collections and Collection Images 41

4.1 Motivation for Fractional Collections . 41

4.2 Examples . 42

4.3 From Collections to Stars . 46

4.4 Separating Mixed Constraints . 48

4.4.1 Example . 50

4.5 Eliminating the Star Operator from Formulas . 54

4.5.1 Satisfiability Checking for Collection Formulas 56

4.5.2 Satisfiability Checking for Generalized Multisets Formulas 56

4.6 Decision Procedures for Collection Images . 57

4.6.1 Motivating Examples for Collection Images 57

4.6.2 Logic of Multiset Images of Functions . 58

5 Decision Procedures for Automating Termination Proofs 63

5.1 Motivation . 63

5.2 Examples . 64

5.3 Decision Procedure through an Example . 66

5.4 Basic Definitions . 68

5.5 POSSUM : Multiset Constraints over Preordered Sets 70

5.5.1 Finite Multisets over Preordered Sets . 70

5.5.2 Syntax and Semantics of POSSUM Formulas 71

5.6 Decidability of POSSUM . 73

5.7 Complexity of POSSUM . 77

5.8 Further Related Work . 80

6 Combining Theories with Shared Set Operations 81

6.1 Motivation . 81

6.2 Example: Verifying a Code Fragment . 83

6.2.1 Boolean Algebra with Presburger Arithmetic 86

6.3 Combination by Reduction to BAPA . 87

6.4 BAPA Reductions . 89

xviii

Contents

6.4.1 Monadic Second-Order Logic of Finite Trees 89

6.4.2 BAPA Reduction for Monadic Second-Order Logic of Finite Trees 91

6.4.3 Two-Variable Logic with Counting . 92

6.4.4 BAPA Reduction for Two-Variable Logic with Counting 93

6.4.5 Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic 95

6.4.6 BAPA Reduction for Bernays-Schönfinkel-Ramsey Fragment 96

6.4.7 Quantifier-free Mutlisets with Cardinality Constraints 97

6.4.8 BAPA Reduction for Quantifier-free Multiset Constraints 97

6.5 Further Related Work . 98

6.6 Conclusions . 99

7 Complete Functional Synthesis 101

7.1 Motivation . 101

7.2 Example . 103

7.3 From Decision to Synthesis Procedures . 105

7.4 Selected Generic Techniques . 109

7.4.1 Synthesis for Multiple Variables . 109

7.4.2 One-Point Rule Synthesis . 110

7.4.3 Output-Independent Preconditions . 111

7.4.4 Propositional Connectives in First-Order Theories 111

7.4.5 Synthesis for Propositional Logic . 112

7.5 Synthesis for Linear Rational Arithmetic . 112

7.5.1 Solving Conjunctions of Literals . 113

7.5.2 Disjunctions for Linear Rational Arithmetic 114

7.6 Synthesis for Linear Integer Arithmetic . 115

7.6.1 Solving Equality Constraints for Synthesis 115

7.6.2 Solving Inequality Constraints for Synthesis 121

7.6.3 Disjunctions in Presburger Arithmetic . 123

7.6.4 Optimizations used in the Implementation 123

7.7 Synthesis Algorithm for Parametrized Presburger Arithmetic 124

7.8 Synthesis for Sets with Size Constraints . 127

7.9 Implementation and Experience . 131

7.10 Further Related Work . 132

8 Interactive Synthesis of Code Snippets 135

8.1 Motivation . 135

8.2 Examples . 137

8.3 From Scala to Types . 139

8.4 Type Inhabitation in the Ground Applicative Calculus 141

8.4.1 Type Inhabitation in the Ground Applicative Calculus 142

8.5 Quantitative Applicative Ground Inhabitation . 143

8.5.1 Finding the Best Type Inhabitant . 144

8.6 Quantitative Inhabitation for Generics . 144

xix

Contents

8.7 Subtyping using Coercions . 147

8.8 InSynth Implementation and Evaluation . 148

9 Conclusions 151

9.1 Future Work . 152

9.1.1 Complete Reasoner for Sets and Multisets 153

9.1.2 Software Synthesis by Combining Subroutines 153

9.1.3 Additional Theories for Complete Synthesis 153

A Appendix A 155

Bibliography 173

Curriculum Vitae 175

xx

List of Figures
2.1 Linear Integer Arithmetic . 11

2.2 Java code that removes an element from a list . 12

2.3 Quantifier-Free Multiset Constraints with Cardinality Operator 16

2.4 Algorithm for reducing multiset formulas to sum normal form 17

2.5 Quantifier-free Presburger Arithmetic and an extension with the Star Operator 19

3.1 Phases in checking formula satisfiability. MUNCH translates the input formula

through several intermediate forms, preserving satisfiability in each step. 36

3.2 Example run of MUNCH on a multiset formula. 39

3.3 Running times for checking verification conditions that arise in proving correct-

ness of container data structures. 39

3.4 Description of the verification conditions proved using MUNCH 40

4.1 Example constraints in our class. 43

4.2 Quantifier-Free Formulas about Collection with Cardinality Operator 47

4.3 Syntax of Mixed Integer-Rational Linear Arithmetic with Star 48

4.4 Verification condition for verifying that by inserting an element into a list, the

size of the list does not decrease. The variables occurring in the formula have

the following types: nodes,alloc,tmp,e,content,content1 :: Set〈E〉, data :: E→E. 57

4.5 Verification condition for verifying that by inserting an element into a list, the

size of a list increases by one. The variables occurring in the formula have

the following types: nodes,alloc,tmp :: Set〈E〉, content,content1,e :: Multiset〈E〉,
data :: E→E. 57

4.6 Logic of multisets, cardinality operator, and multiset images of sets 58

4.7 Algorithm for eliminating function symbols . 59

5.1 Program COUNTLEAVES: counting the leaves in a binary tree 65

5.2 Multiset abstraction of program COUNTLEAVES 65

5.3 Termination condition for program ABSCOUNTLEAVES 66

5.4 Rewrite system for computing negation normal form 66

5.5 Syntax for Multiset Constraints over Preordered Sets (POSSUM) 72

5.6 An element and its ≺m-witnesses . 75

5.7 An illustration for the rules described by formulas (5.4) and (5.5) 75

5.8 An example of two redundant chains in α0 . 78

xxi

List of Figures

6.1 Fragment of insertion into a tree . 83

6.2 Verification condition for Fig. 6.1 . 84

6.3 Negation of Fig. 6.2, and consequences on shared sets 84

6.4 Boolean Algebra with Presburger Arithmetic (BAPA) 86

6.5 Monadic Second-Order Logic of Finite Trees (FT) 89

6.6 Two-Variable Logic with Counting (C 2) . 92

6.7 Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic 96

7.1 Successive Elimination of Variables for Synthesis 110

7.2 Algorithm for Synthesis Based on Integer Equations 116

7.3 Algorithm for Computing one Solution of the Equation 120

7.4 A Logic of Sets and Size Constraints (BAPA) . 127

7.5 Algorithm for synthesizing a functionΨ such that F [~x :=Ψ(~a)] holds, where F

has the syntax of Figure 7.4 . 128

7.6 Interaction of Comfusy with scalac, the Scala compiler. Comfusy takes as an

input the abstract syntax tree of a Scala program and rewrites calls to choose to

syntax trees representing the synthesized function. 131

7.7 Measurement of compile times: without applying synthesis (scalac), with syn-

thesis but with no call to Z3 (w/ plugin) and with both synthesis and compile-

time checks activated (w/ checks). All times are in seconds. 132

8.1 InSynth displays suitable code fragments . 136

8.2 Polymorphic behavior of InSynth . 138

8.3 Calculus for the Ground Types . 141

8.4 Rules for Generic Types used by Our Algorithm 145

8.5 The Search Algorithm for Quantiative Inhabitation for Generic Types 146

8.6 Basic algorithm for synthesizing code snippets 148

xxii

1 Introduction

Software correctness research has a long history. In the last decade we have witnessed a

significant progress in verification technologies, leading to tools that are applied to large

software applications of industrial relevance. The following are examples of tools that are

successfully used for verification and finding bugs in software:

• ARMC [Podelski and Rybalchenko(2007a)] is a model checker based on abstraction

refinement and Constraint Logic Programmingm and is used for reachability and termi-

nation properties. It was applied to verify hardware design, as well as model checking

real-time properties of the European train control system.

• BLAST [Beyer et al.(2007)Beyer, Henzinger, Jhala, and Majumdar] is a software model

checker for C programs, based on lazy abstraction. Using Blast, memory-safety proper-

ties of various benchmarks of C programs were proved. In addition, it was also used as a

testing framework: tests were derived from counter-examples.

• CBMC [Clarke et al.(2004)Clarke, Kroening, and Lerda] is a bounded model checker

for C and C++ programs. CBMC was used in various applications to increase software

reliability: by appplying CBMC, it is possible to detect the cause of errors and the worst-

case number of loop iterations. It was also used to verify Linux Device Drivers, as well as

detect security-relevant bugs in WIN32 binaries.

• HAVOC [Lahiri et al.(2009)Lahiri, Qadeer, Galeotti, Voung, and Wies] is a tool for spec-

ifying and verifying properties of programs written in C. It is based on a logic that

allows reasoning about lists and arrays. HAVOC was used to check properties in the

Microsoft Windows operating system on more than 300 thousand lines of code and 1500

procedures.

• Jahob [Zee et al.(2008)Zee, Kuncak, and Rinard] is a verification system for programs

written in a subset of Java. Jahob is primarily used for verification of the container data

structures since it relies on decision procedures that can reason automatically about

collections [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard, Kuncak et al.(2005)Kuncak,

1

Chapter 1. Introduction

Nguyen, and Rinard]. Jahob relies on the tool Bohne [Podelski and Wies(2010)] to

automatically infer loop invariants for heap-manipulating programs.

• SLAM [Ball et al.(2004)Ball, Cook, Levin, and Rajamani] is a tool for static verification of

device drivers. Verification of C programs using the SLAM toolkit [Ball et al.(2001)Ball,

Majumdar, Millstein, and Rajamani] has recently won the Most Influential PLDI Paper

award. SLAM is based on predicate abstraction and it is integrated in the Static Driver

Verifier Research Platform, which is shipped with the Windows Driver Kit.

• SLAyer [Berdine et al.(2011)Berdine, Cook, and Ishtiaq] is a tool for proving memory-

safety properties about linked data structures, based on separation logic [Reynolds(2002)].

It has been applied to industrial software components of up to 100,000 lines of code.

• Spec# [Barnett et al.(2004b)Barnett, Leino, and Schulte] is is an extension of the C#

programming language. It is integrated into the Microsoft Visual Studio development

environment. It checks method contracts in the form of pre- and postconditions at run-

time and emits warnings. Spec# is also a static program verifier—it generates verification

conditions from a program and then invokes a solver to verify them.

A common aspect of these tools is that they encode the verification task into the problem

of reasoning about logical formulas. They translate both the desired properties and the pro-

gram semantics into a formula F , using techniques such as verification condition generation,

symbolic execution, or predicate abstraction. Once a formula F is obtained, there are two

questions in which we are usually interested. The first question is whether the formula F is

satisfiable. That means that we are asking whether there is a model in which F evaluates to

true. For example, formula x ≤ y is clearly satisfiable, by letting x to be 1 and y to be 2. In

contrast, the formula x ≤ y ∧ x + z > y + z is never satisfiable—we call it unsatisfiable. The

other question that we are interested in is validity. A formula is valid if it evaluates to true in

every model. Formula x ≤ y is not valid, but formula x ≤ y ⇒ x + z ≤ y + z is a valid formula.

Validity and satisfiability are related: a formula is valid iff its negation is unsatisfiable.

We believe that the mentioned verification tools are successful in part because they use

automated reasoners to automatically answer questions about satisfiability and validity. We

call such reasoners provers, or solvers. If a tool takes a formula in a certain logic, and answers

the satisfiability question, we usually call such tool a solver. The current state-of-the-art

satisfiability modulo theories (SMT) solvers are specialized for the satisfiability problem for

the particular logics (often defined by first-order theories) [de Moura and Bjørner(2008a),

Barrett and Tinelli(2007), Bruttomesso et al.(2010)Bruttomesso, Pek, Sharygina, and Tsitovich,

Bruttomesso et al.(2008)Bruttomesso, Cimatti, Franzén, Griggio, and Sebastiani]. In addition,

these solvers are also efficient in combining the theories, assuming that the requirements of

the Nelson-Oppen combination procedure are met. However, solvers face challenges when

they need to reason about quantified formulas. The other type of tools are so-called provers.

They are mostly optimized to find a proof of unsatisfiability fast. The current provers [Riazanov

and Voronkov(2002), Weidenbach et al.(2009)Weidenbach, Dimova, Fietzke, Kumar, Suda, and

2

Wischnewski, Schulz(2002), Korovin(2009)] are mostly based on resolution [Robinson(1965)],

and they are general purpose tools, i.e. not theory-specific. To reason about a certain theory,

one needs to add the theory axioms. Provers can also efficiently handle quantifiers.

Solvers are based on decision procedures. A decision procedure is an algorithm that takes a for-

mula in a certain logic and then checks whether the formula is satisfiable. Decision procedures

are a rich field of study [Bradley and Manna(2007), Kroening and Strichman(2008)]. There are

several logics of particular interest for proving software correctness. Standard propositional

logic is a logic that does not contain any functions or quantifiers. The formulas in propositional

logic are formed from boolean variables and boolean connectives. If we allow quantifiers and

functions, we obtain a more expressive logic. However, this logic is undecidable, even if we

restrict quantification to range only over first-order variables. In that case the logic is called

first-order logic. There are various fragments of first-order logic that are decidable, as for

example, linear integer arithmetic. It is a logic of the natural numbers with addition, which was

proved to be decidable already in [Presburger(1929)]. In his honor this logic is sometimes also

called Presburger arithmetic. The satisfiability problem in many other logics can be reduced

to reasoning in Presburger arithmetic. For example, for every formula expressing properties

about sets in the presence of the cardinality operator there exists an equisatisfiable Presburger

arithmetic formula. Extending linear integer arithmetic with unrestricted multiplication

results in an undecidable logic, even for quantifier-free formulas [Matiyasevich(1970)].

Despite the success of the above mentioned tools, there are still certain restrictions that limit

their applicability:

1. All these tools reason about an abstraction of the system and therefore simplified prop-

erties. There is a trend in more recent tools, like Boogie [Barnett et al.(2005)Barnett,

Chang, DeLine, Jacobs, and Leino] or Jahob [Zee et al.(2008)Zee, Kuncak, and Rinard],

to reason about more complex properties. However, reasoning about more complex

properties requires more complex theories, which are either undecidable, or of a very

high complexity, or their decidability is not even known. To tackle that problem, tools

like Boogie use an incomplete axiomatization to reason about data structures. Because

of this solution, we can see that there is certainly a need for new decision procedures. We

believe that having a decision procedure for a problem helps to better understand the

problem and it gives a better insight into its structure, even if the decision procedure is of

a very high complexity. As shown in Chapter 3, by analysis of the decision procedure and

the structure of the input problems, we can develop a more efficient, even if incomplete,

technique. In our current experience, this techniques scales better than the complete

algorithm based on a decision procedure.

2. When combining several theories, most tools use the Nelson-Oppen combination pro-

cedure [Nelson and Oppen(1980)], which has strong restrictions. It requires that the

theories are stably-infinite: if a formula is satisfiable, then it also must have an infinite

model. In addition, the theories must be disjoint, i.e. their signatures can share only

3

Chapter 1. Introduction

the equality symbol. In the Nelson-Oppen procedure we cannot combine theories that

allow only finite models, as well as theories that share more than only equality. Recent

work has shown how to relax the requirement about the stably-infiniteness [Tinelli and

Zarba(2003), Fontaine(2009), Jovanovic and Barrett(2010)]. However, signatures still

need to be disjoint. This is a problem, for instance, when proving properties about

container data structures. As we demonstrate in Chapter 6, for many verification tasks

we generate formulas that, after purification, still share the set operators, so we cannot

apply the standard procedure. The general problem of combining non-disjoint theories

was also studied [Tinelli and Ringeissen(2003)]. However, there is still less research in

this direction than in tools based on Nelson-Oppen approach.

3. In many cases, new decision procedures are motivated by program verification problems.

When proving code correctness, one usually identifies a theory that is the most suitable

for describing the needed properties. If the decidability of this theory is not known,

or the existing tools do not scale, then the focus of research moves to developing or

improving a decision procedure for the given logic. The resulting algorithm is usually

non-trivial. We believe that it is therefore worthwhile considering additional areas where

we can leverage these algorithms. In Chapters 7 and 8 we show how a decision procedure

can be modified to not only prove formulas, but also output the code to compute the

values that satisfy given constraints, or to have the expected type. This results in an

approach for synthesis of code based on solvers and provers.

1.1 Contributions

We next summarize the contributions of this dissertation in automated reasoning about

collections, combining non-disjoint theories, and software synthesis.

1.1.1 Reasoning about Collections

When reasoning about container data structures that can hold duplicate elements, multisets

are the obvious choice of abstraction. In this approach, the need for cardinality constraints

naturally arises in order to reason about the number of elements in the data structure. However,

before this dissertation has started, the decidability and the complexity of multisets constraints

with cardinalities was not known. The contributions of our work on reasoning about the

collections are the following:

1. We defined a highly expressive language that allows reasoning about multisets and

cardinalities. Because sets are a special case of multisets, this language subsumes

languages for reasoning about sets with cardinality constraints.

2. We showed the decidability of this language in [Piskac and Kuncak(2008a)]. We described

a reduction to an extension of linear integer arithmetic.

4

1.1. Contributions

3. We defined and further studied this new extension of linear integer arithmetic (so-called

LIA∗ logic). In [Piskac and Kuncak(2008c)] we developed an algorithm for checking the

satisfiability of formulas that belong to LIA∗. We proved that the satisfiability question

for LIA∗ is an NP-complete problem.

4. We also gave the answer to the open problem stated by Lugiez [Lugiez(2005)] whether

the logic containing quantified multiset constraints with cardinalities is decidable. We

proved that adding quantifiers yields undecidability.

5. We developed a tool for reasoning about multisets with cardinality constraints called

Munch [Piskac and Kuncak(2010)] and tested it on formulas derived from a software

analysis tool. We were able to write simple and more precise specifications using

multisets instead of sets.

6. Common to all previously described results is that we did not place any restrictions on

the domain of the multisets. However, in practice the domain set (i.e. the set used for

populating collections) is often known and fixed. We showed that the reasoning about

collections defined over totally ordered sets (specifically, the integers) still remains in

the class of the NP-complete problems [Kuncak et al.(2010c)Kuncak, Piskac, and Suter].

7. To support reasoning about further data structures, we introduced an extension of the

logic of sets and multisets with the ability to compute direct and inverse relations and

function images. We established decidability and complexity bounds for these extended

logics in [Yessenov et al.(2010)Yessenov, Piskac, and Kuncak].

8. We developed a new decision procedure for reasoning about multiset orderings [Piskac

and Wies(2011)], which are among the most powerful orderings used for proving ter-

mination of programs. We considered multiset orderings defined over an arbitrary

preodered set. The decidability of this logic was not previously known.

1.1.2 Combining Non-disjoint Theories

It is often the case that only one theory is not expressive enough on its own to accurately

express the required verification conditions. For example, to describe the insertion of an

element into an imperative linked list data structure, we need transitive closure, unconstrained

functions defined on sets, and the cardinality operator. As we argued before, the Nelson-Oppen

combination procedure is too restrictive if the theories share more than only the equality as a

common operator. In this particular example, after purification, we obtain a conjunction of

formulas belonging to logics WS1S, C 2 and BAPA. In addition to the equality, these logics share

the set operators as well. In [Wies et al.(2009)Wies, Piskac, and Kuncak] we have presented a

new combination technique for theories that share sets. The combination procedure reduces

them to a common shared theory, to the BAPA logic [Kuncak et al.(2006)Kuncak, Nguyen,

and Rinard]. BAPA is a logic of sets with cardinality constraints. We call such theories BAPA-

reducible. We showed that the logics

5

Chapter 1. Introduction

1. Boolean Algebra with Presburger Arithmetic [Kuncak and Rinard(2007)],

2. weak monadic second-order logic of two successors WS2S [Thatcher and Wright(1968)],

3. two-variable logic with counting C 2 [Pratt-Hartmann(2005)],

4. Bernays-Schönfinkel-Ramsey class [Börger et al.(1997)Börger, Grädel, and Gurevich],

and

5. quantifier-free multisets with cardinality constraints [Piskac and Kuncak(2008c), Piskac

and Kuncak(2008a)]

all meet the conditions of our combination technique. Consequently, we obtain the decidabil-

ity of quantifier-free combination of formulas in these logics.

1.1.3 Software Synthesis

Software synthesis aims to generate software satisfying a given specification. Instead of writing

the software directly, the programmer provides a specification, from which a synthesis tool

then automatically generates code. Consequently, this code is correct by construction and

there is no need to verify it. Moreover, this way programmers can also be more productive. The

downside of software synthesis is that it is difficult to write complete specifications, maybe

even harder than to write the code itself. Therefore, code synthesis should be used as a help

for programmers to write code more efficiently rather than as a stand-alone tool.

The use of formal techniques for software synthesis was suggested already earlier [Manna and

Waldinger(1980)]. However, not until recently the idea could be efficiently implemented. In

the last decade we have witnessed a breakthrough in the research on decision procedures and

automated reasoning. Applying our insights from decision procedures, we have developed a

Scala plug-in called Comfusy [Kuncak et al.(2010b)Kuncak, Mayer, Piskac, and Suter, Kuncak

et al.(2010a)Kuncak, Mayer, Piskac, and Suter]. Given a specification for a code fragment,

Comfusy generates the code satisfying it, together with the preconditions required for the

existence of the solution.

We have also developed a tool called InSynth [Gvero et al.(2011)Gvero, Kuncak, and Piskac],

which generates code fragments based on type constraints. While Comfusy constructs code

based on a model for the specification, InSynth derives a proof of unsatisfiability of the

constraints. Based on that proof, InSynth generates a code snippet and repeats the process.

InSynth is an interactive tool in the sense that outputs several snippets and the user can choose

the desired one.

All together, our contributions to software synthesis are the following:

1. We describe an approach for deploying algorithms for synthesis within programming

6

1.2. Outline of the Dissertation

languages. Given a specification and a separation of variables into output variables and

parameters, our procedure constructs

(a) a program that computes the values of outputs given the values of inputs

(b) the weakest among the conditions on inputs that guarantees the existence of

outputs (the domain of the given relation between inputs and outputs).

2. We describe a methodology to convert decision procedures for a class of formulas

into synthesis procedures that can rewrite the corresponding class of expressions into

efficient executable code. Most existing procedures based on quantifier elimination are

directly amenable to our approach.

3. We describe synthesis procedures for propositional logic, rational arithmetic and linear

integer arithmetic. We developed an algorithm that efficiently handles equalities in

linear integer arithmetic.

4. We show that the synthesis for integer arithmetic can be extended to the non-linear case

where coefficients multiplying output variables are expressions over parameters that

are known only at run-time.

5. We also described and implemented a synthesis procedure for Boolean Algebra with

Presburger Arithmetic (BAPA), a logic of constraints on sets and their sizes.

6. We developed a tool called InSynth, which is an interactive synthesis tool based on

parametrized types, test cases, and weights indicating user preferences. Its algorithmic

foundation is a variation of ordered resolution and intuitionistic calculus. We have found

InSynth to be fast enough for interactive use and helpful in synthesizing meaningful

code fragments.

1.2 Outline of the Dissertation

The rest of this thesis is organized as follows:

Chapter 2 describes a decision procedure for reasoning about multisets with cardinality

constraints. It is based on the papers [Piskac and Kuncak(2008a)] and [Piskac and

Kuncak(2008c)]. This chapter merges the papers, provides a uniform notation and

expends all the main proofs. In addition, it also introduces the Hilbert bases and

describes a connection between computation of semilinear sets and a Hilbert basis. In

Appendix A we also prove the background theorems about the number of generators of

an integer cone.

Chapter 3 describes an implementation of a reasoner for sets and multisets with cardinality

constraints. This chapter is based on the tool description presented in [Piskac and

Kuncak(2010)].

7

Chapter 1. Introduction

Chapter 4 describes extensions of the logic defined in Chapter 2. First we describe an exten-

sion that leads to a generalized framework, as introduced in [Piskac and Kuncak(2008b)].

In this new framework we can also reason about fractional collections. In this chap-

ter we provide additional examples. The other extension was introduced in [Yessenov

et al.(2010)Yessenov, Piskac, and Kuncak]. It extends the logic of Chapter 2 with function

symbols. Here we also provide an extended proof for the complexity result.

Chapter 5 is based on [Piskac and Wies(2011)]. It defines multiset orderings which are used

in proving termination of programs. We consider multiset orderings defined over an

arbitrary pre-ordered set. This way we can prove properties, for instance, of multiset

orderings defined over a multiset of trees and the subtree relation. This ordering is not

total. This chapter contains additional explanations and more detailed proofs of all

main theorems from [Piskac and Wies(2011)].

Chapter 6 contains an extended version of [Wies et al.(2009)Wies, Piskac, and Kuncak]. We

describe a new combination procedure for non-disjoint theories. The combination

procedure is based on a reduction to the theory of sets with cardinality constraints

(BAPA). This chapter contains additional examples and the extended proofs for most of

the reduction procedures.

Chapter 7 introduces complete functional synthesis. We describe how to convert a deci-

sion procedure into a synthesis procedure. Based on a given specification, the de-

scribed synthesis procedure always finds a corresponding code. In addition, it also

outputs the preconditions needed for a solution to exist. This chapter combines [Kun-

cak et al.(2010b)Kuncak, Mayer, Piskac, and Suter] and [Kuncak et al.(2010a)Kuncak,

Mayer, Piskac, and Suter].

Chapter 8 introduces interactive synthesis of code snippets. The chapter is based on [Gvero

et al.(2011)Gvero, Kuncak, and Piskac] as well as recent work under submission. Given

an incomplete program and a program point, at which we invoke InSynth, a specification

is derived based on type constraints and our tool outputs possible code snippets suitable

for that program point. The user then interactively selects the desired snippet. This

chapter, in addition to [Gvero et al.(2011)Gvero, Kuncak, and Piskac], contains an

algorithmic foundations of the calculus used in InSynth.

Chapter 9 concludes the dissertation and highlights selected future work directions.

8

2 Decision Procedures for Multisets
with Cardinality Constraints

This chapter introduces a language for reasoning about collections with cardinality constraints.

Motivated by applications in software verification, we consider the standard operators on

collections, such as union, intersection, and difference. In addition, we also consider some

operators that are specific for reasoning about multisets, for instance the disjoint union (])

operator. We present the formal syntax and semantics (Sec. 2.4). In Section 2.6, we show

that the satisfiability problem in this logic is decidable, and we construct an algorithm for

answering the satisfiability question. In the process, we generalize integer linear arithmetic by

adding a star (integer cone) operator into the language. By analyzing the satisfiability problem

for integer linear arithmetic with a star operator, Section 2.7 demonstrates that the problem is

in NP, and presents the second algorithm for satisfiability of multiset constraints.

2.1 Motivation

Collections of objects are fundamental and ubiquitous concepts in computer science and

mathematics. It is therefore not surprising that they often arise in software analysis and

verification, as well as in interactive theorem proving. Moreover, such constraints often

contain cardinality bounds on collections. There is an extensive work on decision procedures

for reasoning about sets of objects, where also cardinality constraints might appear [Kuncak

et al.(2006)Kuncak, Nguyen, and Rinard, Kuncak and Rinard(2007)]. In that work, the authors

characterzed the complexity of both quantified and quantifier-free constraints.

In many applications [Bouajjani et al.(2011)Bouajjani, Drăgoi, Enea, and Sighireanu], it is more

appropriate to use multisets (bags) rather than sets as a way of representing collections of

objects. The content of a data structure is abstracted as a multiset. The cardinality constraints

in such abstractions may arise if there is a need to count the number of elements in the

data structure. It is therefore a natural problem to consider constraints on multisets along

with the cardinality bounds. There is a range of useful operations and relations on multisets,

beyond the traditional disjoint union and difference. These operations are all definable using

quantifier-free Presburger arithmetic (QFPA) formulas on the number of occurrences of each

9

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

element in the multiset. This paper describes such a language that admits reasoning about

integers, sets and multisets, supports standard set and multiset operations as well as any

QFPA-definable operation on multisets (including the conversion of a multiset into a set),

and supports a cardinality operator that counts the total number of elements.

Previously, Zarba [Zarba(2002a)] considered decision procedures for quantifier-free multisets

but without the cardinality operator, showing that it reduces to quantifier-free pointwise

reasoning. However, the cardinality operator makes such reduction impossible.

Lugiez studied multiset constraints in the context of a more general result on multitree au-

tomata [Lugiez(2005)] and proved the decidability of quantified constraints with a weaker form

of cardinality operator that counts only distinct elements in a multiset. He also established the

decidability results of certain quantifier-free expressible constraints with cardinality operator.

Regarding quantified constraints with the general cardinality operator, [Lugiez(2005), Section

3.4] states “the status of the complete logic is still an open problem”. In this chapter, we resolve

this open problem, showing that the quantified constraints with cardinality are undecidable

(Section 2.9). The decidable quantified constraints in [Lugiez(2005)] allow quantifier elimina-

tion and the resulting formulas are quantifier-free constraints, which can then be expressed

using the decidable constraints in this chapter.

2.2 Definition and Applications of Multisets

Definition of multisets. Multisets are collections of objects where an element can occur

several times. They can be seen as “sets with counting”. For example, on the set level {a, a} =
{a}. However, in the multiset interpretation, they are two different multisets. We represent

multisets (bags) as well as sets with their characteristic functions. A multiset m is a function

E→N, where E is the universe andN is the set of non-negative integers. The value m(e) is the

multiplicity (the number of occurrences) of an element e in a multiset m. We assume that the

domain E is fixed and finite but of unknown size. We represent sets within our formulas as

special multisets m for which m(e) = 0∨m(e) = 1 for all elements e ∈ E.

Applications of set and multiset constraints. Sets and multisets directly arise in verifi-

cation conditions for proving properties of programs in languages and paradigms such as

SETL [Schwartz(1973)] and Gamma [Banâtre and Métayer(1993), Page 103]. In programming

languages such as Java, data abstraction can be used to show that data structures satisfy

set specifications, and then techniques based on sets become applicable for verifying data

structure clients [Kuncak(2007),Nguyen et al.(2007)Nguyen, David, Qin, and Chin]. To validate

properties of programs with lists and data, a common approach is to abstract the content of a

data structure as a multiset [Bouajjani et al.(2011)Bouajjani, Drăgoi, Enea, and Sighireanu].

Isabelle [Nipkow et al.(2005)Nipkow, Wenzel, Paulson, and Voelker], an interactive theorem

prover, as well as KIV [Balser et al.(2000)Balser, Reif, Schellhorn, Stenzel, and Thums] (Karl-

10

2.3. Introduction to Logic through an Example

sruhe Interactive Verifier) and Why [Filliâtre and Marché(2007)], all contain the multisets and

sets libraries. The formulas present there may also have the cardinality constraints. A decision

procedure for reasoning about multisets with the cardinality constraints can increase the

automation within such systems.

Linear integer arithmetic. Linear integer arithmetic plays a vital role in reasoning about mul-

tisets. After several transformation steps, a multiset formula is reduced to an equisatisfiable

linear integer arithmetic formula. Sometimes we also use the name Presburger arithmetic. A

grammar for linear integer arithmetic is given in Figure 2.1.

F ::= A | F ∧F | ¬F
A ::= T ≤ T | T=T
T ::= x | c | T +T | c ·T | ite(F,T,T)
x - integer variable; c - integer constant

Figure 2.1: Linear Integer Arithmetic

Linear integer arithmetic admits the addition of variables and the multiplication of a variable

by a constant, but does not allow the multiplication of two variables. The satisfiability question

in linear integer arithmetic is decidable. Quantified linear integer arithmetic also admits

quantifier elimination [Cooper(1972)].

2.3 Introduction to Logic through an Example

In software analysis and verification it is often desirable to abstract the content of mutable and

immutable data structures into collections to raise the level of abstraction when reasoning

about programs. Abstracting linked structures as sets and relations enables high-level reason-

ing in verification systems, such as Jahob [Kuncak(2007)]. For collections that may contain

duplicates, abstraction using multisets is more precise than abstraction using sets. Our goal

is to investigate the decidability of a logic allowing reasoning about multisets with cardinal-

ity constraints. Moreover, if decidable, we wish to describe decision procedures that would

enable reasoning about such precise abstractions, analogously to the way current decision

procedures enable reasoning with set abstraction.

Figure 2.2 contains a Java code that removes an element from a list. To illustrate the role of

cardinality operator, we assume the following declaration:

public class Node {
public Object data;
public Node next;

}
class SinglyLinkedList {

private Node �rst ;
int size ;

11

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

public void remove(Object d0) {
Node f = �rst ;
if (f . data == d0) {
Node second = f.next;
f . next = null;
�rst = second;

} else {
Node prev = �rst ;
Node current = prev.next;
while (current . data != d0) {
prev = current;
current = current. next;

}
Node nxt = current.next;
prev. next = nxt;
current . next = null;

}
size = size − 1;

}

Figure 2.2: Java code that removes an element from a list

}

Data structure implementations often contain integer size fields. With s we denote a data

structure size field and with L an abstract multiset field denoting the data structure content.

All data structure operations need to preserve the size invariant s = |L|. When verifying an

insertion of an element into a container, we therefore obtain verification conditions such as

|L|=s∧|e| = 1 →|L]e|=s+1. To show that a deletion also preserves the size invariant, we need

to additionally annotate the code in Figure 2.2, by adding preconditions and postconditions:

requires d0 6= null ∧d0 ∈ L

ensures L = old L \ {d0}∧d0 ∈ old L

Using those annotations, we generate verification conditions such as

D ⊆ L∧|D| = 1 →|L\D| = |L|−1 (2.1)

Here D denotes a multiset containing only the element d0. In this chapter, we will describe

how one can prove such verification conditions. We will use formula (2.1) as an example for

illustrating how our decision procedure works.

To capture operations on data structures, it is useful to have not only operators such as

a disjoint union] and a set difference, but also an operator that, given multisets m1 and

m2, produces a multiset m0 which is the result of removing from m1 all occurrences of

elements that occur m2. We can specify that requirement, by saying that every element that

appears in m2 cannot appear in m0, while all other element of m1 stay unchanged in m0.

12

2.3. Introduction to Logic through an Example

This can be expressed by the formula ∀e.(m2(e) = 0 → m0(e) = m1(e))∧ (m2(e) > 0 → m0(e) =
0). We call this operator a multiset difference, denoted by m0 = m1 \\m2. Our goal is to

define a language that will support any such operation definable pointwise by quantifier-free

Presburger arithmetic (QFPA) formulas.

We next outline the main ideas of the first decision procedure for a logic that allows such

constrains [Piskac and Kuncak(2008a)]. The running example will be the formula (2.1). Here

we demonstrate only the basic ideas of the algorithm; Sections 2.4.1 and 2.6 give the detailed

description.

To prove validity of (2.1), we show that its negation,

D ⊆ L∧|D| = 1∧|L\D| 6= |L|−1 (2.2)

is unsatisfiable.

The main idea of the algorithm is to reduce a given formula into an equisatisfiable Presburger

arithmetic formula. The reduction steps rely on the pointwise definitions of multiset operators.

First, by introducing a fresh multiset variable Y for L\D , we obtain the formula

Y = L \ D ∧D ⊆ L∧|D| = 1∧|Y | 6= |L|−1

We next perform a similar step and introduce fresh integer variables k1 and k2:

k1 = |Y |∧k2 = |L|∧Y = L \ D ∧D ⊆ L∧1 = |D|∧k1 6= k2 −1

The number of occurrences of an element e in a multiset M is denoted by M(e). The cardinality

of a multiset M is the number of all elements that occur in M : |M | = ∑
e∈EM(e), where E is

some base set used for populating multisets. Applying this definition results in:

k1 6= k2 −1∧k1 =
∑
e∈E

Y (e)∧k2 =
∑
e∈E

L(e)∧1 = ∑
e∈E

D(e)∧Y = L \ D ∧D ⊆ L

All the sums range over the set E so we make this formula more compact by using vectors:

k1 6= k2 −1∧ (k1,k2,1) = ∑
e∈E

(Y (e),L(e),D(e))∧Y = L \ D ∧D ⊆ L (2.3)

We next apply the pointwise definition of multiset inclusion: D ⊆ L iff for every element e

appearing in D there are at least as many elements in L:

D ⊆ L ⇔∀e.D(e) ≤ L(e)

Finally, we apply the definition of the set difference operator:

Y = L \ D ⇔∀e.Y (e) = ite(L(e) ≥ D(e),L(e)−D(e),0)

13

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

Given a term t = ite(F, t1, t2), if the formula F evaluates to true, then t has value t1, otherwise

t2. We combine those definitions and obtain the formula:

k1 6= k2 −1∧ (k1,k2,1) = ∑
e∈E

(Y (e),L(e),D(e))∧

∀e.Y (e) = ite(L(e) ≥ D(e),L(e)−D(e),0)∧D(e) ≤ L(e) (2.4)

Formula (2.4) is in a normal form that we call a sum normal form. It is a conjunction of three

parts: a part containing a Presburger arithmetic formula, a part containing a sum expression

and a part of universally quantified Presburger arithmetic formulas.

We can eliminate the multiset indices altogether and reduce the formula to an equisatisfiable

formula that belongs to an extension of Presburger arithmetic formula over the integers. In

Theorem 2.4 we formally prove the correctness of the reduction and here we just apply the

final results. In a sum normal form, multisets occur only in expressions of the form M(e).

These expressions denote integer values. Therefore, for every expression M(e) we introduce a

fresh integer variable. In the case of formula (2.4) for L(e) we introduce the integer variable l ,

while for Y (e) and D(e) we use y and d .

The summation in formula (2.4) is unbounded. Let us assume that the set E has N elements

and for every multiset expression, let mi = M(ei). Using this new integer notation, the sum can

be rewritten as ∃N ≥ 0.(k1,k2,1) =∑N
i=0(yi , li ,di). In addition, all integer variables yi , li and

di have to satisfy the universally quantified Presburger arithmetic formula in (2.4). Applying

these new variables, formula (2.4) reduces to

k1 6= k2 −1∧ (k1,k2,1) =
N∑

i=0
(yi , li ,di)∧∀i .yi = ite(li ≥ di , li −di ,0)∧di ≤ li (2.5)

Variables yi , li and di all represent the number of occurrences of an element in a multisets,

thus they are all implicitly assumed to be non-negative. Using this assumption, the universally

quantified part can be further simplified and the formula becomes:

k1 6= k2 −1∧ (k1,k2,1) =
N∑

i=0
(yi , li ,di)∧∀i .li = yi +di

We next eliminate the variables li entirely from the formula. In this particular example this

is easy to do. In fact, it can always be done, independently of how complex is the formula

under the universal quantifier. It is possible because all non-negative solutions of a Presburger

arithmetic formula have a special form, they are so-called semilinear sets [Ginsburg and

Spanier(1966)]. The semilinear sets provide a finite description of the set of solutions of a

formula. The semilinear sets are then further used to eliminate the sums, so the final result

is again a Presburger arithmetic formula. To go back to our example, after eliminating li we

obtain:

k1 6= k2 −1∧ (k1,k2,1) =
N∑

i=0
(yi , yi +di ,di)

14

2.4. Multiset Constraints

Because all variables are non-negative integers, di has to be almost all the time zero, except

once. Without loss of generality let that be the last value:

k1 6= k2 −1∧ (k1,k2,1) =
N−1∑
i=0

(yi , yi ,0)+ (yN , yN +1,1)

Let c denote c =∑N
i=0 yi . It is an integer value and the only value in the formula that contains

a link to unbounded sums (N). Using c we can remove the sum from the formula:

k1 6= k2 −1∧∃c.k1 = c ∧k2 = c +1

After eliminating c we obtain formula

k1 6= k2 −1∧k2 = k1 +1 (2.6)

Because (2.2) and (2.6) are equisatisfiable and (2.6) is unsatisfiable, we conclude that (2.1) is a

valid formula.

2.4 Multiset Constraints

Figure 2.3 defines constraints whose satisfiability we study. Our constraints combine multiset

expressions and two kinds of QFPA formulas: outer linear arithmetic formulas, denoting

relationship between top-level integer values in the constraint, and inner linear arithmetic

formulas, denoting constraints specific to a given index element e ∈ E. Note that the syntax is

not minimal; we subsequently show how many of the constructs are reducible to others.

Formulas (F) are propositional combinations of atomic formulas (A). Atomic formulas can

be multiset equality and subset, pointwise linear arithmetic constraint ∀e.Fin, or atomic

outer linear arithmetic formulas (Aout). Outer linear arithmetic formulas are equalities and

inequalities between outer linear arithmetic terms (tout), as well as summation constraints

of the form (u1, . . . ,un) = ∑
F (t1, . . . , tn), which compute the sum of the vector expression

(t1, . . . , tn) over all indices e ∈ E that satisfy the formula F . Outer linear arithmetic terms

(tout) are built using standard linear arithmetic operations starting from integer variables (k),

cardinality expressions applied to multisets (|M |), and integer constants (C). The ite(F, t1, t2)

expression is the standard if-then-else construct, whose value is t1 when F is true and t2

otherwise. Inner linear arithmetic formulas are linear arithmetic formulas built starting from

non-negative integer constants (P) and values m(e) of multiset variables at the current index

e. This way inner terms tin are always non-negative. In Section 4 we remove this requirement,

and the inner terms can be positive and negative. We will show that the logic is decidable, and

of the same complexity (Section 4.5.2). In this chapter, for ease of presentation, we investigate

only the positive inner terms. Additionally, this requirement does restrict a construction of the

inner formulas. They can contain arbitrary linear arithmetic expressions. As an illustration,

15

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

top-level formulas:
F ::= A | F ∧F | ¬F
A ::= M=M | M ⊆ M | ∀e.Fin |Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout∧Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . ,tout)= ∑
Fin

(tin, . . . ,tin)

tout ::= k | |M| |C | tout+ tout |C · tout | ite(Fout,tout,tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin∧Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | P | tin+ tin | P · tin | ite(Fin,tin,tin)
multiset expressions:

M ::= m | ; | M ∩M | M ∪M | M]M | M \ M | M \\ M | set(M)
terminals:

m - multiset variables; e - index variable (fixed)
k - integer variable; C - integer constant; P - non-negative integer constant

Figure 2.3: Quantifier-Free Multiset Constraints with Cardinality Operator

the difference can be expressed using the sum: x = y − z is formulated as x + z = y .

Multiset constraints contain some common multiset operations such as disjoint union, inter-

section, and difference, as well as the set operation that computes the largest set contained

in a given multiset. These operations are provided for the sake of illustration; using the con-

straints ∀e.Fin it is possible to specify any multiset operation defined pointwise using a QFPA

formula. Note also that it is easy to reason about individual elements of sets at the top level

by representing them as multisets s such that |s| = 1. To express that s ∈ M we consider s

as a singleton: s ⊆ M ∧ |s| = 1. If s is such a multiset representing an element and m is a

multiset, we can count the number of occurrences of s in m with, for example, the expression∑
ite(s(e)=0,0,m(e)). We can also state that a multiset s is a set. This is done by requiring that

every element can appear at most once: ∀e.s(e) ≤ 1.

2.4.1 Reducing Multiset Operations to Sums

We next show that all operations and relations on multisets as a whole can be eliminated from

the language of Figure 2.3. To treat operations as relations, we flatten formulas by introducing

fresh variables for subterms and using the equality operator. Figure 2.4 summarizes this

process.

Definition 2.1 (Sum normal form) A multiset formula is in a sum normal form iff it is of the

16

2.4. Multiset Constraints

INPUT: multiset formula in the syntax of Figure 2.3
OUTPUT: formula in sum-normal form (Definition 2.1)

1. Flatten expressions that we wish to eliminate:
C [e] (x = e ∧C [x])

where e is one of the expressions ;, m1 ∪m2, m1 ∪m2, m1]m2, m1 \ m2, set(m1), |m1|,
and where the occurrence of e is not already in a top-level conjunct of the form x = e or
e = x for some variable x.

2. Reduce multiset relations to pointwise linear arithmetic conditions:
C [m0 =;] C [∀e. m0(e) = 0]
C [m0 = m1 ∩m2] C [∀e. m0(e) = ite(m1(e) ≤ m2(e),m1(e),m2(e))]
C [m0 = m1 ∪m2] C [∀e. m0(e) = ite(m1(e) ≤ m2(e),m2(e),m1(e))]
C [m0 = m1]m2] C [∀e. m0(e) = m1(e)+m2(e)]
C [m0 = m1 \ m2] C [∀e. m0(e) = ite(m1(e) ≤ m2(e),0,m1(e)−m2(e))]
C [m0 = m1 \\m2] C [∀e. m0(e) = ite(m2(e) = 0,m1(e),0)]
C [m0 = set(m1)] C [∀e. m0(e) = ite(1 ≤ m1(e),1,0)]
C [m1 ⊆ m2] C [∀e. (m1(e) ≤ m2(e))]
C [m1 = m2] C [∀e. (m1(e) = m2(e))]

3. Group all top-level universally quantified conjuncts in one formula:
F ∧∀e.F1 ∧ . . .∧∀e.Fq F ∧∀e.F1 ∧ . . .∧Fq

4. Let the current formula be F ∧∀e.Fu . The remaining steps perform only on F :

(a) Express each pointwise constraint using a sum:
C [∀e.F] C [

∑
e∈E

ite(F,0,1) = 0]

(b) Express each cardinality operator using a sum:
C [|m|] C [

∑
e∈E

m(e)]

(c) Flatten any sums that are not already top-level conjuncts:

C [(u1, . . . ,un)=∑
F

(t1, . . . , tn)] (w1, . . . , wn)=∑
F

(t1, . . . , tn)∧C [
n∧

i=1
ui=wi]

(d) Eliminate conditions from sums:
C [

∑
F

(t1, . . . , tn)] C [
∑

e∈E
(ite(F, t1,0), . . . , ite(F, tn ,0))]

(e) Group all sums into one:

P∧
q∧

i=1
(ui

1, . . . ,ui
ni

) = ∑
e∈E

(t i
1, . . . , t i

ni
)

P∧ (u1
1, . . . ,u1

n1
, . . . ,uq

1 , . . . ,uq
nq

) = ∑
e∈E

(t 1
1 , . . . , t 1

n1
, . . . , t q

1 , . . . , t q
nq

)

5. Return P ∧ (u1, . . . ,un) = ∑
e∈E

(t1, . . . , tn)∧∀e.Fu

Figure 2.4: Algorithm for reducing multiset formulas to sum normal form

17

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

form

P ∧ (u1, . . . ,un) = ∑
e∈E

(t1, . . . , tn)∧∀e.F

where P is a quantifier-free Presburger arithmetic formula without any multiset variables, and

the variables in t1, . . . , tn and F occur only as expressions of the form m(e) for m a multiset

variable and e the fixed index variable.

Theorem 2.2 (Reduction to sum normal form) Algorithm in Figure 2.4 reduces in polynomial

time any formula in the language of Figure 2.3 to a formula in sum normal form. The derived

formula in sum normal form is at most linear in the size of the original formula.

2.5 Linear Integer Arithmetic with Stars

In this section, we define an extension of linear integer arithmetic. It will contain an additional

atom that checks whether a vector can be represented as a sum of a finite, unbounded number

of the solution vectors for a given formula F . We call such logic LIA∗ (linear integer arithmetic

with the star operator). We first define the star operator.

Definition 2.3 (Star operator) Let S ⊆Nk be a set of vectors of non-negative integers. The star

operator is an additive closure operator of set S:

S∗ = {x1 + . . .+xn | x1, . . . , xn ∈ S}

It can be easily seen that for a finite set S = {x1, . . . , xn}, S∗ = {λ1x1 + . . .+λn xn | ∀i .λi ≥ 0}. In

the operational research literature, S∗ is also known under the name the integer conic hull

generated by a set S.

Given a formula F and an integer vector u, the expression u ∈ {x | F (x)}∗ is an atom stating that

u can be represented as an unbounded and finite sums of the non-negative solution vectors

for F . This atom is an addition to the standard linear integer arithmetic that we consider in

LIA∗. Figure 2.5 defines the language of the LIA∗ formulas.

2.5.1 From Multisets to LIA* Constraints

We next argue that for every formula in a sum normal form (Definition 2.1) there is an equisat-

isfiable LIA∗ formula (Figure 2.5).

Theorem 2.4 (Multiset elimination) Consider a sum normal form formula G of the form

P ∧ (u1, . . . ,un) = ∑
e∈E

(t1, . . . , tn)∧∀e.F

18

2.5. Linear Integer Arithmetic with Stars

LIA∗ formulas: F0 ∧ (u1, . . . ,un) ∈ {(x1, . . . , xn) | F }∗ (free variables of F are among x)
LIA formulas:

F ::= A | F1 ∧F2 | F1 ∨F2 | ¬F1

A ::= T1 ≤ T2 | T1 = T2

T ::= k |C | T1 +T2 |C ·T1 | ite(F,T1,T2)
terminals: k - integer variable; C - integer constant

Figure 2.5: Quantifier-free Presburger Arithmetic and an extension with the Star Operator

where free variables of t1, . . . , tn and F are multiset variables m1, . . . ,mq . Let k1, . . . ,kq be fresh

integer variables. Then G is equisatisfiable with the formula

P ∧ (u1, . . . ,un) ∈ {(t ′1, . . . , t ′n) | F ′∧k1 ≥ 0∧ . . .∧kq ≥ 0}∗ (2.7)

where t ′i = ti [m1(e) := k1, . . . ,mq (e) := kq] (t ′i results from ti by replacing the multiset variables

with the fresh integer variables) and F ′ = F [m1(e) := k1, . . . ,mq (e) := kq] (similarly replacing

the multiset variables with the freshly introduced integer variables).

Proof. Assume that the LIA∗ formula is satisfiable and let M be its model. In addition,

satisfiability also means that (u1, . . . ,un) is a sum of N vectors, each of them satisfying the

formula F ′:

(u1, . . . ,un) =
N∑

i=1
(t ′1

i , . . . , t ′n
i)∧∀i .F ′(t ′i)

We will show that the original multiset formula is satisfiable as well, by constructing a model

for it. We denote this model by MM . First, M and MM overlap on the common integer

variables. Next, we need to define the interpretation of the multiset variables occurring in

the multiset formula. To do that, we construct a base set E containing N distinctive elements.

Each summand in
∑N

i=1(t ′1
i , . . . , t ′n

i) stands for the exactly one element of E. Let e ∈ E be an

element of E and let (t ′1, . . . , t ′n) be its corresponding summand. Let M be a multiset occurring

in a multiset formula and let qM be a corresponding integer variable. Then M(e) for this fixed

e is the value that qM has in the corresponding summand. This completes the definition of

MM . Since the set E contains N elements, it is easy to see that MM is a model for

P ∧ (u1, . . . ,un) = ∑
e∈E

(t1, . . . , tn)∧∀e.F

To prove the other direction, that satisfiability of the multiset formula also guarantees the

satisfiability of the LIA∗ formula, we apply analogous reasoning.

19

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

Let us consider an atom (u1, . . . ,un) ∈ {(x1, . . . , xn) | F }∗. If any of terms ti in vector x is a

complex expression and not a variable, we use the following transformation:

(u1, . . . ,un+m) ∈ {(x1, . . . , xn , t1, . . . , tm) | F }∗ ;

(u1, . . . ,un+m) ∈ {(x1, . . . , xn , v1, . . . , vm) | F ∧
m∧

i=1
vi = ti }∗

The same way we treat complex expressions appearing in vector u:

P ∧ (u1, . . . ,un , t1, . . . , tm) ∈ {(x1, . . . , xm+n) | F }∗ ;

P ∧
m∧

i=1
wi = ti ∧ (u1, . . . ,un , w1, . . . , wm) ∈ {(x1, . . . , xm+n) | F }∗

From now on we consider a formula (u1, . . . ,un) ∈ {(x1, . . . , xn) | F }∗, where all xi and u j are

variables. If there are some free variables in F that do not appear in {x1, . . . , xn}, we add them

to variables xi and in addition we extend vector (u1, . . . ,un) with fresh integer variables:

(u1, . . . ,un) ∈ {(x1, . . . , xn) | F }∗∧x ∈ FV (F)∧x 6∈ {x1, . . . , xn} ;

(u1, . . . ,un ,u f) ∈ {(x1, . . . , xn , x) | F }∗

To illustrate those transformation, consider the following example:

Example 2.5 Let (u1,u2) ∈ {(3x +2y, x +3y) | 5x +2y ≤ 7}∗ be a LIA∗ atom. First we introduce

fresh variables v1 and v2 and the problem transforms to (u1,u2) ∈ {(v1, v2) | 5x +2y ≤ 7∧v1 =
3x +2y ∧ v2 = x +3y}∗. With F we denote formula 5x +2y ≤ 7∧ v1 = 3x +2y ∧ v2 = x +3y.

The free variables of F are x, y, v1 and v2. However, x and y do not appear in the variable

vector. We extend the variable vector with x and y and the original problem is reduced to

(u1,u2,ux ,uy) ∈ {(v1, v2, x, y) | F }∗

To summarize, given a multiset formula G belonging to the language defined in Figure 2.4,

we translate G to a formula of the form P ∧ (u1, . . . ,un) ∈ {(x1, . . . , xn) | F }∗. Because the inner

terms in the original formula are always non-negative, variables xi represent non-negative

solutions, so it is clear that the resulting formula belongs to LIA∗.

Combining the result of Theorem 2.4 and the above transformations, we obtain the following

corollary:

Corollary 2.6 For a formula in a sum normal form (Definition 2.1) there is a linear time

reduction to an equisatisfiable LIA∗ formula (Figure 2.5). The derived LIA∗ formula is linear in

the size of the original formula.

20

2.6. Deciding Linear Arithmetic with Sum Constraints

Because of Corollary 2.6, we reduce reasoning about multisets with cardinality constraints

to reasoning about an extension of linear integer arithmetic. The reduction is satisfiability

preserving and from now on we focus on the satisfiability question in this new logic.

2.6 Deciding Linear Arithmetic with Sum Constraints

In this section, we describe an algorithm that reduces reasoning about LIA∗ formulas to

reasoning about linear integer arithmetic. The algorithm and techniques described here

establish decidability. This algorithm focuses on the conjunctive fragments making it much

simpler than the algorithm given in Sec. 2.7.

To address the satisfiability problem of LIA∗ formulas, we first need to find a characterization

of the set of non-negative solutions for a linear arithmetic formula. To answer this problem,

we use semilinear sets.

Definition 2.7 (Minkowski addition and semilinear sets) Let C1,C2 ⊆Nk be sets of vectors of

non-negative integers. The Minkowski sum of C1 and C2 is a set of vectors in which every

element is a result of adding an element of A to an element of B, i.e. the set

C1 +C2 = {x1 +x2 | x1 ∈C1 ∧x2 ∈C2}

A linear set is a set of the form {x}+C∗, where x ∈Nn and C ⊆Nn is a finite set of non-negative

vectors. The vector x ∈Nn is called the base vectors, while the elements of C ⊆Nn are called the

step vectors.

A semilinear set is a union of a finite number of linear sets.

2.6.1 Formula Solutions as Semilinear Sets

We first review some relevant results from [Ginsburg and Spanier(1966)].

Theorem 2.8 (Theorem 1.3 in [Ginsburg and Spanier(1966)]) For a given linear arithmetic

formula F let PF denote the set of all non-negative solutions of F , i.e. PF = {x | F (x)∧ x ∈Nn}.

For every F , set PF is a semilinear set and it is effectively computable from F . The converse also

holds: for every semilinear set S there exists a formula F such that S = PF .

Ginsburg and Spanier provided a constructive proof for building a semilinear set from a

given formula in [Ginsburg and Spanier(1964)]. However, this proof is of a rather theoretical

importance. In a more recent paper by Pottier [Pottier(1991)], the author describes several

algorithms for computing semilinear sets and also establishes bounds on the size of the

generating sets.

21

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

2.6.2 Computing Semilinear Sets and their Bounds

To establish bounds on the number and the size of the base and the step vectors generating a

semilinear set, we apply the results of [Pottier(1991)] and [Giles and Pulleyblank(1979)] on the

size of the minimal solutions of linear integer arithmetic formulas.

Definition 2.9 We use the following norms to establish the complexity bounds:

1. for an integer vector x = (x1, . . . , xn), define ||x||1 =∑n
i=1 |xi |

2. for an integer vector x = (x1, . . . , xn), define ||x||∞ = max{|x1|, . . . , |xn |}

3. for a matrix A = [ai j], define ||A||1,∞ = supi (
∑

j |ai j |)

Every linear arithmetic formula can be represented as a finite disjunction of systems of linear

inequalities. Since it trivially follows that a union of two semilinear sets is again a semilinear

set, it is enough to solve the problem of finding a semilinear set corresponding to a system of

linear inequalities. Finding the solution sets for a system of inequalities can be easily reduced

to finding the solution set for a system of equalities and vice versa.

Given a system of equations Ax = 0, where A ∈Zm,n is an integer matrix with m rows and n

columns, the set of all non-negative integer solutions forms a monoid M (a sub-monoid of

Nn). On M we define a partial order by (x1, . . . , xn)4 (y1, . . . , yn) ⇔∀i .xi ≤ yi . The monoid M

is generated by the non-zero minimal elements for (M ,4). We call this set the Hilbert basis

of M and denote it by H (M). The set H (M) is finite and [Pottier(1991)] describes several

algorithms for its construction.

Theorem 2.10 (Theorem 1 in [Pottier(1991)]) Given a matrix A ∈Zm,n , let r = rank(A) be the

rank of A. Then the following bound on the size of the elements of H (M) holds:

∀x ∈H (M).||x||1 ≤ (1+||A||1,∞)r

Theorem 2.11 (Corollary 1 in [Pottier(1991)], applied to non-negative integers) Consider a

system of inequations Ax ≤ b where A ∈ Zm,n and b ∈ Zm . Then there exist two finite sets

C1,C2 ⊆Nn such that

1. for all x ∈Nn , Ax ≤ b iff x ∈C1 +C∗
2 , and

2. ∀h ∈C1 ∪C2, ||h||1 ≤ (2+||A||1,∞+||b||∞)m .

If we consider the system of equations Ax = b, the set of all non-negative solutions can be again

represented as a Minkowsky sum of two set C1 and C2 with the same properties, but the bound

is weakened to (1+||A||1,∞+||b||∞)rank(A)+1.

22

2.6. Deciding Linear Arithmetic with Sum Constraints

Proof. With y ≥ 0 we denote a vector y = (y1, . . . , ym) such that ∀i .yi ≥ 0. We use vector y to

express Ax ≤ b ⇔∃y ≥ 0.Ax + y −b = 0. To formulate this equation as the problem of finding

the Hilbert basis, we construct a new matrix A′ = [A | Im | −b]. Here Im represents the identity

matrix of the dimension m. Matrix A′ has m rows and n +m +1 columns. We construct a

variable vector t = (x, y, z) of the dimension n +m +1. To access the first n coordinates we use

projection πx (t) = x. To access the last coordinate we use projection πz (t) = z. To find the set

of all non-negative solutions of Ax ≤ b we use the following equivalence:

Ax ≤ b ∧x ∈Nn ⇔ A′t = 0∧ t ∈Nn+m+1 ∧πx (t) = x ∧πz (t) = 1

Let H A′ be the Hilbert basis of the monoid of non-negative integer solutions of the system

A′t = 0. We define C1 and C2 as follows:

C1 = {x | ∃t .t ∈H A′ ∧πx (t) = x ∧πz (t) = 1}

C2 = {x | ∃t .t ∈H A′ ∧πx (t) = x ∧πz (t) = 0}

We next show that every non-negative solution of Ax ≤ b can be written as a sum of a vector

from C1 and a finite number of vectors from C2:

Ax ≤ b ∧x ∈Nn ⇔ A′t = 0∧ t ∈Nn+m+1 ∧πx (t) = x ∧πz (t) = 1

(t 6= 0 and can be written as a linear combination of the vectors from H A′)

⇔ t = (x0, y0,1)+
l∑

k=1
(xk , yk ,0)∧∀k.(xk , yk , z) ∈H A′

⇔ x = c0
1 +

l∑
k=1

ck
2 ∧ c0

1 ∈C1 ∧∀k.ck
2 ∈C2

⇔ x ∈C1 +C∗
2

To prove the upper bounds, first we observe that rank(A′) = m, because of Im . We also derive

an additional bound on the ||A′||1,∞: ||A′||1,∞ ≤ ||A||1,∞+1+||b||∞. Combining those bounds

together with Theorem 2.10 results in the fact that the ||t ||1 norm of every t ∈H A′ is bounded

by (2+ ||A||1,∞ + ||b||∞)m . The last observation is that for every vector h ∈ C1 ∪C2 holds

||h||1 ≤ ||t ||1 which results in

∀h ∈C1 ∪C2.||h||1 ≤ (2+||A||1,∞+||b||∞)m

In the case when we consider the system of equations Ax = b, we apply analogous reasoning

and define sets C1 and C2, as well as the bounds on the size of the vectors in C1 ∪C2.

23

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

2.6.3 LIA Formulas Representing LIA∗ Formulas

Every linear arithmetic formula F can be converted into a disjunction of systems of equations

and inequations. The number of such systems is singly exponential in the number of atomic

formulas in F . Once F is converted into a disjunction of systems of the form Ax = b or Ax ≤ b,

we invoke Theorem 2.11 and construct sets C1 and C2. If C1,C2 ⊆ Nn are finite sets, then

C1+C∗
2 is a particular kind of a semilinear set. Moreover, the values occurring in A and b in the

resulting systems are polynomially bounded by the coefficients and constants in the original

LIA formula.

Consequently, for a formula F let B = maxi (2+||Ai ||1,∞+||bi ||∞)m where Ai x ≤ bi are systems,

which are the results of decomposition of F . If s is the size of the original formula F , then B is

at most singly exponential in s. We denote this bound by 2p(s), where p is some polynomial

that follows from details of the algorithm for generating all the systems of equations and

inequations whose disjunction is equivalent to F . We thus obtain the following theorem.

Theorem 2.12 Let F be a quantifier-free linear integer arithmetic formula of size s. Then there

exist a number n and finite sets Ai ,Bi for 1 ≤ i ≤ n such that the set of satisfying assignments for

F is given as

{x | F (x)} =
n⋃

i=1
(Ai +B∗

i)

In addition, there is a polynomial p such that ||h||1 ≤ 2p(s) for each h ∈
d⋃

i=1
(Ai ∪Bi).

If A = {a1, . . . , aq } and B = {b1, . . . ,br } for ai ,b j ∈Nn , then the condition u ∈ A+B∗ is given by

the formula
∨q

i=1(u = ai +∑r
j=1λ j b j) where λ1, . . . ,λr are existentially quantified variables

ranging overN. This view leads to the following formulation of Theorem 2.13.

Theorem 2.13 (Semilinear normal form for linear arithmetic) Let F be a quantifier-free lin-

ear integer arithmetic formula of size s. Then there exist a number n, numbers q1, . . . , qn and

vectors ai and bi j , 1 ≤ j ≤ qi , 1 ≤ i ≤ n, with ||ai ||1, ||bi j ||1 ≤ 2p(s) such that

F (x) ⇔ ∃λ11, . . . ,λnqn .
n∨

i=1
(x = ai +

qi∑
j=1

λi j bi j) (2.8)

The semilinear sets provide a characterization of the set of all solutions of a formula F . To

answer our starting problem of expressing (u1, . . . ,un) ∈ {(t1, . . . , tn) | F }∗ as a QFPA formula,

we first represent the set of solutions of F as a semilinear set. We next applying the ∗ operator

on a semilinear set, which results in a linear arithmetic formula. Similar result was also

obtained in [Lugiez and Zilio(2002), Section 3.2].

24

2.7. Complexity of Linear Arithmetic with Stars

Theorem 2.14 (Elimination of the star operator) Given a formula F , let a semilinear set rep-

resenting all non-negative solutions of F be given with the vectors ai and bi j :

F (x) ⇔ x ∈
n⋃

i=1
({ai }+ {bi j }∗)

The expression u ∈ {t | F }∗, where u and t are integer vectors, is equisatisfiable to

∃µi ,λi j . u =
d∑

i=1
(µi ai +

qi∑
j=1

λi j bi j) ∧
d∧

i=1
(µi = 0 =⇒

qi∑
j=1

λi j = 0) (2.9)

The existentially quantified variables µi , λi j become free variables in the satisfiability problem.

The last conjunct in the formula (2.9) states that if a base vector did not appear in the sum,

then also its corresponding step vectors cannot contribute to the sum.

To summarize, the starting problem was the satisfiability question for the multiset formulas

with cardinality constraints. We reduced this problem to reasoning about the formulas of the

form P ∧ (u1, . . . ,un) ∈ {(t1, . . . , tn) | F ′}∗. Theorem 2.14 shows how the star operator can be

entirely eliminated and the resulting formula is a conjunction of P and formula (2.9). The

formula that we obtain in the end is a QFPA formula. The satisfiability problem for quantifier-

free linear arithmetic is decidable, it is an NP-complete problem [Papadimitriou(1981)].

Theorem 2.15 Consider a formula F belonging to the language defined in Figure 2.3. Checking

whether F is satisfiable is a decidable problem.

2.7 Complexity of Linear Arithmetic with Stars

While reducing a LIA∗ formula P ∧u ∈ {x | F (x)}∗ to a linear arithmetic formula, we used

semilinear sets. The set of all non-negative integer solutions of F can be described with finitely

many generating vectors ai (base vectors) and bi j (step vectors). However, the number of

generating vectors can be exponential [Pottier(1991)], so we avoid explicitly constructing

them. We instead apply several relevant results from operations research to construct a

polynomially large equisatisfiable formula. In this section we describe a construction of such

polynomial-sized formula.

2.7.1 Estimating Coefficient Bounds of Disjunctive Form

The results on which we rely are usually expressed for integer linear programming problems.

They mostly expressed properties for the systems of the form Ax ≤ b or Ax = b. Those

properties are expressed in terms of m, n and a, where m is the number of rows in the matrix

A, n is the number of columns and a is a maximal absolute value of all coefficient occurring

25

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

in A. In this sections we will describe how one can estimate those values without actually

converting formula into a disjunction of the systems of the form Ax = b.

Let F be a QFPA formula. F can be converted into an equivalent disjunction of integer linear

programming problems
∨l

i=1 Ai x =~bi . Let mi be a number of rows in Ai and let ni be a

number of columns in Ai and let ai be a maximal absolute value of all coefficient occurring in

Ai and bi . For a given F , define mF = maxl
i=1 mi , nF = maxl

i=1 ni and aF = maxl
i=1 ai .

Lemma 2.16 (Values of mF , nF and aF) Let F be a QFPA formula. If a subformula does not

occur within any ite expression we say that it has the positive polarity if it occurs under an even

number of negations and say it has the negative polarity if it occurs under an odd number of

negations. If a subformula occurs within an ite expression we say that it has no polarity. Let g be

the number of atomic formula occurrences of the form t1 = t2 that have the positive polarity in

F , and let h be the number of the remaining atomic formulas. Let v be the number of variables

in F and a the maximum of absolute values of integer constants. Then mF ≤ g +h, nF ≤ v +h,

and aF ≤ a +1.

Proof. We can transform F [ite(C , t1, t2)] into a disjunction of C ∧ F [t1] and ¬C ∧ F [t2].

Repeating this transformation we eliminate all ite expressions and obtain disjuncts whose size

is polynomial in the size of F . Let D be one of the disjuncts after such ite elimination. The

polarity of all g atomic formulas t1 = t2 that occur positively in F remains positive in each D .

Each of the remaining h atomic formulas becomes of the form t1 ≤ t2, t1 = t2 or disjunction

t1 ≤ t2 ∨ t ′1 ≤ t ′2. In disjunctive normal form of D, each of the h atomic formulas t1 ≤ t2 may

require addition of at most one fresh variable to be converted into equality t1 + x = t2. The

resulting number of variables is therefore bounded by v +h whereas the total number of

atomic formulas is bounded by g +h. When transforming t1 < t2 into t1 +1 ≤ t2 there is a

possibility that the constants part of t1 or t2 will be increased by one, so aF ≤ a +1.

Example 2.17 As an illustration consider a formula F : z = ite(x ≤ y , x, y)∧z +2 6= y. The num-

ber of atomic formulas of the form t1 = t2 with the positive polarity is one, z = ite(x ≤ y , x, y),

which means that g = 1. There are two other remaining atomic formulas: x ≤ y and z +2 6= y,

i.e. h = 2. Finally, v = 3 and a = 2. From those values we can easily compute values mF , nF and

aF : mF ≤ 3, nF ≤ 5, and aF ≤ 3. In this particular example, those bounds are also tight. One of

the disjuncts will contain the following formula z = x ∧x ≤ y ∧ z +2 < y. When translated into

equalities, the formula becomes z = x ∧ x + l1 ≤ y ∧ z +3+ l2 = y. Written in the matrix form, it

becomes:

1 0 −1 0 0

1 −1 0 1 0

− −1 1 0 1

x

y

z

l1

l2

 =

 0

0

−3

26

2.7. Complexity of Linear Arithmetic with Stars

2.7.2 Size of the Solution Set Generators

This section combines the results of the previous section (Section 2.7.1) with the bounds

on the size of the generators of a semilinear set. It expresses Theorem 2.13 in the terms of

Lemma 2.16.

Lemma 2.18 For every QFPA formula F , there exist q base vectors ai , 1 ≤ i ≤ q, and for each i

the corresponding qi step vectors bi j for 1 ≤ j ≤ qi such that

F (x) ⇔ ∃λi j .
q∨

i=1
(x = ai +

qi∑
j=1

λi j bi j) (2.10)

The norm ||·||1 of all vectors ai and bi j is bounded by (1+ (nF +1)aF)mF+1 where nF ,mF , aF are

defined as in Lemma 2.16.

Proof. The existence of the generating vectors was already proved in Theorem 2.13. The

only remaining thing to argue is a bound on the size of the generating vectors. Let F be a

formula and
∨d

i=1 Ai x = b be its decomposition into a disjunction of the system of equations.

In Theorem 2.11 there is a bound for the case of a system of equations Ax = b: every generating

vector is bounded by (1+||A||1,∞+||b||∞)rank(A)+1. A matrix A will have a maximal ||A||1,∞ if

there is a row containing the value a or −a. That implies that for every Ai : ||Ai ||1,∞ ≤ nF aF .

Similarly, we prove that for every bi : ||b||∞ ≤ aF . Finally, the rank of Ai is bounded with both

n f and mF . We choose MF to keep the consistence with other formulas.

2.7.3 Selecting Polynomially Many Generators

We have already established the bounds on the size of the generating vectors. However, we

did not establish the bound on their number. This section finds that bound. We consider the

formula

x =
q∑

i=1
(µi ai +

qi∑
j=1

λi j bi j) ∧
q∧

i=1
(µi = 0 →

qi∑
j=1

λi j = 0) (2.11)

Our goal is to show that if x is a linear combination of the generators, then it is also a linear

combination of a polynomial subset of the generators that form a smaller semilinear set.

We prove this fact using a theorem about sparse solutions of integer linear programming

problems [Eisenbrand and Shmonin(2006)].

Given a set of vectors X and a vector b ∈ X ∗, the following theorem determines the bound on

the number of vectors sufficient for representing b as a linear combination of vectors from X .

Theorem 2.19 (Theorem 1 (ii) in [Eisenbrand and Shmonin(2006)]) Let X ⊆ Zd be a finite

set of integer vectors and let b ∈ X ∗. Then there exists a subset X̃ such that b ∈ X̃ ∗ and |X̃ | ≤

27

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

2d log(4d M), where M = maxx∈X ||x||∞.

Proof. The proof can be found in Appendix A.

Theorem 2.19 has been applied in [Kuncak and Rinard(2007)] to show that the satisfiability

of constraints on sets with cardinality operators is in NP. In the case of multisets and LIA∗

we need to generalize this idea because of dependencies between the base vectors and the

corresponding step vectors.

Theorem 2.20 Let F be QFPA formula and ai , bi j , x, q, qi be values and vectors from (2.9).

Then there exist sets I0, I1 ⊆ {1, . . . , q} and J ⊆∪q
i=1{(i ,1), . . . , (i , qi)} such that

x = ∑
i∈I0

(ai +
∑

(i , j)∈J
λ′

i j bi j)+ ∑
i∈I1

µ′
i ai (2.12)

and |I0| ≤ |J | ≤ B, and |I1| ≤ B, where B = 2nF (log4nF + (mF +1)log(1+ (nF +1)aF)).

Proof. By assumption, x = ∑q
i=1(µi ai +∑qi

j=1λi j bi j) and
∧q

i=1(µi = 0 → ∑qi

j=1λi j = 0). All

zero indices can be removed and from now on we assume that all µi and λi j are strictly

positive. We define vectors a and b as a =∑
i µi ai and b =∑

i j λi j bi j , so x = a +b. Because of

b =∑
i j λi j bi j , vector b can be seen as an element of the integer cone generated by vectors bi j :

b ∈ {bi j }∗. We apply Theorem 2.19 and conclude that there exists a set J of indices (i , j) and

coefficients λ′
i j such that b = ∑

(i , j)∈J λ
′
i j bi j and |J | ≤ 2nF log(4nF M) where M is the bound

on the size generators. We denote this number with B : B = 2nF log(4nF M). To satisfy the

dependencies between step vectors bi j and a base vector ai , let I0 = {i | ∃ j .(i , j) ∈ J }. Note

that |I0| ≤ |J |. Let ab =∑
i∈I0

ai . The vector ab +b is generated by vectors whose indices are

I0 and J . However, the vector ab +b still does not cover the whole vector x and we define

the vector ar = a − ab . The vector ar can be again seen as an element of an integer cone:

ar =∑
i∈I0

(µi −1)ai +∑
i∈{1,...,q}\I0

µi ai . Applying once again Theorem 2.19 we conclude that

there exists I1 ⊆ {1, . . . , q} with |I1| ≤ B such that ar =∑
i∈I1

µ′
i ai .

We still need to compute the size of the value B . Let H be a set containing all generating vectors

ai and bi j . To compute the value M from Theorem 2.19, we note that since ||v ||1 ≤ ||v ||∞ for all

vectors v , then M ≤ maxh∈H ||h||1 Using the bound (1+ (nF +1)aF)mF+1 from Lemma 2.18, we

obtain that B = 2nF log(4nF (1+ (nF +1)aF)mF+1) = 2nF (log4nF + (mF +1) log(1+ (nF +1)aF)).

Theorem 2.20 shows that there are only polynomially many generators of a semilinear set

needed to represent a solution of a linear arithmetic formula. The number of generators is

polynomial in the size of the given formula.

2.7.4 Grouping Generators into Solutions

Having showed that if u ∈ {x | F (x)}∗, then u is a particular linear combination of polynomially

many generating vectors ai and bi j and using the fact that those generating vectors are

28

2.7. Complexity of Linear Arithmetic with Stars

also polynomially bounded, this suggests an idea of guessing polynomially many bounded

vectors, checking whether they are generators, and then checking whether u is their linear

combination. However, it is not clear how to check if a guessed vector is one of ai ’s or bi j ’s

without calculating them. In this section we show that we can avoid the problem of checking

whether a vector is a generator and reduce the problem to checking whether a vector is a

solution of F . We show that it is enough to guess polynomially many vectors x such that F (x)

holds and check whether u =∑k
i=1λi xi .

Lemma 2.21 Let F be a QFPA formula and u ∈ {x | F (x)}∗. Then there exist k vectors x1, . . . , xk

for k ≤ 4nF (log4nF + (mF +1)log(1+ (nF +1)aF)) such that for some non-negative integers λi

u =
k∑

i=1
λi xi ∧

k∧
i=1

F (xi)

Proof. First observe that in Theorem 2.20 vectors ai +∑
(i , j)∈J ν

′
i j bi j are solutions of F and

that their number is bounded by B . Similarly, ai are also solutions of F and their number

is bounded by B as well. The total number of solutions is bounded by 2B where B is from

Theorem 2.20.

2.7.5 Multiplication by Bounded Bit Vectors

We can outline a new algorithm for checking satisfiability of a LIA∗ formula F0∧u ∈ {v | F (v)}∗.

First, using Lemma 2.16 we calculate the values of mF ,nF and aF . Using those values and

Lemma 2.21 we estimate an upper bound k = 4nF (log4nF + (mF +1)log(1+ (nF +1)aF)) on

the number of solution vectors xi . We construct an equisatisfiable formula

F0 ∧u =λ1x1 + . . .+λk xk ∧
k∧

i=1
F (xi) (2.13)

Formula (2.13) is polynomial in the size of F0 ∧u ∈ {v | F (v)}∗, but it is not a QFPA formula

because it contains multiplication of variables in λi ·xi . We address this problem by showing

that the values of λi in the smallest solutions have a polynomial number of bits, which allows

us to express multiplication using bitwise expansion.

To express terms λi xi from Lemma 2.21 as a QFPA term, we show that the smallest solution u,

if exists, is bounded [Papadimitriou(1981)].

Theorem 2.22 (Theorem, p.767 in [Papadimitriou(1981)]) Let A be an m ×n integer matrix

and b an m-vector, both with entries from [−a..a]. Then the system Ax = b has a solution inNn

if and only if it has a solution in [0..M]n where M = n(ma)2m+1.

The Theorem 2.22 states that it is enough to find a solution x such that ||x||∞ ≤ M . Here is

a simple algorithm to find a non-negative solution of Ax = b: check all vectors consisting of

29

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

non-negative integers such that their ||·||∞ ≤ M until a solution is found. If no solution was

found in that range, then Ax = b has no solution in non-negative integers.

Applying the Theorem 2.22 and using the fact that the whole formula can be represented

as a QFPA formula, we know that there is a bound on the solution vector u. Let rB be a

bound on the vector u of formula F0 ∧u ∈ {v | F (v)}∗: ||u||∞ ≤ rB . Because every λi in formula

(2.13) must be a non-negative integer, λi ≤ ||u||∞ ≤ rB , so each λi is also bounded by rB .

This means that every λi can be represented as a bit-vector of size r for r = dlogrB e. Let

λi =λi r . . .λi 1λi 0 =∑r
j=0λi j 2 j . Then

λi xi = (
r∑

j=0
λi j 2 j)xi =

r∑
j=0

2 j (λi j xi) =
r∑

j=0
2 j ite(λi j , xi ,0) =

ite(λi 0, xi ,0)+2(ite(λi 1, xi ,0)+2(ite(λi 2, xi ,0)+ . . .)) (2.14)

Still it remains to show how to establish and compute the value rB .

2.7.6 Estimating the Solution Size Bounds

Theorem 2.23 Let F0 be a QFPA formula. Let u = (u1, . . . ,ud) denote a d-dimensional vector

of variables ranging over non-negative integers. Let F be a QFPA formula which does not share

any variable with F0 and u. If a formula F0 ∧u ∈ {x | F (x)}∗ is satisfiable, then there exists a

non-negative solution vector uS for variables u such that ||uS ||∞ ≤ rB = n(ma)2m+1 where n,m

and a are defined by

1. m := nF +mF0

2. n := nF0 +nF (1+6(log4nF + (mF +1)log(1+ (nF +1)aF)))

3. a := max{aF0 , (1+ (nF +1)aF)mF+1}

The values mF0 ,nF0 , aF0 ,mF ,nF and aF are computed as in the Lemma 2.16.

Proof. We establish a bound on the size of the solution vector by applying two facts. First, uS

is a solution vector for u ∈ {~v | F (~v)}∗. As shown in Theorem 2.14, uS is a linear combination of

the generators of a semilinear set and uS can be expressed as

uS =
q∑

i=1
(µi ai +

qi∑
j=1

λi j bi j)

Assuming that all the generator vectors ai and bi j are known (they can be computed), we need

to solve the equation

u =
q∑

i=1
(µi ai +

qi∑
j=1

λi j bi j)

30

2.7. Complexity of Linear Arithmetic with Stars

for the vector u and variables µi and λi j . If we represent the above condition in the Ax = b

form, the matrix A consists of the generators of semilinear set and the negative identity matrix

−1n , while the vector x consists of the parameters µi and λi j followed by the vector u.

︸ ︷︷ ︸
generators

−1
. . .

−1

µi

λi j

u1
...

un

=

0
...

0

We denote this system with Ag xg = 0. The matrix Ag can have at most nF rows and at most

nF +nG columns, where nG is the number of generators. The number of rows is bounded

by nF (and not by d) because the length of the vector u can increase (for an example, when

converting inequalities into equalities). Theorem 2.20 established the bound on the number

of generators. Let B = 2nF (log4nF + (mF +1)log(1+ (nF +1)aF)) be the bound introduced

in the theorem. By reconstructing the proof, we count the needed generating vectors: there

are B step vectors bi j and B base vectors ai associated with those step vectors. However,

there may still appear B base vectors. Altogether, there are at most 3B generating vectors, i.e.

nG ≤ 6nF (log4nF + (mF +1)log(1+ (nF +1)aF)). In addition, this leads to the fact that Ag has

at most nF (1+6(log4nF + (mF +1)log(1+ (nF +1)aF))) columns.

The second fact that we will use is the observation that uS is a component of the solution

vector of F0. This implies that there is a matrix A0 with dimensions at most mF0 and nF0 and a

vector b0 such that A0w = b0. In the vector w we assume that first comes the vector u followed

by the remaining variables that we denote with the vector v : w = (u, v).

We combine those two facts into one by constructing a new system that contains both matrices

Ag and A0. We denote this new system with A f x = b f and it has the following form:

[
Ag | 0

0 | A0

]
µi

λi j

u

v

=
[

0

b0

]

Matrix A f has at most nF0 +nF (1+6(log4nF + (mF +1)log(1+ (nF +1)aF))) columns and at

most nF +mF0 rows.

To establish an upper bound on the maximum of absolute values in A f and b f , we apply

Lemma 2.18 in which there is an upper bound on the ||·||1 for all the generating vectors. Since

for every vector z, ||z||∞ ≤ ||z||1, we conclude that the bound given in Lemma 2.18 is also an

upper bound for the max{ |ai j | | ai j ∈ Ag }. The maximal absolute value appearing in A0 and

b0 is bounded by aF0 by the definition. Therefore, the maximal absolute value in the matrix

31

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

A f and vector b f is the bigger one of those two values.

We obtain the final result by applying Theorem 2.22 to A f x = b f . Since the vector u is embed-

ded into the vector x, it holds ||u||∞ ≤ ||x||∞ and this gives us the required upper bound.

2.7.7 An NP-Algorithm for LIA∗ Satisfiability

In this section, we summarize the results of all previous sections and present an algorithm of

the optimal complexity for checking satisfiability of LIA∗ formulas. Let F0 ∧u ∈ {x | F (x)}∗ be

a LIA∗ formula. The algorithm constructs an equisatisfiable QFPA formula through several

steps:

1. Apply Lemma 2.16 and compute values mF0 ,nF0 , aF0 ,mF ,nF and aF . To compute those

values, it is enough to analyze the formulas F and F0 without converting them to a

disjunctive form. The required values are computed in a linear time of the size of the

input formula and they are small (smaller than the size of the input formula).

2. Apply Theorem 2.23 and using mF0 ,nF0 , aF0 ,mF ,nF and aF compute the values n, m

and a. Compute the value r = dlogn + (2m +1)log(ma)e. Note that a might be of the

exponential value, but it does not matter, because to compute the value r , the log

function is applied to a. This implies the final value r is polynomial in the size of the

input formula.

3. With ti we denote the term ti = ∑r
j=0 2 j ite(λi j , xi ,0) = ite(λi 0, xi ,0)+2(ite(λi 1, xi ,0)+

2(ite(λi 2, xi ,0)+ . . .)). This is a term from the formula (2.14). The values λi j are boolean

variables and the value xi is an integer vector (also a variable). The size of the term ti is

polynomial in the size of the input formula, since the term ti consists of r summands.

4. Apply Lemma 2.21 and compute an upper bound for the number of ti terms, i.e. com-

pute the value k: k = 4nF (log4nF + (mF +1)log(1+ (nF +1)aF)).

5. Construct the formula F1:

F0 ∧u =
k∑

i=1
ti ∧

k∧
i=1

F (xi)

The term ti contains the vector xi and variables λi j . The size of this newly constructed

formula is polynomial in the size of the original input formula.

6. Use a solver for linear integer arithmetic and check satisfiability of F1

Putting everything together, the algorithm constructs an equisatisfiable QFPA formula, which

is polynomial in the size of the the original formula. Since checking satisfiability of QFPA

formulas is an NP-complete problem, the satisfiability question for LIA∗ formulas is also an

NP-complete problem.

Theorem 2.24 Checking satisfiability of LIA∗ formulas is an NP-complete problem.

32

2.8. Complexity of Multiset Constraints

2.8 Complexity of Multiset Constraints

In this section, we return to the original problem of checking satisfiability of formulas belong-

ing to the language of multiset constraints, defined in Figure 2.3. It was shown in [Kuncak and

Rinard(2007)] that satisfiability checking for the set constraints with cardinality operator is an

NP-complete problem. This problem is subsumed by constraints defined in Figure 2.3, which

means that checking multiset constraints is at least NP-hard. Our goal is to show that checking

satisfiability of formulas defined in Figure 2.3 is also an NP-complete problem.

Since the language supports arbitrary propositional operators, the satisfiability problem

for this language is clearly NP-hard. The non-trivial part of NP-completeness is therefore

establishing the membership in NP. The standard way of proving that a problem belongs

to the NP class is by showing that a candidate solution for the problem can be verified in

polynomial time. Let Fm be a multiset formula. We can reduce it to an equisatisfiable LIA∗

formula in a polynomial time. We denote this formula with Fl , Fl ∈ LIA∗. Theorem 2.24 proves

that checking satisfiability of Fl is an NP-complete problem, which means that its candidate

solution can be verified in polynomial time, which in addition also means that verifying the

solution for FM can be done in polynomial time.

This way we proved that checking satisfiability of multiset formulas with the cardinality

constraints belongs to the same class of problems as checking satisfiability of set formulas

with the cardinality constraint.

Theorem 2.25 Checking satisfiability of formulas belonging to the language of multiset con-

straints, defined in Figure 2.3 is an NP-complete problem.

2.9 Undecidability of Quantified Constraints

Until now, we have discussed quantifier-free multiset formulas. We next show that adding

quantifiers to the language of Figure 2.3 results in undecidable constraints.

We already pointed out that the language defined in Figure 2.3 can be seen as a generalization

of quantifier-free Boolean algebra with Presburger arithmetic (QFBAPA) defined in [Kuncak

and Rinard(2007)]. QFBAPA is a language for reasoning about sets with cardinality con-

straints. Given that QFBAPA admits quantifier elimination [Feferman and Vaught(1959), Kun-

cak et al.(2006)Kuncak, Nguyen, and Rinard], it is an interesting question whether multiset

quantifiers can be eliminated from constraints. The decision procedure that we described

before demonstrated that the multiset formulas without the cardinality operator can be viewed

as a product of Presburger arithmetic structures. Therefore, Feferman-Vaught theorem [Fefer-

man and Vaught(1959)] (a summary can be found in [Kuncak and Rinard(2003)] in Section 3.3)

gives a way to decide the first-order theory of multiset operations extended with the ability

to state cardinality of sets of the form |{e | F (e)}|. This corresponds to multiset theory with

counting distinct elements of multisets, which is denoted by FO#D
M

in [Lugiez(2005)].

33

Chapter 2. Decision Procedures for Multisets with Cardinality Constraints

However, the language FO#D
M

is strictly less expressive than a quantified extension of the lan-

guage in Figure 2.3. The language in Figure 2.3 contains the summation expressions
∑

F (e) t (e)

and that corresponds to the language FO#
M

defined in [Lugiez(2005)]. The decidability of

FO#
M

was left open in [Lugiez(2005)]. We next prove that this language is undecidable.

The undecidability follows by reduction from Hilbert’s 10th problem [Matiyasevich(1970)],

because quantified multiset constraints can define addition and multiplication. To define

addition, we use disjoint union]:

x + y = z ⇐⇒ ∃M1.∃M2.|M1| = x ∧|M2| = y ∧|M1]M2| = z

To define x · y = z, we introduce a new multiset P that contains x distinct elements, each of

which occurs y times. The following formula encodes this property:

x · y = z ⇐⇒ ∃P. z = |P | ∧ x = |set(P)| ∧
(∀M . |M | = z ∧|set(M)| = 1∧ set(M) ⊆ P =⇒ |M ∩P | = y)

Because we can define addition and multiplication using the quantified multiset constraints,

we can express in this logic also the satisfiability question of Diophantine equations (i.e.

Hilbert’s tenth problem). In [Matiyasevich(1970)], Matiyasevich proved that there cannot

exist an algorithm to check whether a Diophantine equation has any solutions in integers.

Applying this result, we conclude that satisfiability of multiset constraints with quantifiers and

cardinality is undecidable. Similarly, we obtain undecidable constraints if in the quantified

expressions ∀e.F we admit the use of outer integer variables as parameters. This justifies the

current “stratified” syntax that distinguishes inner and outer integer variables.

A natural question is whether the presence of the built-in set operator is needed for unde-

cidability of quantified constraints. Nevertheless, the set operator is itself definable using

quantifiers. Here is an example how to encode the set operator: S = set(M) iff S is the smallest

multiset that behaves the same as M with respect to a simple set membership. Behaving the

same with respect to a simple set membership is given by

memSame(M1, M2) ⇐⇒ (∀E . |E | = 1 =⇒ (E ⊆ M1 ⇐⇒ E ⊆ M2))

Using the memSame(M1, M2) predicate we encode the set operator as:

S = set(M) ⇐⇒ (memSame(S, M)∧ (∀S1. memSame(S1, M) =⇒ S ⊆ S1))

Moreover, note that, as in any lattice, ∩ and ⊆ are inter-expressible using quantifiers. Therefore,

adding quantifiers to a multiset language that contains ⊆ and cardinality constructs already

gives undecidable constraints. This answers negatively the question on decidability of FO#D
M

posed in [Lugiez(2005), Section 3.4].

34

3 Implementation: Automated Rea-
soner for Sets and Multisets

In this chapter, we provide an overview of the MUNCH reasoner for sets and multisets.

MUNCH takes as the input a formula in a logic that supports expressions about sets, multisets,

and integers. Constraints over collections and integers are connected using the cardinality

operator, as defined in Chapter 2. MUNCH is the first fully automated reasoner for this logic.

MUNCH reduces input formulas to equisatisfiable linear integer arithmetic formulas, and

then uses an SMT solver Z3 [de Moura and Bjørner(2008b)] to check the satisfiability of the

derived formula.

3.1 Motivation

Interactive theorem provers such as Isabelle [Nipkow et al.(2005)Nipkow, Wenzel, Paulson, and

Voelker], Why [Filliâtre and Marché(2007)] or KIV [Balser et al.(2000)Balser, Reif, Schellhorn,

Stenzel, and Thums] specify theories of multisets with cardinality constraints. They prove a

number of theorems about multisets to enable their use in interactive verification. However,

all those tools require a certain level of interaction. Our tool is the first automated theorem

prover for multisets with cardinality constraints, which can check satisfiability of formulas

belonging to a logic defined in Figure 2.3 entirely automatically.

We have evaluated our implementation on the verification conditions for the correctness

of mutable data structure implementations. To prove that a formula F is valid, we check

unsatisfiability of the negation of F . If ¬F is satisfiable, that means there is a model in which

the original formula evaluates to false. In that case MUNCH generates a model, which can be

used to construct a counterexample trace of the checked program.

3.2 MUNCH Implementation

In Chapter 2, we have showed that checking satisfiability of the formulas defined in Figure 2.3

is an NP-complete problem (Theorem 2.25). Our first implementation was based on the

35

Chapter 3. Implementation: Automated Reasoner for Sets and Multisets

Figure 3.1: Phases in checking formula satisfiability. MUNCH translates the input formula
through several intermediate forms, preserving satisfiability in each step.

algorithm in Section 2.7.7, the algorithm used to establish that the decision problem is in

NP. But we found that the running times were impractical due to large constants. MUNCH

therefore currently uses the conceptually simpler algorithm that reduces a multiset formula

to a LIA∗ formula. The algorithm then, through the computation of semilinear sets, further

reduces the LIA∗ formula to a QFPA formula. Despite its worst-case complexity can be at least

NEXPTIME, we have found that the algorithm that uses the semilinear set characterization,

when combined with additional simplifications, results in a tool that exhibits acceptable

performance. Our implementation often avoids the worst-case complexity of the most critical

task, the computation of semilinear sets, by leveraging the special structure of formulas that

we need to process (see Section 3.2.2).

3.2.1 System Overview

The MUNCH reasoner is implemented in the Scala [Typesafe(2011)] programming language

and currently uses the SMT solver Z3 [de Moura and Bjørner(2008b)] to solve the generated

integer linear arithmetic constraints.

Figure 3.1 provides a high-level overview of the reasoner.

Given an input formula F , MUNCH converts it into the sum normal form and then translates

it into a LIA∗ formula. However, having a LIA∗ formula P ∧u ∈ {x | F (x)}∗, we should compute

the semilinear set representation of F . The problem with this approach is that computing

semilinear sets is expensive. The best know algorithms still run in the exponential time and

are fairly complex [Pottier(1991)].

36

3.2. MUNCH Implementation

For complexity reasons, we are delaying the computation of semilinear sets. Still, the expo-

nential running time is unavoidable in this approach. Therefore, instead of developing an

algorithm which computes semilinear sets for an arbitrary Presburger arithmetic formula, we

split a formula into simpler parts for which we can easier compute semilinear sets. Namely,

we convert formula F into a disjunctive normal form:

F (x) ≡ A1(x) = b1 ∨ . . .∨ Am(x) = bm

This way checking whether u ∈ {x | F (x)}∗ becomes = k1 + . . .+km ∧∧m
j=1 k j ∈ {x | A j (x)}∗. The

next task is to eliminate the ∗ operator for the formula k j ∈ {x | A j (x) = b j }∗, where A j is a

conjunction of linear arithmetic atoms. A j can also be rewritten as a conjunction of equalities

by introducing fresh non-negative variables.

3.2.2 Efficient Computation of Semilinear Sets

The MUNCH reasoner is not complete for the full logic described in Figure 2.3. Although the

decision procedure is complete, we are avoiding computation of semilinear sets using the

Hilbert basis. An implementation, which would preserve completeness and therefore include

the computation of semilinear sets for any formula, would significantly increase the running

times of our tool. Instead, we noticed that we are mostly using MUNCH to check validity of

verification condition generated when proving the correctness of container data structures.

The formula that are we generate have very simple structure: they are either about the addition

(originating from the disjoint union) or the min and max operator (result of the union and

the intersection operators). The min and max operator reduce to the assignment. Another

typical formula that often occurs is expressing that a collection is a set. This is represented

with ∀e : s(e) = 1∨ s(e) = 0 which at the end again becomes a simple assignment.

In most of the cases, computing a semilinear set is actually computing a linear set which can

be done effectively, for example, using the Omega-test [Pugh(1992)]. Since A j is a conjunction

of equations, we use simple rewriting rules. The problem of inequalities expressing that a term

is non-negative in most cases is resolved by implicitly using them as non-negative coefficients.

As an illustration, consider formula (u1,u2,u3) ∈ {(x, y, z) | x < y ∧ z = x + y}∗. To compute a

semilinear set representing all the non-negative solutions of x < y ∧ z = x + y , we first rewrite

x < y as x + l +1 = y , where l is a non-negative variable. We further rewrite (x, y, z) as:

x

y

z

=

 x

y

x + y

=

 x

x + l +1

x +x + l +1

=

0

1

1

+x

1

1

2

+ l

0

1

1

The semilinear set describing the non-negative solutions of x < y ∧ z = x + y is a linear set

(0,1,1)+ {(1,1,2), (0,1,1)}∗. This approach of using equalities and rewriting is highly efficient

and works in most of the cases. We also support a simple version of the Omega test.

37

Chapter 3. Implementation: Automated Reasoner for Sets and Multisets

However, as mentioned earlier, our implementation is not complete for the full logic described

in Figure 2.3. There are cases when one cannot avoid the computation of a semilinear set. As

an example, it does not work for a formula u ∈ {(x, y, z) | 5x +7y < 6z}∗. As a rule, a formula F ,

where none of the variables have coefficient 1, cannot be rewritten in the above way. Notice

also that our tool is always complete for sets, so it can also be used as a complete reasoner

for sets with cardinality constraints (with a doubly exponential worst-case bound on running

time).

In our experimental results, while processing formulas derived in verification, we did not

encounter such a problem. Notice also that our tool is always complete for sets, so it can also

be used as a complete reasoner for sets with cardinality constraints (with a doubly exponential

worst-case bound on running time).

Assuming that we managed to compute the semilinear sets representing the non-negative

solution of Ax = b, we construct a Presburger arithmetic formula. As we know, this way

the initial multiset constraints problem reduces to satisfiability of quantifier-free Presburger

arithmetic. To check satisfiability of such a formula, we invoke the SMT solver Z3 [de Moura

and Bjørner(2008a)] with the option "-m". This option ensures that Z3 returns a model in case

that the input formula is satisfiable. Since all our transformations are satisfiability preserving,

we either return unsat or reconstruct a model for the initial multiset formula from the model

returned by Z3.

3.3 Examples and Benchmarks

First we illustrate how the MUNCH reasoner works on a simple example, and then we show

some benchmarks that we did.

Consider a simple multiset formula |x] y | = |x|+ |y |. Its validity is proved by showing that

|x] y | 6= |x|+ |y | is unsatisfiable. We chose such a simple formula so that we can easily present

and analyze the tool’s output. Figure 3.2 displays the output of MUNCH on this formula. The

intermediate formulas in the output correspond to the result of the individual reduction step

described in Chapter 2.

Using MUNCH in software verification. We evaluated MUNCH on the verification conditions

that we encountered, while proving properties about the container data structures. Those

verification conditions are expressible as constraints on sets and multisets. The running times

are given in Table 3.3.

The precise description of those verification conditions are given in Figure 3.4.

The main problem we are facing for a more comprehensive evaluation of the MUNCH reasoner

is the lack of similar tools and benchmarks. Most benchmarks we were using are originally

derived for reasoning about sets. Sometimes those formulas contain conditions that we do not

38

3.3. Examples and Benchmarks

Formula f3:

NOT (|y PLUS x| = |y| + |x|)

Normalized formula f3:

NOT (k0 = k1 + k2) AND FOR ALL e IN E. (m0(e) = y(e) + x(e)) AND

(k0, k1, k2) = SUM {e in E, TRUE } (m0(e), y(e), x(e))

Translated formula f3:

NOT (k0 = k1 + k2) AND (k0, k1, k2) IN {(m0, y, x) | m0 = y + x }*

No more disjunctions:

NOT (k0 = k1 + k2) AND k0 = u0 AND k1 = u1 AND k2 = u2 AND

(u0, u1, u2) IN {(m0, y, x) | m0 = y + x }*

Semilinear set computation :

(m0, y, x) | m0 = y + x,

semilinear set describing it is:

List(0, 0, 0), List(List(1, 1, 0), List(1, 0, 1))

No more stars:

NOT (k0 = k1 + k2) AND k0 = u0 AND k1 = u1 AND k2 = u2 AND

u2 = 0 + 1*nu1 + 0 AND u1 = 0 + 0 + 1*nu0 AND u0 = 0 + 1*nu1 + 1*nu0

AND (NOT (mu0 = 0) OR (nu1 = 0 AND nu0 = 0))

This formula is unsat

Figure 3.2: Example run of MUNCH on a multiset formula.

Property #set vars #multiset vars time (s)

Efficient emptiness check using sets 2 0 0.40
Efficient emptiness check using multisets 0 2 0.40
Size invariant after insertion (sets) 2 1 0.46
Size invariant after insertion (msets) 0 2 0.40
Size invariant after deleting (msets) 0 2 0.35
Allocation and insertion of 3 (sets) 5 0 3.23
Allocation and insertion of 3 (msets) 0 5 0.40
Allocation and insertion of 4 (sets) 6 0 8.35
Allocation and insertion of 4 (msets) 6 0 0.40

Figure 3.3: Running times for checking verification conditions that arise in proving correctness
of container data structures.

39

Chapter 3. Implementation: Automated Reasoner for Sets and Multisets

VC# verification condition property being checked
1 x ∉ content∧size= card content−→

(size= 0 ↔ content=;)
using invariant on size
to prove correctness of
an efficient emptiness
check

2 x ∉ content∧size= card content−→
size+1 = card({x}∪content)

maintaining correct size
when inserting fresh
element

3 size= card content ∧
size1= card({x}∪content) −→

size1≤ size+1

maintaining size after
inserting any element

4 content⊆ alloc ∧
x1 ∉ alloc ∧
x2 ∉ alloc∪ {x1} ∧
x3 ∉ alloc∪ {x1}∪ {x2} −→
card (content∪ {x1}∪ {x2}∪ {x3}) =
cardcontent+3

allocating and inserting
three objects into a
container data structure
using sets

5 content⊆ alloc ∧
card (content∪ {x1}∪ {x2}∪ {x3}) =

cardcontent+3

allocating and inserting
three objects into a
container data structure
using multisets

Figure 3.4: Description of the verification conditions proved using MUNCH

need to consider when reasoning about multisets. This can especially be seen in Figure 3.3,

when checking allocation and insertion of three elements into a data structure. Proving

validity of a multiset formula requires 0.4 seconds. Checking the same property for a data

structure implementing a set requires 3.23 seconds. It is due to the fact that the formula is

more complicated since we need to also make sure that we are inserting all different elements.

Also, to express that we are working with the sets adds the additional disjunctive formula

(∀e.s(e) = 1∨ s(e) = 0). This contributes to the exponential blow-up. One can see how, in the

case of sets, the running times drastically increase.

We could also not compare the MUNCH tool with interactive theorem provers since our tool is

completely automated and does not require any interaction.

We plan to continue with the further development of MUNCH. In addition to make it complete,

we also plan to incorporate it into software verification systems. This will also enable us to

obtain further sets of benchmarks.

40

4 Decision Procedures for Fractional
Collections and Collection Images

In this chapter, we present two extensions of the logic about multisets with cardinality con-

straints, introduced in Chapter 2. The first extension is a generalization towards a logic that

involves collections such as sets, multisets, and fuzzy sets. Element membership in these

collections is given by characteristic functions from a finite universe (of unknown size) to a

user-defined subset of rational numbers. The logic supports standard operators such as union,

intersection, difference, or any operation defined pointwise using mixed linear integer-rational

arithmetic. Moreover, it supports the notion of cardinality of the collection, defined as the sum

of occurrences of all elements. We describe a decision procedure for the satisfiability problem

in this new logic. The decision procedure reduces a formula to a formula in an extension of

mixed linear integer-rational arithmetic, with a “star” operator.

The other extension is a logic of uninterpreted functions over sets. A function takes a set as

an input and returns a multiset. We add this new construct to the language introduced in

Chapter 2. This logic was motivated by examples from verification of data structures. Having a

linked data structure, the content of the data structure can be seen as a result of application

the function c to the set of nodes, where c is a function that takes a node in a linked data

structure and returns the content store in it. We describe a decision procedure for this new

logic and show that the satisfiability question is an NEXPTIME-complete problem.

4.1 Motivation for Fractional Collections

A collection of elements can be defined through their characteristic function f : E → R. In-

spired by applications in software verification [Kuncak and Rinard(2007)], we assume that the

domain E is a finite set but of unknown size. The range R depends on the kind of the collection:

for sets, R = {0,1}; for multisets, R = {0,1,2, . . . , }; for fuzzy sets, R is the interval [0,1] of rational

numbers, denoted Q[0,1]. With this representation, operations and relations on collections

such as union, difference, and subset are all expressed using operations of linear arithmetic.

For example, the condition A ∪B = C becomes ∀e∈E . max(A(e),B(e)) = C (e), a definition

that applies independently of whether A,B are sets, multisets, or fuzzy sets. A distinguishing

41

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

feature of our constraints, compared to many other approaches for reasoning about functions

E → R , e.g. [Bradley and Manna(2007), Chapter 11], is the presence of the cardinality operator,

defined by |A| =∑
e∈E A(e). The resulting language freely combines the use of linear arithmetic

at two levels: the level of individual elements, as in the subformula max(A(e),B(e)) =C (e), and

the level of sizes of collections, as in the formula |A∪B |+|A∩B | = |A|+|B |. The language sub-

sumes constraints such as quantifier-free Boolean Algebra with Presburger Arithmetic [Kuncak

and Rinard(2007)] and therefore contains both set algebra and integer linear arithmetic. It also

subsumes decidable constraints on multisets with cardinality bounds from Chapter 2, since in

this new language we can express the condition (∀e.i nt (A(e))∧ A(e) ≥ 0), i.e. that the number

of occurrences A(e) for each element e is a non-negative integer number. Moreover, these new

constraints can express the condition ∀e.(0 ≤ A(e) ≤ 1), which makes them appropriate for

modeling fuzzy sets.

Analogously to the algorithm described in Chapter 2, a decision procedure for the new logic

is based on a translation of a formula with collections and cardinality constraints into a

conjunction of a mixed linear integer-rational arithmetic (MLIRA) formula and a new form

of condition, denoted ~u ∈ {~v | F (~v)}∗. Here the star operator has the same semantics as in

Chapter 2. Therefore, {~v | F (~v)}∗ denotes the closure under vector addition of the set of

solution vectors ~v of the MLIRA formula F . Formally,

~u ∈ {~v | F (~v)}∗ ↔ ∃K ∈ {0,1,2, . . .}. ∃~v1, . . . ,~vK . ~u =
K∑

i=1
~vi ∧

K∧
i=1

F (~vi)

In contrast to Chapter 2, the formula F in this paper is not restricted to integers, but can

be arbitrary MLIRA formula. Consequently, we are faced with the problem of solving an

extension of satisfiability of MLIRA formulas with the conditions ~u ∈ {~v | F (~v)}∗ where F

is an arbitrary MLIRA formula. To solve this problem, we describe a finite and effectively

computable representation of the solution set S = {~v | F (~v)}. We use this representation to

express the condition~u ∈ S∗ as a new MLIRA formula. This gives a “star elimination” algorithm.

As one consequence, we obtain a unified decision procedure for sets, multisets, and fuzzy sets

in the presence of the cardinality operator.

4.2 Examples

Figure 4.1 shows small example formulas over sets, multisets, and fuzzy sets that are expressible

in our logic. The examples for sets and multisets are based on verification conditions from

software verification [Kuncak and Rinard(2007)]. The remaining examples illustrate basic

differences in valid formulas over multisets and fuzzy sets.

We illustrate our technique on one of the examples shown in Figure 4.1: we show that formula

∀e.U (e) = 1 → |A ∩B |+ |A ∪B | ≤ |A|+ |U | is valid where U , A, and B are fuzzy sets. To prove

formula validity, we prove unsatisfiability of its negation, conjoined with the constraints

42

4.2. Examples

Examples of constraints on sets. For each set variable s we assume the constraint∀e.(s(e) =
0∨ s(e) = 1).

formula informal description
x ∉ content∧size= card content−→

(size= 0 ↔ content=;)
using invariant on size to
prove correctness of an
efficient emptiness check

x ∉ content∧size= card content−→
size+1 = card({x}∪content)

maintaining correct size
when inserting fresh
element into set

size= card content ∧
size1= card({x}∪content) −→

size1≤ size+1

maintaining size after
inserting an element into
set

content⊆ alloc ∧
x1 ∉ alloc ∧
x2 ∉ alloc∪ {x1} ∧
x3 ∉ alloc∪ {x1}∪ {x2} −→
card (content∪ {x1}∪ {x2}∪ {x3}) =
cardcontent+3

allocating and inserting
three objects into a
container data structure

content⊆ alloc0 ∧ x1 ∉ alloc0 ∧
alloc0∪ {x1} ⊆ alloc1 ∧ x2 ∉ alloc1 ∧
alloc1∪ {x2} ⊆ alloc2 ∧ x3 ∉ alloc2−→
card (content∪ {x1}∪ {x2}∪ {x3}) =
card content+3

allocating and inserting
at least three objects into
a container data structure

x ∈C ∧C1 = (C \ {x}) ∧
card(alloc1\alloc0) ≤ 1 ∧
card(alloc2\alloc1) ≤ cardC1 −→

card (alloc2\alloc0) ≤ cardC

bound on the number of
allocated objects in a
recursive function that
incorporates container C
into another container

Examples of constraints on multisets. For each multiset variable m we assume the con-
straint ∀e.i nt (m(e))∧ A(e) ≥ 0.

size= card content ∧
size1= card({x}]content) −→

size1= size+1

maintaining size after inserting
an element into multiset

Examples of constraints on fuzzy sets. For each fuzzy set variable f we assume the con-
straint ∀e.0 ≤ f (e) ≤ 1.

2|A| 6= 2|B |+1 example formula valid over
multisets but invalid over fuzzy
sets

(∀e.U (e) = 1) →|A∩B |+ |A∪B | ≤ |A|+ |U | example formula valid over
fuzzy sets but invalid over
multisets

(∀e.C (e) =λA(e)+ (1−λ)B(e)) →
A∩B ⊆C ⊆ A∪B

basic property of convex
combination of fuzzy
sets [Zadeh(1965)], for any fixed
constant λ ∈ [0,1]

Figure 4.1: Example constraints in our class.

43

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

ensuring that the collections are fuzzy sets:

∀e.U (e) = 1 ∧ |A|+ |U | < |A∩B |+ |A∪B | ∧
∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤U (e) ≤ 1

As previously, we eliminate the collections and reduce the formula to a formula in the extended

mixed linear integer-rational arithmetic. The reduction follows the algorithm we have seen

in Chapter 2. We first reduce the formula to the normal form. We flatten the formula by

introducing fresh variables ni for each cardinality operator. The formula reduces to:

n1 +n2 < n3 +n4 ∧ n1 = |U | ∧ n2 = |A| ∧ n3 = |A∩B | ∧ n4 = |A∪B | ∧
∀e.U (e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤U (e) ≤ 1

We next apply the definition of the cardinality operator, |C | =∑
e∈EC (e):

n1 +n2 < n3 +n4 ∧ n1 =∑
e∈EU (e) ∧ n2 =∑

e∈E A(e) ∧
n3 =∑

e∈E(A∩B)(e) ∧ n4 =∑
e∈E(A∪B)(e) ∧

∀e.U (e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤U (e) ≤ 1

Operators ∪ and ∩ are defined pointwise using ite operator:

(C1 ∪C2)(e) = max{C1(e),C2(e)} = ite(C1(e) ≤C2(e),C2(e),C1(e))

(C1 ∩C2)(e) = min{C1(e),C2(e)} = ite(C1(e) ≤C2(e),C1(e),C2(e)), where ite(A,B ,C) is

the standard if-then-else operator, denoting B when A is true and C otherwise. Using these

definitions, the example formula becomes:

n1 +n2 < n3 +n4 ∧ n1 =
∑
e∈E

U (e) ∧ n2 =
∑
e∈E

A(e) ∧

n3 =
∑
e∈E

ite(A(e) ≤ B(e), A(e),B(e)) ∧ n4 =
∑
e∈E

ite(A(e) ≤ B(e),B(e), A(e)) ∧

∀e.U (e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤U (e) ≤ 1

Using vectors of integers, we then group all the sums into one, and also group all universally

quantified constraints:

n1 +n2 < n3 +n4 ∧
(
n1,n2,n3,n4

)=∑
e∈E

(
U (e), A(e), ite(A(e) ≤ B(e), A(e),B(e)), ite(A(e) ≤ B(e),B(e), A(e))

)
∧ ∀e.

(
U (e) = 1 ∧ 0 ≤ A(e) ≤ 1 ∧ 0 ≤ B(e) ≤ 1 ∧ 0 ≤U (e) ≤ 1

)
As stated in Theorem 4.2 (a counterpart of Theorem 2.4), the last formula is equisatisfiable

with

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) ∈
{
(
u, a, ite(a ≤ b, a,b), ite(a ≤ b,b, a)

) | u = 1 ∧ 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1}∗

44

4.2. Examples

In this chapter we will explore general techniques for solving such satisfiability problems

that contain a MLIRA formula and a star operator applied to another MLIRA formula. We

next illustrate some of the ideas of the general technique, taking several shortcuts to keep the

exposition brief.

Because the value of the variable u is determined (u = 1), we can simplify the last formula to:

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) ∈ S∗

where S = {
(
1, a, ite(a ≤ b, a,b), ite(a ≤ b,b, a)

) | 0 ≤ a ≤ 1∧0 ≤ b ≤ 1}. By case analysis on a ≤ b,

we conclude S = S1 ∪S2 for

S1 = {(1, a, a,b) | 0 ≤ a ≤ 1∧0 ≤ b ≤ 1∧a ≤ b}

S2 = {(1, a,b, a) | 0 ≤ a ≤ 1∧0 ≤ b ≤ 1∧b < a}

This eliminates the ite expressions and we have:

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) ∈ (S1 ∪S2)∗

By definition of star operator, the last condition is equivalent to

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) = (n1
1,n1

2,n1
3,n1

4)+ (n2
1,n2

2,n2
3,n2

4) ∧
(n1

1,n1
2,n1

3,n1
4) ∈ S∗

1 ∧ (n2
1,n2

2,n2
3,n2

4) ∈ S∗
2

Let us characterize the condition (n1
1,n1

2,n1
3,n1

4) ∈ S∗
1 . Let K1 denote the number of vectors

in S1 whose sum is (n1
1,n1

2,n1
3,n1

4). By definition of the star operator, there are a1
1, . . . , a1

K1
and

b1
1, . . . ,b1

K1
such that 0 ≤ a1

i ≤ b1
i ≤ 1 and

(n1
1,n1

2,n1
3,n1

4) =
K1∑

i=1
(1, a1

i , a1
i ,b1

i)

We obtain that n1
1 = K1, n1

2 = n1
3 = ∑K1

i=1 a1
i =: A1, n4 = ∑K1

i=1 b1
i =: B1. The other case for S2 is

analogous and we derive (n2
1,n2

2,n2
3,n2

4) = (K2, A2,B2, A2).

This way the star operator is “hidden” in the variables A1 and B1 and the example formula

reduces to:

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) = (K1, A1, A1,B1)+ (K2, A2,B2, A2)

After eliminating ni variables, the formula becomes K1 +K2 < B1 +B2. Apply the definitions of

Bi and stating the bounding properties of b j
i , we obtain the following formula:

K1 +K2 <
K1∑

i=1
b1

i +
K2∑

i=1
b2

i ∧
K1∧

i=1
b1

i ≤ 1∧
K2∧

i=1
b2

i ≤ 1

45

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

In this case, it is easy to see that the resulting formula is contradictory, since K1 +K2 is an

integer. The unsatisfiable formula proves that the initial formula is valid over fuzzy sets. In

general, such formulas are equivalent to existentially quantified MLIRA formulas, despite the

fact that their initial formulation involves sums with parameters such as K1 and K2. This is

possible thanks to the special structure of the sets of solutions of MLIRA formulas.

Having seen the way to prove validity, we illustrate how to produce counterexamples by

showing that the original formula is invalid over multisets. Restricting the range of each

collection to integers and using the same reduction, we derive formula

n1 +n2 < n3 +n4 ∧
(n1,n2,n3,n4) ∈ {

(
1, a, ite(a ≤ b, a,b), ite(a ≤ b,b, a)

) | a,b ∈N}∗

Applying again a similar case analysis, we deduce K1 +K2 <∑K1
i=1 b1

i +
∑K2

i=1 b2
i where all b j

i ’s

are non-negative integers. This formula is satisfiable, for example, with a satisfying variable

assignment K1 = 1,b1
1 = 2 and K2 = 0. Applying the proof of Theorem 4.2, we construct a

multiset counterexample. Because K2 = 0, no vector from S2 contributes to sum, and we

consider only S1. Variable K1 denotes the number of elements of a domain set E , so we

consider the domain set E = {e1}. Multisets A,B and U are defined by A(e1) = 1, B(e1) = 2, and

U (e1) = 1. It can easily be verified that this is a counterexample for validity of the formula over

multisets.

4.3 From Collections to Stars

This section describes the translation from constraints on collections to constraints that use

the star operator. We first present the syntax of our constraints and clarify the semantics

of selected constructs (the semantics of the remaining constructs can be derived from their

translation into simpler ones).

We model each collection c as a function whose domain is a finite set E of unknown size and

whose range is the set of rational numbers. When the constraints imply that the range of c

is {0,1}, then c models sets, when the range of c are non-negative integers, then c denotes

standard multisets (bags), in which an element can occur multiple times. We call the number

of occurrences of an element e, denoted c(e), the multiplicity of an element. When the range

of c is restricted to be in interval [0,1], then c describes a fuzzy set [Zadeh(1965)].

In addition to standard operations on collections (such as plus, union, intersection, difference),

we also allow the cardinality operator, defined as |c| =∑
e∈E c(e). This is the desired definition

for sets and multisets, and we believe it is a natural notion for fuzzy sets over a finite universe

E . Figure 4.2 shows a context-free grammar of our formulas involving collections.

Semantics of some less commonly known operators is defined as follows. The set(C) operator

takes as an argument collection C and returns the set of all elements for which C (e) is positive.

46

4.3. From Collections to Stars

top-level formulas:
F ::= A | F ∧F | ¬F
A ::= C=C |C ⊆C | ∀e.Fin |Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout∧Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . ,tout)= ∑
Fin

(tin, . . . ,tin)

tout ::= k | |C| | K | tout+ tout | K · tout | btoutc | ite(Fout,tout,tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin∧Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= c(e) | K | tin+ tin | K · tin | btinc | ite(Fin,tin,tin)
expressions about collections:

C ::= c | ; |C ∩C |C ∪C |C]C |C \C |C \\C | set(C)
terminals:

c - collection variable; e - index variable (fixed)
k - rational variable; K - rational constant

Figure 4.2: Quantifier-Free Formulas about Collection with Cardinality Operator

To constrain a variable s to denote a set, use formula ∀e.s(e) = 0∨ s(e) = 1. To constraint

a variable m to denote a multiset, use formula (∀e.int(m(e))∧m(e) ≥ 0). Here int(x) is a

shorthand for bxc = x where bxc is the largest integer smaller than or equal to x.

The novelty of constraints in Figure 4.2 compared to the language in Figure 2.3 is the presence

of the floor operator bxc and not only integer but also rational constants. All variables in our

current language are interpreted over rationals, but any of them can be restricted to be integer

using the constraint int(x). In addition, there are no restrictions that the inner terms should

be only non-negative. This way the language in Figure 4.2 is a generalization of the language

in Figure 2.3.

To reduce reasoning about collections to reasoning in linear arithmetic with stars, we follow

the idea from Chapter 2 and convert a formula to the sum normal form.

Definition 4.1 A formula is in sum normal form iff it is of the form

P ∧ (u1, . . . ,un) = ∑
e∈E

(t1, . . . , tn) ∧ ∀e.F

where P is a quantifier-free linear arithmetic formula with no collection variables, and where

variables in t1, . . . , tn and F occur only as expressions of the form c(e) for a collection variable c

and e the fixed index variable. Formula F can also contain terms of the form btc.

To transform a formula in the logic of Figure 4.2 into its sum normal form, we use the algorithm

47

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

given in Figure 2.4. Analogously, the translation results with the corresponding theorem:

Theorem 4.2 A formula (u1, . . . ,un) =∑
e∈E(t1, . . . , tn) ∧∀e.F is equisatisfiable with the formula

(u1, . . . ,un) ∈ {(t ′1, . . . , t ′n) | xi ∈Q∧F ′}∗ where t ′j and F ′ are t j and F respectively in which each

ci (e) is replaced by a fresh variable xi .

Proof. Identical to the proof of Theorem 2.4.

Thanks to Theorem 4.2, in the rest of the paper we investigate the satisfiability problem for

such formulas, whose syntax is given in Figure 4.3. These formulas are sufficient to check

satisfiability for formulas in Figure 4.2. We extend the semantics of the atom ~u ∈ {~x | F }∗ – ~u is

a finite sum of the solution vectors of formula F . They do not need to be non-negative.

MLIRA∗ formulas: F0 ∧ (u1, . . . ,un) ∈ {(x1, . . . , xn) | F }∗ (free variables of F are among x)
MLIRA formulas:

F ::= A | F1 ∧F2 | F1 ∨F2 | ¬F1

A ::= T1 ≤ T2 | T1 = T2

T ::= k |C | T1 +T2 |C ·T1 | bT c | ite(F,T1,T2)
terminals: k - rational variable; C - rational constant

Figure 4.3: Syntax of Mixed Integer-Rational Linear Arithmetic with Star

4.4 Separating Mixed Constraints

As justified in previous sections, we consider the satisfiability problem for G(~r , ~w)∧ ~w ∈ {~x |
F (~x)}∗ where F and G are quantifier-free, mixed linear integer-rational arithmetic (MLIRA)

formulas.

Our goal is to give an algorithm for constructing another MLIRA formula F ′ such that ~w ∈
{~x | F (~x)}∗ is equivalent to ∃~w ′.F ′(~w ′, ~w). This will reduce the satisfiability problem to the

satisfiability of G(~r , ~w)∧F ′(~w ′, ~w).

As a first step towards this goal, this section shows how to represent the set {~x | F (~x)} using

solutions of pure integer constraints and solutions of pure rational constraints. We proceed in

several steps.

Step 1. Eliminate the floor functions from F using integer and real variables, applying from

left to right the equivalence

C (btc) ↔∃yQ ∈Q.∃yZ ∈Z. t = yQ ∧ yZ ≤ yQ < yZ +1∧C (yZ)

48

4.4. Separating Mixed Constraints

The result is an equivalent formula without the floor operators, where some of the variables

are restricted to be integer.

Step 2. Transform F into linear programming problems, as follows. First, eliminate if-

then-else expressions by introducing fresh variables and using disjunction (as in Chapter 2).

Then transform formula to negation normal form. Eliminate t1 = t2 by transforming it into

t1 ≤ t2 ∧ t2 ≤ t1. Eliminate t1 6= t2 by transforming it into t1 < t2 ∨ t2 < t1. Following [Dutertre

and de Moura(2006b), Section 3.3], replace each t1 < t2 with t1 +δ≤ t2 where δ is a special

variable (the same for all strict inequalities), for which we require 0 < δ ≤ 1. We obtain for

some d matrices Ai for 1 ≤ i ≤ d such that

F (~x) ↔ ∃~y Z ∈ZdZ .∃~yQ ∈QdQ .∃δ ∈Q(0,1].
d∨

i=1
Ai · (~x,~y Z ,~yQ ,δ) ≤~bi

where Ai ·(~x,~y Z ,~yQ ,δ) denotes multiplication of matrix Ai by the vector (~x,~y Z ,~yQ ,δ) obtained

by stacking vectors~x,~y Z ,~yQ and the value δ.

Step 3. Represent the rational variables~x,~yQ as a sum of its integer part and its rational part

fromQ[0,1), obtaining

F (~x) ↔
(
∃(~x Z ,~y Z) ∈Zd ′

Z .∃(~xR ,~yR) ∈Qd ′
Q

[0,1).∃δ ∈Q(0,1].

~x =~x Z +~xR ∧
d∨

i=1
A′

i · (~x Z ,~y Z ,~xR ,~yR ,δ) ≤ ~bi
′)

Note that ~w ∈ {~x | ∃~y .H(~x,~y)}∗ is equivalent to

∃~w ′.(~w , ~w ′) ∈ {(~x,~y) | H(~x,~y)}∗

In other words, we can push existential quantifiers to the top-level of the formula. Therefore,

the original problem (after renaming) becomes

G(~r , ~w) ∧ ∃~z. (~uZ ,~uQ ,∆) ∈
{(~x Z ,~xR ,δ) |

d∨
i=1

Ai · (~x Z ,~xR ,δ) ≤~bi , ~x Z ∈ZdZ ,~xR ∈QdR
[0,1),δ ∈Q(0,1]}∗

where the vector~z contains a subset of variables ~uZ ,~uQ ,∆.

Step 4. Separate integer and rational parts, as follows. Consider one of the disjuncts A ·
(~x Z ,~yR ,δ) ≤~b. For A = [AZ AR c] this linear condition can be written as AZ~x Z +AR~xR +~cδ≤~b,

that is

AR~x
R +~cδ≤~b − AZ~x

Z (4.1)

Because the right-hand side is integer, for ~a denoting dAR~xR +~cδe (left-hand side rounded

up), the equation becomes AR~xR +~cδ≤~a ≤~b − AZ~x Z . Because~xR ∈QdQ

[0,1],δ ∈Q(0,1], vector ~a

49

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

is bounded by the norm M1 of the matrix [AR ~c]. Formula (4.1) is therefore equivalent to the

finite disjunction∨
~a∈Zd ,||~a||≤M1

AZ~x
Z ≤~b −~a ∧ AR~x

R +~cδ≤~a (4.2)

Note that each disjunct is a conjunction of a purely integer constraint and a purely rational

constraint.

Step 5. Propagate star through disjunction, using the property

~w ∈ {~x |
n∨

i=1
Hi (~x)}∗ ↔ ∃~w1, . . . , ~wn . ~w =

n∑
i=1

~wi ∧
n∧

i=1
~wi ∈ {~x | Hi (~x)}∗

The final result is an equivalent conjunction of a MLIRA formula and an existentially quantified

conjunction of formulas of the form

(~uZ ,~uQ ,∆) ∈ {(~x Z ,~xR ,δ) | AZ~x Z ≤~bZ , AR · (~xR ,δ) ≤~bR ,

~x Z ∈ZdZ ,~xR ∈QdR
[0,1),δ ∈Q(0,1]}∗

(4.3)

4.4.1 Example

In Section 4.2 we briefly outlined how to checked the validity of formulas about fractional

collections. The reasoning used in that example was fairly simple and tailor-made. In this

section, we will show how can any given formula be reduced to a conjunction of MLIRA∗

formulas. To do that, we apply the algorithm which was just introduced in the previous

subsection. We will apply it blindly and without using further simplifications or any additional

reasoning on the same formula as in the Section 4.2.

We first need to reduce the formula that reasons about fuzzy sets to the formula of the form

G(~r , ~w)∧ ~w ∈ {~x | F (~x)}∗. The translation of the original formula to the required form is

described in details in Figure 2.4 and after the translation we obtain the formula:

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) ∈{(
u, a, ite(a ≤ b, a,b), ite(a ≤ b,b, a)

) | u = 1 ∧ 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1
}∗

which reduces to

n1 +n2 < n3 +n4 ∧ (n1,n2,n3,n4) ∈ {(u, a, t1, t2) |
u = 1 ∧ 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1∧ t1 = ite(a ≤ b, a,b)∧ t2 = ite(a ≤ b,b, a)}∗

This formula has the desired form so we can apply the algorithm from the previous section that

will separate it into reasoning about integers and small rationals. First we need to transform

50

4.4. Separating Mixed Constraints

the formula F (u, a, t1, t2) ≡ u = 1∧0 ≤ a ≤ 1∧0 ≤ b ≤ 1∧t1 = ite(a ≤ b, a,b)∧t2 = ite(a ≤ b,b, a).

As the floor function does not occur in F , Step 1 is not applied. In Step 2 we transform F

into a linear programming problem. After eliminating if-then-else expression, F becomes

F (u, a, t1, t2) ≡ ((u = 1∧0 ≤ a ≤ 1∧0 ≤ t2 ≤ 1∧ a ≤ t2 ∧ t1 = a)∨ (u = 1∧0 ≤ a ≤ 1∧0 ≤ t1 ≤
1∧ t1 < a ∧ t2 = a)). Next we transform equalities and strict inequalities into equalities, and

finally we obtain the following formula:

F (u, a, t1, t2) ≡
((u ≤ 1∧1 ≤ u ∧0 ≤ a ≤ 1∧0 ≤ t2 ≤ 1∧a ≤ t2 ∧ t1 ≤ a ∧a ≤ t1)

∨ (u ≤ 1∧1 ≤ u ∧0 ≤ a ≤ 1∧0 ≤ t1 ≤ 1∧ t1 +δ≤ a ∧a ≤ t2 ∧ t2 ≤ a))

This way we obtain the following representation of F :

F (u, a, t1, t2) ≡∃δ ∈Q(0,1].
2∨

i=1
Ai · (u, a, t1, t2,δ) ≤~bi

where Ai =
[

AZ
i AQ

i Aδ
i

]
and those matrices has the following values:

AZ
1 =

1

−1

0

0

0

0

0

0

0

, AQ

1 =

0 0 0

0 0 0

−1 0 0

1 0 0

0 0 −1

0 0 1

1 0 −1

−1 1 0

1 1 0

,Aδ

1 =

0

0

0

0

0

0

0

0

0

,~b1 =

1

−1

0

1

0

1

0

0

0

,

AZ
2 =

1

−1

0

0

0

0

0

0

0

, AQ

2 =

0 0 0

0 0 0

−1 0 0

1 0 0

0 −1 0

0 1 0

−1 1 0

1 0 −1

−1 0 1

, Aδ

2 =

0

0

0

0

0

0

1

0

0

,~b2 =

1

−1

0

1

0

1

0

0

0

.

A variable u is an integer variable, while a, t1 and t2 are rational variables. In Step 3 we

51

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

represent each rational variable as a sum of its integer and rational part.

F (u, a, t1, t2) ≡∃~v Z ∈Z3.∃~vR ∈Q3
[0,1).∃δ ∈Q(0,1].

(a, t1, t2) =~vZ +~vR ∧
2∨

i=1
A′

i · (u,~vZ ,~vQ ,δ) ≤~b′
i)

We think about the vector~vZ as an integer part of a, t1 and t2 variables: ~vZ = (aZ , t Z
1 , t Z

2), while

~vR represents their rational part. Matrices A′
1 and A′

2 are constructed using previously derived

matrices: A′
i =

[
AZ

i AQ
i AQ

i Aδ
i

]
, while~b′

i =~bi .

Finally, we push the existential quantifiers that appear in formula F to the top level formula

and we obtain the following:

n1 +n2 < n3 +n4 ∧∃(nZ
2 ,nZ

3 ,nZ
4) ∈Z3.∃~(nQ

2 ,nQ
3 ,nQ

4),∈Q3
≥0.∃∆ ∈Q>0.

(n1,nZ
2 ,nZ

3 ,nZ
4 ,nQ

2 ,nQ
3 ,nQ

4 ,∆) ∈ {
(
u,~vZ ,~vQ ,δ)

) | 2∨
i=1

A′
i · (u,~vZ ,~vQ ,δ) ≤~b′

i }∗

In order to make it more readable, we introduce the following shorthands: ~uZ = (n1,nZ
2 ,nZ

3 ,nZ
4)

and~uQ =~(nQ
2 ,nQ

3 ,nQ
4). Similarly,~x Z = (u,~vZ) and~xR =~vQ . At the end, we also rename the vari-

ables for matrices A′
i and vectors~b′

i and finally we obtain a formula that closely corresponds

to the formula described in the algorithm:

n1 +n2 < n3 +n4 ∧∃(nZ
2 ,nZ

3 ,nZ
4) ∈Z3.∃~(nQ

2 ,nQ
3 ,nQ

4),∈Q3
≥0.∃∆ ∈Q>0.

(~uZ ,~uQ ,∆) ∈ {
(
~x Z ,~xR ,δ)

) | 2∨
i=1

Ai · (~x Z ,~xR ,δ) ≤~bi }∗

Step 4 separates integer and rational parts. We demonstrate the technique on only one disjunct

(the second one as it contains the non-zero δ-part). All other disjuncts can be transformed

similarly. In the matrix A we identify three parts: AZ , AR and Aδ that corresponds to the

parts which are multiplying integer, rational and δ variables. Applying this on A2, we obtain,

A2 =
[

AZ AR Aδ

]
, where

52

4.4. Separating Mixed Constraints

AZ =

1 0 0 0

−1 0 0 0

0 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 0

0 −1 1 0

0 1 0 −1

0 −1 0 1

, AR =

0 0 0

0 0 0

−1 0 0

1 0 0

0 −1 0

0 1 0

−1 1 0

1 0 −1

−1 0 1

, Aδ =

0

0

0

0

0

0

1

0

0

Next, we estimate the values that the vector AR~xR + Aδδ can reach. Our goal is to construct an

integer vector ~a such that AR~xR + Aδδ≤~a ≤~b − AZ~x Z . The set of values that ~a can have, we

denote with A .

AR~xR + Aδδ ∈

0

0

(−1,0]

[0,1)

(−1,0]

[0,1)

(−1,1]

(−1,1)

(−1,1)

=⇒ A = {

0

0

0

x1

0

x2

x3

x4

x5

| xi ∈ {0,1}}

Once we have constructed A , the original problem AZ~x Z + AR~xR + Aδδ≤~b becomes equiva-

lent to the finite disjunction∨
~a∈A

AZ~x
Z ≤~b −~a ∧ AR~x

R + Aδδ≤~a

and integer and rational part are fully separated. This way the original formula becomes:

n1 +n2 < n3 +n4 ∧∃(nZ
2 ,nZ

3 ,nZ
4) ∈Z3.∃~(nQ

2 ,nQ
3 ,nQ

4),∈Q3
≥0.∃∆ ∈Q>0.

(~uZ ,~uQ ,∆) ∈ {
(
~x Z ,~xR ,δ)

) | 2∨
i=1

∨
~a∈Ai

(AZ i~x
Z ≤~bi −~a ∧ AR i~x

R + ~Aδiδ≤~a)}∗

The last step is to propagate the star operator though disjunctions. The number of disjuncts

is finite and thus (~uZ ,~uQ ,∆) can be written as a finite summation. Each its summand is

an elements of a set described by a MLIRA∗ formula. For the simplicity of notation, let us

assume that all disjunctions are numbered with natural numbers 1,2, . . . ,64 and corresponding

matrices A and vectors b are indexed with those numbers.

53

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

n1 +n2 < n3 +n4 ∧∃(nZ
2 ,nZ

3 ,nZ
4) ∈Z3.∃~(nQ

2 ,nQ
3 ,nQ

4),∈Q3
≥0.∃∆ ∈Q>0.

(~uZ ,~uQ ,∆) =
64∑

i=1
(~uZ

i , ~uQ
i ,∆i) ∧

64∧
i=1

(~uZ
i , ~uQ

i ,∆i) ∈ {
(
~x Z ,~xR ,δ)

) | AZ i~x
Z ≤ ~bZ i ∧ AR i~x

R + ~Aδiδ≤ ~bR i }∗

In the rest of the chapter we show how to describe vector (~uZ ,~uQ ,∆) without the star operator.

4.5 Eliminating the Star Operator from Formulas

The previous section sets the stage for the following star-elimination theorem, Theorem 4.4,

which is the core result for the decidability problem of the logic defined in Figure 4.3. To prove

Theorem 4.4 we need Theorem 4.3, which can be seen as a generalization of the fact that

non-negative solutions of integer linear arithmetic formulas are semilinear sets.

Theorem 4.3 (Corollary 1 in [Pottier(1991)]) Consider a system of inequations A~x ≤~b where

A ∈ Zm,n and b ∈ Zm . Let C be a set of all solutions of A~x ≤~b Then there exist two finite sets

C1,C2 ⊆Zn such that

~x ∈C ⇔~x =~x0 +~x1 + . . .+~xk , with~x0 ∈C1 and~x1, . . . ,~xk ∈C2

Theorem 4.4 Let F be a quantifier-free MLIRA formula. Then there exist effectively computable

integer vectors ~ai and~bi j and effectively computable rational vectors~c1, . . . ,~cn with coordinates

inQ[0,1] such that formula (4.3) is equivalent to a formula of the form

(~uZ ,~uQ ,∆) =~0 ∨ ∃K ∈N. ∃µ1, . . . ,µq ,ν11, . . . ,νqqq ∈N. ∃β1, . . . ,βn ∈Q.

~uZ =
q∑

i=1
(µi~ai +

qi∑
j=1

νi j
~bi j) ∧

q∧
i=1

(µi = 0 →
qi∑

j=1
νi j = 0) ∧

q∑
i=1

µi = K

∧K ≥ 1∧∆> 0∧ (~uQ ,∆) =
n∑

i=1
βi~ci ∧

n∧
i=1

βi ≥ 0 ∧
n∑

i=1
βi = K (4.4)

Proof. For a set of vectors S and an integer variable K , we define K S = {v1+. . .+vK | v1, . . . , vK ∈
S}. Formula (4.3) is satisfiable iff there exists non-negative integer K ∈N such that both

~uZ ∈ K {~x Z | AZ~x
Z ≤~bZ } (4.5)

and

(~uQ ,∆) ∈ K {(~xR ,δ) | AR · (~xR ,δ) ≤~bR ,~xR ∈QdR
[0,1),δ ∈Q(0,1]} (4.6)

54

4.5. Eliminating the Star Operator from Formulas

hold. We show how to describe (4.5) and (4.6) as existentially quantified MLIRA formulas that

share the variable K .

If K = 0 then (~uZ ,~uQ ,∆) must be a zero vector. This is a trivial case as both formulas are

satisfiable. In the rest of the proof we consider a non-trivial case when (~uZ ,~uQ ,∆) is a non-

zero vector. Then K must be K ≥ 1 and ∆> 0.

Following Theorem 2.14 and Theorem 4.3, ~u ∈ S∗ can be expressed as a Presburger arithmetic

formula. In particular, formula (4.5) is equivalent to

∃µ1, . . . ,µq ,ν11, . . . ,νqqq ∈N. ~uZ =∑q
i=1(µi~ai +∑qi

j=1νi j
~bi j) ∧

q∧
i=1

(µi = 0 →∑qi

j=1νi j = 0) ∧ (
q∑

i=1
µi = K)

(4.7)

where vectors ~ai ’s and~bi j can be computed effectively from AZ and bZ .

We next characterize condition (4.6). Renaming variables and incorporating the boundedness

of~x,δ into the linear inequations, we can write such condition in the form

(~uQ ,∆) ∈ K {(~x,δ) | A · (~x,δ) ≤~b,δ> 0} (4.8)

Here A is a new matrix such that A · (~x,δ) ≤ b subsumes the conditions~0 ≤~x ≤~1 and 0 ≤ δ≤ 1.

The fact that~x ∈Q[0,1) was converted to~x ∈Q[0,1] using δ as before. From the theory of linear

programming [Schrijver(1998)] it follows that the set {(~x,δ) | A · (~x,δ) ≤~b} is a polyhedron, and

because the solution set is bounded, it is in fact a polytope. Therefore, there exist finitely many

vertices~c1, . . . ,~cn ∈Qd
[0,1] for some d such that A · (~x,δ) ≤~b is equivalent to

∃λ1, . . . ,λn ∈Q[0,1].
n∑

i=1
λi = 1 ∧ (~x,δ) =

n∑
i=1

λi~ci

Consequently, (4.8) is equivalent to

∃~u1, . . . ,~uK . ∃δ1, . . . ,δK . (~uQ ,∆) =
K∑

j=1
(~u j ,δ j) ∧ ∃λ11, . . . ,λK n .

K∧
j=1

(n∧
i=1

λi j ≥ 0 ∧
n∑

i=1
λi j = 1 ∧ (~u j ,δ j) =

n∑
i=1

λi j~ci ∧δ j > 0
) (4.9)

It remains to show that the above condition is equivalent to

∃β1, . . . ,βn . (~uQ ,∆) =
n∑

i=1
βi~ci ∧

n∧
i=1

βi ≥ 0 ∧
n∑

i=1
βi = K (4.10)

Consider a solution of (4.9). Letting βi =∑K
j=1λi j we obtain a solution of (4.10). Conversely,

consider a solution of (4.10). Letting αi j = βi /K , ~u j = ~u/K , δ j = ∆/K we obtain a solution

of (4.9). This shows the equivalence of (4.9) and (4.10).

55

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

Conjoining formulas (4.10) and (4.7) we complete the proof of Theorem 4.4.

4.5.1 Satisfiability Checking for Collection Formulas

Because star elimination (as well as the preparatory steps in Section 4.4) introduce only

existential quantifiers, and the satisfiability of MLIRA formulas is decidable (see e.g. [Dutertre

and de Moura(2006b), Dutertre and de Moura(2006a)]), we obtain the decidability of the

initial formula G(~r , ~w)∧ ~w ∈ {~x | F (~x)}∗. Thanks to transformation to sum normal form and

Theorem 4.2, we obtain the decidability of formulas involving sets, multisets and fuzzy sets.

Techniques for deciding satisfiability of MLIRA formulas are part of implementations of

modern satisfiability modulo theory theorem provers [Dutertre and de Moura(2006b),Dutertre

and de Moura(2006a), Berezin et al.(2003)Berezin, Ganesh, and Dill] and typically use SAT

solving techniques along with techniques from mixed integer-linear programming.

4.5.2 Satisfiability Checking for Generalized Multisets Formulas

Consider the logic defined in Figure 2.3 but without the requirement that inner terms need

to be non-negative. We also apply the same semantics for the ∗ operator as in this Section:

~u ∈ {~x | F }∗ indicates that the vector u is a finite sum of the solution vectors of F . We show that

the satisfiability of this new logic remains an NP-complete problem.

To establish the NP-completeness, we follow the steps in the original proof of NP-completeness,

as presented in Section 2.7, with few small modifications. First, instead of semilinear sets,

we use the characterization given in Theorem 4.3: vector u is a sum of integer vectors, not

necessarily non-negative ones. The bound on their size is exactly the same as the bound

given in Theorem 2.11 (cf. Corollary 1 in [Pottier(1991)]). Next, there are only polynomially

many vectors that will participate in the sum: Theorem 2.19 is defined for all integers, not just

natural numbers. The number of generating vectors depends on their maximal size and the

dimension of the problem. Using those facts we can construct formula (2.13).

The last step is to establish a bound on the size of λi . Although Theorem 2.22 talks only about

non-negative integers, we can still use exactly the same bound as defined in Theorem 2.23.

By analyzing the proof of Theorem 2.23, we can see that the only major difference is that the

matrix Ag in the case of semilinear sets contains non-negative integer generators, while in the

new proof it can also contain negative values. Nevertheless, we can still apply Theorem 2.22

because it establishes a bound on the size of non-negative solutions of an integer system of

equalities. From this bound we can derive a bound on λi .

By having a bound on λi we are able to construct a linear integer arithmetic formula equisatis-

fiable with a given formula. The new formula is polynomial in the size of the original formula.

Since the satisfiability checking of linear integer arithmetic formulas is an NP-complete prob-

lem, checking satisfiability of the extended multiset formulas is also an NP-complete problem.

56

4.6. Decision Procedures for Collection Images

4.6 Decision Procedures for Collection Images

Logics that involve collections (sets, multisets), and cardinality constraints are useful for

reasoning about unbounded data structures and concurrent processes. To make such logics

more useful in verification, we extend them in this section with the ability to compute function

images. We establish decidability and complexity bounds for the extended logics.

4.6.1 Motivating Examples for Collection Images

We start by listing several examples from verification of data structures that have motivated us

to consider extending the logic of sets with cardinalities (BAPA) with functions.

nodes ⊆ alloc ∧ card tmp = 1 ∧ tmp ∩ alloc = ; ∧ data[tmp] = e ∧
content = data[nodes] ∧ nodes1 = nodes ∪ tmp ∧ content1 = data[nodes1] →

card content1 ≤ card content + 1

Figure 4.4: Verification condition for verifying that by inserting an element into a list, the size
of the list does not decrease. The variables occurring in the formula have the following types:
nodes,alloc,tmp,e,content,content1 :: Set〈E〉, data :: E→E.

nodes ⊆ alloc ∧ card tmp = 1 ∧ tmp ∩ alloc = ; ∧ data[tmp] = e ∧
content = data[nodes] ∧ nodes1 = nodes ∪ tmp ∧ content1 = data[nodes1] →

card content1 = card content + 1

Figure 4.5: Verification condition for verifying that by inserting an element into a list, the size
of a list increases by one. The variables occurring in the formula have the following types:
nodes,alloc,tmp :: Set〈E〉, content,content1,e :: Multiset〈E〉, data :: E→E.

We start with a dynamically allocated data structure (such as a list or a tree) that manipulates

a set of linked nodes denoted by the variable nodes. The useful content in the data structure

is stored in the data fields of the elements of nodes. The nodes set can be either explicitly

manipulated through a library data type or built-in type [Dewar(1979)], or it can be verified

to correspond to a set of reachable objects using techniques such as [Wies et al.(2006)Wies,

Kuncak, Lam, Podelski, and Rinard]. The content of the list, stored in the content specification

variable, is then an image of nodes under the function data. We consider two cases of specifi-

cation in our example: 1) content is a set, that is, multiple occurrences of elements are ignored

and 2) content is a multiset, preserving the counts of occurrences of each element in the data

structure.

The verification condition generated for the case when the image is a set is given in Figure 4.4.

A more precise abstraction is obtained if content is viewed as a multiset. Figure 4.5 shows

the verification condition for this case. In the next section, we describe a decision procedure

that can reason about such logic, where functions can also return a multiset, not only set.

The approach also rewrites sets as a disjoint union of Venn regions. It then constrains the

cardinality of the multiset obtained through the image to be equal to the cardinality of the

original set. This final formula is a formula in the NP-complete logic for reasoning about

57

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

multisets and cardinality constraints defined in Chapter 2.

4.6.2 Logic of Multiset Images of Functions

In this section, we extend the logic of multisets with cardinalities to also include a function

image operator that maps a set into a multiset.

We define the function image of a set A to be a multiset f [A] : E→N:

(f [A])(e) = |{x | x ∈ A∧ f (x) = e}|

Figure 4.6 shows the logic that embeds the logic of multisets (defined in Figure 2.3), and

extends it with the multiset image operator. The logic distinguishes the sorts of sets and

multisets, but also includes a casting function mset(B) which treats a set as a multiset, and an

abstraction function set(M) which extracts the set of distinct elements that occur in a multiset.

F ::= A | F ∨F | ¬F
A ::= B ⊆ B | M ⊆ M | T ≤ T | K dvd T
B ::= x | ; |U | B ∪B | B ∩B | B c | set(M)

M ::= m | ;M | M ∩M | M ∪M | M]M | M \ M | M \\ M |mset(B) | f [B]
T ::= k | K |MAXC | T1 +T2 | K ·T | |B | | |M |
K ::= ·· · | −2 | −1 | 0 | 1 | 2 | · · ·

Figure 4.6: Logic of multisets, cardinality operator, and multiset images of sets

Given a formula F in the language described in Figure 4.6, a decision procedure for F works as

follows:

1. Apply the algorithm in Figure 4.7 to translate F into an equisatisfiable multiset formula

F ′ in the syntax of the multiset logic defined in Figure 2.3. In this step we eliminate

function symbols. The new formula F ′ has size singly exponential in the size of F .

2. Invoke on the formula F ′ the decision procedure described in Chapter 2. The decision

procedure runs in NP time.

The correctness of the reduction is stated in the following theorem.

Theorem 4.5 Given a formula F as an input to the algorithm described in Figure 4.7, let the

formula F ′ be its output. Then formulas F and F ′ are equisatisfiable and their satisfying

assignments have the same projections on the set and multiset variables occurring in F .

Proof. Let α be a model for F . From α we construct a model for F ′ by interpreting Mi as

α(f [si]).

58

4.6. Decision Procedures for Collection Images

INPUT: formula in the syntax of Figure 4.6
OUTPUT: multiset formula in the syntax of Figure 2.3

1. Flatten expressions containing the operator set:
C [. . .set(M) . . .] ; (BF = set(M)∧C [. . .BF . . .])

where the occurrence of set(M) is not already in a top-level conjunct of the form B =
set(M) for some set variable B , and BF is a fresh unused set variable

2. Let S be the set of variables occurring in the formula
Define the set SN = {s1, . . . , sQ } of Venn regions over elements of S

3. Rewrite each set expression as a disjoint union of the Venn regions from SN

4. Eliminate function symbols:
C [. . . f [si1 ∪ . . .∪ sik] . . .] ; C [. . . (Mi1] . . .]Mik) . . .]

where each Mi j is a fresh multiset variable denotes f [si j]

5. Add the conjuncts which states a necessary condition for Mi j = f [si j]

F ; F ∧∧Q
i=1 |si | = |Mi |

6. Add the conjuncts which state that si j are disjoint sets

F ; F ∧∀e.
∧Q

i=1(si (e) = 0∨ si (e) = 1)∧∧
i 6= j (si ∩ s j =;)

Figure 4.7: Algorithm for eliminating function symbols

Conversely, let α′ be a model for F ′, and we need to define α, a model for F . We only need

to interprete functions and for each function symbol f we interprete it on each disjoint

set si independently. Because |α′(si)| = |α′(Mi)|, we can enumerate both si and Mi into

sequences a1, . . . , aK and b1, . . . ,bK of same length, i.e. si = {a1, . . . , aK } and Mi = {b1, . . . ,bK }.

This enumeration defines an interpretation of function assigning a j to b j for 1 ≤ j ≤ K such

that fα[α(si)] =α(Mi).

Finally, we prove that our logic is NEXPTIME-complete. To do that we use the following facts

from [Givan et al.(2002)Givan, McAllester, Witty, and Kozen].

Definition 4.6 (Lewis clause) Let a be a constant and f be a unary function symbol. A Lewis

clause (over a and f) is a first-order clause C that has one of the following forms:

• C is an atom P (a) for a monadic predicate symbol P

• C is a clause involving a single variable x where every literal is an application of a

monadic predicate to either x or f (x)

• C is a clause involving exactly two variable x and y where every literal is an application

of a monadic predicate to either x or y

59

Chapter 4. Decision Procedures for Fractional Collections and Collection Images

Theorem 4.7 (p. 21 in [Givan et al.(2002)Givan, McAllester, Witty, and Kozen]) Checking sat-

isfiability for a set of Lewis clauses is an NEXPTIME-complete problem.

The proof of Theorem 4.7 relies on the result [Lewis(1980)] that acceptance of nondeterministic

exponential-time bounded Turing machines can be reduced to satisfiability of formulas of the

form ∃z.F1 ∧∀y∃x.F2 ∧∀y1∀y2.F3 where F1, F2, and F3 have no quantifiers and are monadic

(have only unary predicates). This class is in fact a fragment of quantifier BAPA, where

quantification occurs only over singleton elements. Note that this class of formulas has a finite

model property, which is preserved by Skolemization. Therefore, the theorem continues to

hold if we consider finite satisfiability, which is the version that we need. We adapt the proof

of Theorem 4.7 for establishing NEXPTIME-hardness of our constraints.

Theorem 4.8 Checking satisfiability of formulas belonging to the logic defined in Figure 4.6 is

an NEXPTIME-complete problem.

Proof. Let F be a formula from Figure 4.6. The algorithm in Figure 4.7 reduces F to an

equisatisfiable formula defined in the syntax of the multiset logic from Figure 2.3. This

reduction produces a formula of a singly exponential size by introducing set variables for Venn

regions over set variables in the original formula for each function. The resulting formula

belongs to logic defined in Figure 2.3, which we have proved to be NP-complete (Theorem 2.25).

From those two facts, we conclude that checking satisfiability of formulas belonging to the

logic defined in Figure 4.6 is in NEXPTIME.

To prove NEXPTIME-hardness, we construct a reduction from checking satisfiability of a set

of Lewis clauses to checking satisfiability of a set of formulas belonging to the logic defined

in Figure 4.6. Given a set of Lewis clauses, we identify monadic predicate symbols with set

variables, using the same symbols for both. We encode the set of Lewis clause into our logic as

follows:

• let P1(a), . . . ,Pn(a) be all clauses in the set of the form P (a). We encode them with the

formula P1 ∩ . . .∩Pn 6= ;.

• for every clause of the form

∀x.P1(x)∨P2(x)∨ . . .∨Pm(x)∨Q1(f (x))∨Q2(f (x))∨ . . .∨Qn(f (x))

we generate a constraint

f
(
P c

1 ∩P c
2 ∩ . . .∩P c

m

)⊆Q1 ∪Q2 ∪ . . .∪Qn

To illustrate why we generate such a constraint, here is a sequence of equivalences that

hold in the set theory. For readability reasons we restrict ourselves to one P predicate

60

4.6. Decision Procedures for Collection Images

and Q predicate:

f (P c) ⊆Q ⇔∀e.e ∈ f (P c) ⇒ e ∈Q

⇔∀e.(∃e1.e1 ∈ P c ∧e = f (e1)) ⇒ e ∈Q

⇔∀e.∀e1.e1 ∈ P ∨e 6= f (e1)∨e ∈Q

⇔¬∃e.∃e1.e1 ∈ P c ∧e = f (e1)∧e ∈Qc

⇔¬∃e1.e1 ∈ P c ∧ f (e1) ∈Qc

⇔∀x.x ∈ P ∨ f (x) ∈Q

• a clause of the form

∀x∀y. P1(x)∨P2(x)∨ . . .∨Pm(x)∨Q1(y)∨Q2(y)∨ . . .∨Qn(y)

is translated into a formula

(P1 ∪P2 ∪ . . .∪Pm =U) ∨ (Q1 ∪Q2 ∪ . . .∪Qn =U)

If we denote the given set of Lewis clauses with L and the translated set of the formulas with

T [L], it can be easily shown that L and T [L] are equisatisfiable. Let α be a model of L. We

extend α to be a model for T [L] as follows. To construct a model for the set variables in T [L]

we check non-emptiness of every Venn region, i.e. we check whether the corresponding clause

describing a Venn region evaluate to true in α. Once we have an interpretation for sets, we

construct an interpretation for the function symbols similarly as in the proof of Theorem 4.5.

The proof of the other direction is analogous. Using the results of Theorem 4.7, we conclude

that the satisfiability problem for formulas belonging to the logic defined in Figure 4.6 is an

NEXPTIME-complete problem.

61

5 Decision Procedures for Automating
Termination Proofs

In this chapter we introduce a new logic, called POSSUM , for expressing ordering constraints

on finite multisets. The main motivation for POSSUM is proving program termination. There

was no decision procedure that would enable automated reasoning in this logic until recently

[Piskac and Wies(2011)]. In this chapter we describe the decision procedure for POSSUM and

prove its correctness. The logic is parametrized by the theory of the base set, which can be an

arbitrary theory equipped with a preorder (not necessarily well-founded). We show that, if the

base theory is decidable, then so is its extension to a multiset ordering. Moreover, if the base

theory is decidable in NP, then the satisfiability problem for its POSSUM extension is also in

NP. Our decision procedure reduces a given input formula to an equisatisfiable formula in the

base theory. The decision procedure can be implemented using off-the-shelf SMT solvers. We

therefore believe that it can be a useful component of future automated termination provers.

5.1 Motivation

The standard technique for proving program termination is to construct a ranking func-

tion [Turing(1949), Floyd(1967)]. A ranking function maps the states of the program into some

well-founded domain, i.e., a set equipped with a well-founded ordering. The mapping is such

that, with each transition taken by the program, the value of the ranking function decreases in

the ordering. The canonical well-founded ordering for constructing ranking functions is the

strict order on the natural numbers. However, constructing global ranking functions for this

ordering (i.e., functions that decrease with every transition of the program) requires a lot of

ingenuity.

Despite the general result of undecidability of the halting problem, recent advances in pro-

gram analysis have brought forth tools that can automatically prove termination of real-world

programs [Berdine et al.(2006)Berdine, Cook, Distefano, and O’Hearn, Cook et al.(2006)Cook,

Podelski, and Rybalchenko]. The success of these tools is due to the development of new

proof techniques for termination [Lee et al.(2001)Lee, Jones, and Ben-Amram, Podelski and

Rybalchenko(2004b)]. These techniques avoid the construction of a global termination argu-

63

Chapter 5. Decision Procedures for Automating Termination Proofs

ment and, instead, decompose the program into simpler ones. Each of these simpler programs

is then proved terminating independently, by constructing a simpler ranking function. The

automation of these proof techniques relies on decision procedures for reasoning about con-

straints on well-founded domains. The existing tools use known decidable logics such as

linear arithmetic to express these constraints [Podelski and Rybalchenko(2004a), Colón and

Sipma(2001)], which effectively restricts the range of ranking functions that can be constructed

automatically. We believe that by providing decision procedures for more sophisticated well-

founded domains, one can significantly increase the class of programs that are amenable to

automated termination proofs.

Among the most powerful well-founded domains for proving program termination are multiset

orderings [Dershowitz and Manna(1979)]. In this chapter, we present a decision procedure

for automated reasoning about such orderings. A (strict) ordering ≺ on the base set S can

be lifted to an ordering ≺m on (finite) multisets over S as follows. For two multisets X and

Y , X ≺m Y holds iff X and Y are different, and for every element x ∈ S which occurs more

times in X than in Y , there exists an element y ∈ S which occurs more times in Y than in

X and x≺ y . For instance, {1,1,1,2,2} <m {1,3} since 1 < 3 and 2 < 3. Multiset orderings are

interesting because they inherit important properties of the ordering on the base set. In

particular, the multiset ordering ≺m is well-founded iff the ordering ≺ on the base set is well-

founded [Dershowitz and Manna(1979)]. Multiset orderings have been traditionally used

for manual termination proofs in program verification [Dershowitz and Manna(1979), Deng

and Sangiorgi(2006)], term rewriting systems [Dershowitz(1979), Baader and Nipkow(1998)],

and theorem proving [Martín-Mateos et al.(2005)Martín-Mateos, Ruiz-Reina, Alonso, and

Hidalgo, Bachmair and Ganzinger(2001b)]. The question whether reasoning about multiset

orderings can be effectively automated was open.

5.2 Examples

We motivate the usefulness of our decision procedure for proving termination through two

examples.

Example: counting leaves in a tree. Our first example is a program taken from [Dershowitz

and Manna(1979)] and shown in Figure 5.1. The termination behavior of this program is

representative for many programs that traverse algebraic data types.

The program COUNTLEAVES counts the number of leaves in a binary tree. For this purpose,

it maintains a stack S that contains all subtrees of the input tree root that still need to be

traversed. In each iteration, the first element y is removed from S. If y is a leaf then the count

is increased. Otherwise, the subtrees of y are pushed on the stack. Then the computation

continues with the updated stack.

In order to prove termination of program COUNTLEAVES, we need to find a well-founded

ordering on the states of the program that decreases with every iteration of the loop. This

64

5.2. Examples

prog CountLeaves(root : Tree) : int=
var S : Stack[Tree] = root
var c : int= 0
do

y := head(S)
if leaf (y) then

S := tail(S)
c := c +1

else S := left(y) · right(y) · tail(S)
until S = ε

return c

Figure 5.1: Program COUNTLEAVES: counting the leaves in a binary tree

prog AbsCountLeaves(root : Tree) =
var XS : multiset[Tree] = {root}
do

y := choose(XS)
if leaf (y) then XS := XS \ {y}
else XS := (XS \ {y})] {left(y)}] {right(y)}

until XS =;

Figure 5.2: Multiset abstraction of program COUNTLEAVES

well-founded ordering needs to capture the fact that in each loop iteration either some tree

is removed from the stack, or some tree on the stack is replaced by finitely many smaller

trees. This can be naturally expressed in terms of a multiset ordering. We therefore abstract

the program COUNTLEAVES by a program over multisets. The result of this abstraction is

shown in Figure 5.2. The program ABSCOUNTLEAVES is obtained from program COUNTLEAVES

by mapping the stack S to a multiset XS , i.e. in program ABSCOUNTLEAVES we abstract

from the order of the elements in S. In program ABSCOUNTLEAVES, the stack operations are

replaced by operations on multisets. For instance, the operation head(S) is abstracted by

the operation choose(XS) that non-deterministically chooses an element from the multiset

XS . The computation of such multiset abstractions of programs could be automated by

combining techniques developed in [Suter et al.(2010)Suter, Dotta, and Kuncak] and [Podelski

and Rybalchenko(2007b), Cook et al.(2005)Cook, Podelski, and Rybalchenko]. In this chapter,

we focus on automating the termination proofs for the resulting multiset program.

We prove termination of program ABSCOUNTLEAVES by proving that for every iteration of the

loop, the variable XS decreases in the ordering≺m. The ordering≺m is the multiset extension of

the subtree ordering≺ on the trees stored in the multiset. The subtree ordering is well-founded;

consequently, so is its multiset extension. Termination of program ABSCOUNTLEAVES is

therefore implied by the validity of the termination condition given in Figure 5.3. The decision

procedure presented in this chapter decides the validity of such termination conditions

65

Chapter 5. Decision Procedures for Automating Termination Proofs

XS 6= ;∧XS(y) > 0 ∧
(X ′

S = XS \ {y}∨X ′
S = (XS \ {y})] {left(y)}] {right(y)}) → X ′

S ≺m XS

Figure 5.3: Termination condition for program ABSCOUNTLEAVES

¬¬F ; F

¬(F ∧G) ; ¬F ∨¬G

¬(F ∨G) ; ¬F ∧¬G

Figure 5.4: Rewrite system for computing negation normal form

(respectively, unsatisfiability of their negation). In Section 5.3 we show how the decision

procedure works on a formula similar to the one shown in Figure 5.3.

Example: computing negation normal form. Our second example is a rewrite system that

computes the negation normal form of a propositional formula. It consists of the three rewrite

rules shown in Figure 5.4. The three rules are applied non-deterministically to any matching

subformula.

In order to prove termination of this rewrite system, Dershowitz [Dershowitz(1979)] suggested

the following mapping from a propositional formula F to a multiset of natural numbers XF .

Let [G] denote the number of operators other than ¬ that occur in G , then define

XF = { [G] | ¬G is a subformula of F }

We can then prove that, for each rewrite rule applied to a formula F , XF decreases in the

multiset extension <m of the ordering < on natural numbers. This amounts to checking

validity of the following two implications:

XF = X ′
F] {x, x} → X ′

F <m XF

XF = Y] {x + y +1}∧x > 0∧X ′
F = Y] {x, y} → X ′

F <m XF

Again, these checks can be automated using our decision procedure.

5.3 Decision Procedure through an Example

We now explain our decision procedure through an example. The decision procedure is

parameterized by the theory of the base elements comprising the multisets. For instance, in

the first example given in Section 5.2, the base theory is the theory of trees with the subtree

ordering. This theory is decidable in NP [Venkataraman(1987)]. In general, the base theory

can be any decidable theory equipped with a preorder. Our decision procedure reduces the

formula with ordering constraints over multisets to a formula containing ordering constraints

66

5.3. Decision Procedure through an Example

on the base elements. Satisfiability of the reduced formula is then checked using the decision

procedure of the base theory.

To demonstrate how our decision procedure works, we apply it to the following formula, which

is a slightly generalized version of the negated termination condition given in Figure 5.3:

Y ⊆ X ∧ X ′ = (X \ Y)]Z ∧ Z ≺m Y ∧ ¬(X ′≺m X) (5.1)

This formula is unsatisfiable in the theory of preordered multisets (where the base theory is the

theory of all preordered sets). The reduction of the formula works as follows. First, we purify

and flatten the input formula by introducing fresh variables for multisets and base elements to

separate the multiset constraints from constraints in the base theory. In our example, there are

no base theory constraints. Purification and flattening of formula (5.1) results in the formula:

Y ⊆ X ∧ X ′ = X1]Z ∧ X1 = X \ Y ∧ Z ≺m Y ∧ ¬(X ′≺m X)

The next step is to replace all multiset atoms by their point-wise definitions on the base

elements. This gives the following formula:

(∀x.Y (x) ≤ X (x)) ∧
(∀x. X ′(x) = X1(x)+Z (x)) ∧
(∀x. X1(x) = max{X (x)−Y (x),0}) ∧
(∃y.Z (y) 6= Y (y))∧ (∀z.Y (z) < Z (z) → ∃y. Z (y) < Y (y)∧ z≺ y) ∧
((∀x.X ′(x) = X (x))∨∃x ′. X (x ′) < X ′(x ′) ∧ ∀x. X ′(x) < X (x) → ¬(x ′≺x)))

Next, we skolemize all existentially quantified variables. In our example this introduces two

Skolem constants e1,e2 and one Skolem function w . Skolemization and Skolem constants are

defined in Section 5.4. They are used to eliminate the existential quantifiers from a first-order

formula and produce an equisatisfiable formula. The resulting formula is:

(∀x.Y (x) ≤ X (x)) ∧
(∀x. X ′(x) = X1(x)+Z (x)) ∧
(∀x. X1(x) = max{X (x)−Y (x),0}) ∧
Z (e1) 6= Y (e1)∧ (∀y ′.Y (y ′) < Z (y ′) → Z (w(y ′)) < Y (w(y ′))∧ y ′≺w(y ′))) ∧
((∀x.X ′(x) = X (x))∨ X (e2) < X ′(e2) ∧ ∀x. X ′(x) < X (x) → ¬(e2≺x))

The idea is now to replace each remaining universal quantifier with a finite conjunction by

instantiating each quantifier with finitely many ground terms generated from the constants

appearing in the formula and the introduced Skolem functions. The problem is that finite

instantiation is in general incomplete because the Skolem functions coming from the order-

ing constraints generate an infinite Herbrand universe. The Herbrand universe, defined in

Section 5.4, is a model for a formula that exists for every satisfiable first-order formula. Before

instantiation we therefore first conjoin the skolemized formula with additional axioms that

67

Chapter 5. Decision Procedures for Automating Termination Proofs

further constrain the Skolem functions. In our example, we add the two axioms:

∀x y.Y (x) < Z (x) ∧ w(x)≺ y → Y (y) ≤ Z (y), ∀x. Z (x) = Y (x) → w(x) = x

We will show in Section 5.6 that this step is sound and ensures that instantiation of the strength-

ened formula with the terms e1,e2, w(e1) and w(e2) is sufficient for proving unsatisfiability

of the original constraint. The instantiated formula is a quantifier-free formula over symbols

of the base theory (such as the preorder ≺), the theory of linear arithmetic, and the theory

of free function symbols (the multisets and the Skolem functions). The satisfiability of such

formulas can be decided using a Nelson-Oppen combination of the decision procedures for

the corresponding component theories. In our example, the instantiated formula implies the

following disjunction:

Z (e1) 6= Y (e1)∧X ′(e1) = X (e1)−Y (e1)+Z (e1)∧X ′(e1) = X (e1) ∨
X ′(e2) = X (e2)−Y (e2)+Z (e2)∧X (e2) < X ′(e2)∧Y (e2) ≥ Z (e2) ∨

X ′(w(e2)) = X (w(e2))−Y (w(e2))+Z (w(e2)) ∧
Z (w(e2)) < Y (w(e2))∧X ′(w(e2)) ≥ X (w(e2)) ∨

e2≺w(e2)∧¬(e2≺w(e2))

Observe that each of the disjuncts is unsatisfiable and, hence, so is the original formula (5.1).

5.4 Basic Definitions

Before we describe the logic and decision procedure for multiset orderings, we recall some

definitions and facts that are widely used in theorem proving.

Sorted logic. A signature Σ is a tuple (S,Ω), where S is a countable set of sorts and Ω is a

countable set of function symbols f . Every f ∈Ω is associated with an arity n ≥ 0 and a sort

s1×·· ·×sn → s0 with si ∈ S for all i ≤ n. Function symbols of arity 0 are called constant symbols.

For the description of our problem we will consider three sorts: S = {int,bool,elem}. We treat

predicates of sort s1 ×·· ·× sn as function symbols of sort s1 × . . .× sn → bool. We say that a

signature Σ1 extends a signature Σ2 if Σ1 contains at least the sorts and function symbols of

Σ2. Let V be a countably infinite set of sorted variables, disjoint from Ω. Terms are built as

usual from the function symbols inΩ and variables taken from V . We denote by t : s that term

t has sort s. A term t is ground, if no variable appears in t . We denote by Terms(Σ) the set of

all ground Σ-terms. An atom is either constructed from the equality symbol t1 = t2 applied to

terms t1 and t2 of the same sort, or by applying a predicate symbol to terms of the respective

sorts. Formulas are built from atoms as usual, using boolean connectives and quantifiers. A

formula F is called closed or a sentence if no variable appears free in F .

Structures. Given a signature Σ= (S,Ω), a Σ-structure α is a function that maps each sort s ∈ S

to a non-empty set α(s) and each function symbol f ∈Ω of sort s1 ×·· ·× sn → s0 to a function

α(f) :α(s1)×·· ·×α(sn) →α(s0). Set α(s) is also called α-domain of the sort s. We assume that

68

5.4. Basic Definitions

all structures interpret the sort bool by the set of Booleans {true, false}, and the sort int by the

set of all integers Z. The sort elem will serve as our base set for defining multisets. We speak of

α(elem) simply as the domain of α and often identify the two.

For a Σ-structure α and a variable assignment β : V →α(S), the evaluation of a term (respec-

tively a formula) in α,β is defined as usual:

α,β(x) =β(x), for x ∈V

α,β(f (t1, . . . , tn)) =α(f)(α,β(t1), . . . ,α,β(tn))

We use the standard interpretations for the equality symbol and propositional connectives. A

quantified variable of sort s ranges over all elements of α(s). For ground terms t , we skip the

variable assignment and simply write α(t) for its evaluation in α. The notions of satisfiability,

validity, and entailment of formulas are also defined as usual. We write α,β |= F if α satisfies F

under β. Similarly, we write α |= F if α satisfies F for all variable assignments β. In this case,

we also call α a model of F .

Herbrand model and Herbrand’s theorem. A Herbrand structure is a Σ-structure, where

every sort is interpreted by the set of its ground terms. A function symbol f ∈ Ω of sort

s1 × ·· · × sn → s0 is interprated in a natural way: given t1 : s1, . . . , tn : sn , α(f)(t1, . . . , tn) =
f (t1, . . . , tn) : s0. Herbrand’s theorem states that if a set of closed formula is satisfiable, then

it also has a Herbrand model. In first-order theorem proving, it is enough to consider only a

Herbrand structure when constructing a model.

Theories. AΣ-theory T for a signatureΣ is simply a set ofΣ-structures. Sometimes we identify

a theory by a set of Σ-sentences K , meaning the set of all Σ-models of K . We then call K the

axioms of the theory. The satisfiability problem for a Σ-theory T and a set of Σ-formulas F is

to decide whether a given F ∈F is satisfiable in some structure of T . If the set of formulas

F is clear from the context, we simply speak of the satisfiability problem of the theory T . A

Σ2-theory T2 is an extension of a Σ1-theory T1 if Σ2 is an extension of Σ1 and for every α ∈T2,

the restriction α|Σ1 of α to the sorts and symbols of Σ1 is a structure in T1. A Σ-theory T is

called stably infinite with respect to a set of formulas F , if for every formula F ∈ F which

is satisfiable in T , there exists a model α of F in T , such that the domain of α has infinite

cardinality.

Skolemization. Skolemization is a method for removing existential quantifiers from a first

order formula. It is among the first steps performed by first-order theorem provers so that

the resulting formula contains only universally quantified variables. The intuition behind

skolemization is to replace every ∃y by a concrete choice function computing y from all the

arguments y depends on. Computation of the Skolem form of a formula is described with the

69

Chapter 5. Decision Procedures for Automating Termination Proofs

following translation step:

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y]

Here f is a new function symbol (called a Skolem function or a Skolem constant). This

reduction has to be applied to the outermost existential quantifier and repeated as along

as they are the existential quantifiers in the formula. This transformation is satisfiability

preserving. As an illustration, formula ∃x.∀y.∀z.∃u.p(x, y)∨q(z,u) is skolemized to formula

∀y.∀z.p(s0, y)∨q(z, s1(y, z)). We introduced Skolem constant s0 and Skolem function s1.

5.5 POSSUM : Multiset Constraints over Preordered Sets

In this section, we formally define the constraints whose satisfiability we study in this chap-

ter. We first explain the definition of preordered sets and afterwards we describe multiset

constraints over preordered sets. We consider the following signature Σ= ({bool, int,elem},Ω),

where Ω contains the symbols for the boolean connectives and arithmetic operators. In

addition, it also contains the symbol ¹ with the sort elem×elem→ bool.

5.5.1 Finite Multisets over Preordered Sets

We assume that Σelem is a signature containing at least the binary predicate symbol ¹ over sort

elem. Let Felem be the set of all quantifier-free ground formulas over signature Σelem. We will

use the formula t1≺ t2 as syntactic shorthand for the formula t1 6= t2 ∧ t1¹ t2. A binary relation

R defined on a set E , such that R is reflexive and transitive is called a preorder and set (E ,R) is

called a preordered set. A theory of preordered sets Telem is a Σelem-theory such that for all

structures α ∈Telem, (α(elem),α(¹)) is a preordered set, i.e., every structure α ∈Telem satisfies

the following two axioms:

∀x : elem. x¹x (refl) ∀x, y, z : elem. x¹ y ∧ y ¹z → x¹z (trans)

For the rest of this chapter, we fix such a theory Telem. We require that the satisfiability problem

for Felem and Telem is decidable. We further require that Telem is stably-infinite with respect

to the formulas Felem. We call Telem the base theory.

LetΩla be the function and constant symbols of linear integer arithmetic

Ωla = {+,−,max,min, . . . ,−2,−1,0,1,2, . . . ,−2·,−1·,0·,1·,2·}

with their appropriate sorts (the function symbol C · denotes multiplication with integer

constant C). We assume that these symbols are disjoint from the symbols in Σelem. We

represent multisets as function symbols of sort elem→ int. Let M be a countably infinite set

of function symbols of this sort, disjoint from the symbols in Σelem andΩla. Further, let Σmset

70

5.5. POSSUM : Multiset Constraints over Preordered Sets

be the signature Σelem extended with the symbols M andΩla. We then define the theory Tmset

of finite preordered multisets over Telem as follows. The theory Tmset is the set of all structures

α such that α is an extension of a structure in Telem to a Σmset-structure and α satisfies the

following conditions:

• α gives the standard interpretation to the arithmetic symbols, and

• α interprets each X ∈M as a finite multiset, i.e.,

1. for all e ∈α(elem), α(X)(e) ≥ 0

2. there are only finitely many e ∈α(elem) such that α(X)(e) > 0

5.5.2 Syntax and Semantics of POSSUM Formulas

Syntax. Figure 5.5 defines the POSSUM formulas. A POSSUM formula is an arbitrary

propositional combination of atomic formulas. The atomic formulas are relations between

multiset expressions, relations between arithmetic expressions, atoms over the base signature

Σelem, and restricted quantified formulas F∀. An example of a base signature atom is the

formula e1¹e2, where e1 and e2 are two constants of sort elem. The formulas F∀ express

universal quantification over variables of sort elem. The formulas below the quantifiers can

express arithmetic relations between multiplicities X (x) of the quantified variables or ordering

constraints between these variables. Using these quantified formulas we can express that

some constant e is maximal in a multiset X : ∀x. X (x) > 0 → x¹e. The important restriction

for the formulas below the universal quantifiers is that the quantified variables x are not

allowed to appear below function symbols of the base signature Σelem. This is enforced

by allowing only ground Σelem-terms t below the quantifiers. Note also that there are no

POSSUM formulas with F∀ atoms that have an alternating quantifier prefix. We call a subset

F of POSSUM formulas quantifier-bounded if the number of quantified variables appearing

in F∀ subformulas of formulas in F is bounded.

Semantics. POSSUM formulas are interpreted in the structures of the theory Tmset. The

semantics of POSSUM formulas extends the semantics of first-order formulas defined in

Section 5.4. Note that with the exception of atomic formulas that express relations on multisets,

all atomic formulas are first-order formulas. Thus, we only need to define the semantics

of formulas of the form M1 = M2, M1 ⊆ M2, and M1¹m M2. Let α be a structure in Tmset.

First, we extend the interpretation α(X) of multisets X ∈ M in α to multiset expressions.

The interpretation is defined point-wise for all e ∈α and recursively on the structure of the

expression:

α(;)(e) = 0

α({t K }}(e) = if α(t) = e then α(K) else 0

α(M1 ∪M2)(e) = max{α(M1)(e),α(M2)(e)}

71

Chapter 5. Decision Procedures for Automating Termination Proofs

top-level formulas:
F ::= A | F ∧F | ¬F
A ::= M = M | M ⊆ M | K = K | K ≤ K | M ¹m M | Aelem | F∀

M ::= X | ; | {t K } | M ∩M | M ∪M | M]M | M \ M | set(M)
K ::= k |C | K +K |C ·K

restricted quantified formulas:
F∀ ::= ∀x : elem.F∀ | ∀x : elem.Fin

Fin ::= Ain | Fin∧Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin |Ein¹Ein |Ein=Ein

tin ::= X (Ein) |C | tin+ tin |C · tin
Ein ::= x | t

terminals:
Aelem - ground Σelem-atom ; X - multiset ; k - integer variable; C - integer constant
t - ground Σelem-term of sort elem; x - variable of sort elem

Figure 5.5: Syntax for Multiset Constraints over Preordered Sets (POSSUM)

α(M1 ∩M2)(e) = min{α(M1)(e),α(M2)(e)}

α(M1]M2)(e) =α(M1)(e)+α(M2)(e)

α(M1 \ M2)(e) = max{α(M1)(e)−α(M2)(e),0}

α(set(M))(e) = min{α(M)(e),1}

For defining the interpretations of the predicate symbols =, ⊆, and ¹m on multisets, we

define corresponding relations =m, ⊆m, and ¹m at the meta-level. Let m1,m2 be functions

α(elem) →N. The relations =m and ⊆m are defined point-wise as expected:

m1 =m m2 ⇔ ∀e ∈α(elem).m1(e) = m2(e)

m1 ⊆m m2 ⇔ ∀e ∈α(elem).m1(e) ≤ m2(e)

For defining the multiset ordering we identify ≺ with the irreflexive reduct of the relation α(¹).

The relation ¹m is then defined as follows:

m1¹m m2 ⇔ ∀e1 ∈α. m1(e1) > m2(e1) ⇒
∃e2 ∈α.m2(e2) > m1(e2)∧e1≺e2

(5.2)

Note that this is not the standard definition of the multiset ordering that was originally used

in [Dershowitz and Manna(1979)]. However, in order to reduce the number of multiset

variables we use the simpler definition (5.2). For finite multisets, definition (5.2) is equivalent

to the standard one (for proof see [Baader and Nipkow(1998), Lemma 2.5.6, p.24]).

72

5.6. Decidability of POSSUM

5.6 Decidability of POSSUM

We now describe the decision procedure for POSSUM . The idea of the decision procedure

is to reduce satisfiability of a POSSUM formula to satisfiability of a formula in a particular

first-order theory, namely, the disjoint combination of the base theory Telem, the theory of

linear integer arithmetic, and the theory of uninterpreted function symbols.

Reduction to a first-order theory. In the following, we show how to decide conjunctions of

POSSUM literals. The extension of the decision procedure to arbitrary Boolean combinations

of literals is straightforward. Thus, let F be a fixed POSSUM conjunction. The first step of

our decision procedure is to rewrite F into a quantified first-order formula by expanding all

multiset constraints to their point-wise definitions.

For two multiset variables X and Y we denote by LX ,Y the multiset X \ Y and by UX ,Y the

multiset Y \X . Similarly, for a given element x we use LX ,Y (x) as a shorthand for the expression

X (x)−Y (x) and UX ,Y (x) for Y (x)−X (x). The algorithm for rewriting F is then as follows:

1. Purify and flatten all multiset constraints in F :

C [M] ; X f = M ∧C [X f]

where X f ∈M is a fresh multiset and M is

(a) either of the form M1 ∪M2, M1 ∩M2, M1]M2, M1 \ M2, and at least one Mi is not

a multiset X ∈M

(b) or of the form ;, {t k }, set(M1), and they are not in a conjunct of the form X = M or

M = X for some multiset X ∈M .

2. Replace all multiset atoms by their point-wise definitions

C [X =;] ; C [∀x. X (x) = 0]

C [X = {ek }] ; C [X (e) = k ∧∀x. x 6= e → X (e) = 0]

C [X = Y ∪Z] ; C [∀x. X (x) = max{Y (x), Z (x)}]

C [X = Y ∩Z] ; C [∀x. X (x) = min{Y (x), Z (x)}]

C [X = Y]Z] ; C [∀x. X (x) = Y (x)+Z (x)]

C [X = Y \ Z] ; C [∀x. X (x) = max{Y (x)−Z (x),0}]

C [X = Y] ; C [∀x. X (x) = Y (x)]

C [X ¹m Y] ; C [∀x.LX ,Y (x) > 0 → ∃y.UX ,Y (y) > 0∧x≺ y]

3. Compute negation normal form, i.e., push all negations down to the atoms

4. Skolemize all existentially quantified variables

5. For every multiset X occurring in the formula, add the formula ∀x. X (x) ≥ 0 as an

additional conjunct

73

Chapter 5. Decision Procedures for Automating Termination Proofs

After rewriting, the resulting formula is of the form K ∧G where G is a ground formula and

K is a conjunction of universally quantified formulas. Clearly, each step of the rewriting

transforms the input formula into an equisatisfiable formula.

Lemma 5.1 The formulas F and K ∧G are equisatisfiable in the theory of preordered multisets.

Quantifier instantiation.

If the original formula F does not contain any atom of the form X ¹m Y (or if there is some but

it appears under the negation), then checking satisfiability of K ∧G is relatively simple: it is

enough to construct the Herbrand universe, which is in this particular case finite. We would

instantiate all universally quantified variables with the elements of the Herbrand domain.

This way the whole formula becomes ground and checking its satisfiability can be done using

any SMT solver. However, X ¹m Y introduces the Skolem function of arity 1. In that case the

Herbrand domain becomes infinite and the previous solution cannot be applied.

We will now show that there exists a finite and computable set of ground terms TK ,G of sort

elem such that K ∧G is equisatisfiable to the formula K [TK ,G]∧G , where K [TK ,G] is a

ground formula obtained by instantiating all quantified variables appearing in K with the

terms in TK ,G .

Throughout the rest of this section, we denote by E the set of all ground terms of sort elem

appearing in K ∧G . The set E contains the ground terms appearing in the initial formula F

and Skolem constants that have been introduced for top-level existentially quantified variables

in Step 4 of the rewrite algorithm. Zarba showed in [Zarba(2002a)] that for formulas F without

ordering constraints on multisets and formulas F∀, the theory K is (what is now known as)

a stably local theory extension [Sofronie-Stokkermans(2005)]. This means that if F does not

contain ordering constraints then F is equisatisfiable to the formula K [E]∧G . The reason

for locality of K in this case is simply that instantiation of the quantifiers in K with terms

of sort elem will not create new terms of the same sort. Unfortunately, in the presence of

ordering constraints this is no longer true, i.e., instantiation of K with the terms in E alone is

not sufficient.

For an illustration of this behavior, reconsider the defining formula (5.2) for the ordering con-

straint X ¹m Y . This formula contains ∀∃ quantification over variables of sort elem. Skolem-

ization of this formula thus gives

∀x.LX ,Y (x) > 0 → UX ,Y (wX ,Y (x)) > 0∧x≺wX ,Y (x) (5.3)

where wX ,Y is a fresh Skolem function. We call these Skolem functions ≺m-witness func-

tions and terms constructed from these functions ≺m-witnesses. Figure 5.6 represents a

≺m-witnesses of an element e. Instantiation of formula (5.3) with a term e ∈ E generates a new

≺m-witness wX ,Y (e) of sort elem, which is not already contained in E . For completeness, we

74

5.6. Decidability of POSSUM

have to instantiate K recursively with these ≺m-witnesses.

LX ,Y UX ,Ye wX ,Y (e)

≺

Figure 5.6: An element and its ≺m-witnesses

We now show that we can put additional constraints on the ≺m-witness functions such that we

only need to consider finitely many ≺m-witnesses for the instantiation of K . These additional

constraints are as follows. First, we enforce that the ≺m-witness function wX ,Y only chooses

maximal elements in the multiset UX ,Y and, second, we require that each element outside

LX ,Y is mapped to itself. Figure 5.7 depicts those additional rules. Formally, these constraints

are expressed by the following two axioms:

∀x y.LX ,Y (x) > 0∧wX ,Y (x)≺ y → UX ,Y (y) = 0 (5.4)

∀x.LX ,Y (x) = 0 → wX ,Y (x) = x (5.5)

LX ,Y UX ,Y

e1 e2 = wX ,Y (e1)

e3

e4

≺

≺

wX ,Y

Figure 5.7: An illustration for the rules described by formulas (5.4) and (5.5)

The existence of such constrained witness functions is guaranteed by the fact that we restrict

ourselves to finite multisets. In particular, given a ≺m-witness function wX ,Y satisfying axiom

(5.3), we can define a new witness function that maps every e in LX ,Y to the maximal element

of some ascending chain starting from wX ,Y (e) in UX ,Y . Finiteness of the multiset UX ,Y

guarantees the existence of such a maximal element.

For the rest of this section let W be the set of all ≺m-witness functions occurring in K and let

KW be the conjunction of axioms (5.4) and (5.5) for all wX ,Y ∈W .

Lemma 5.2 The formulas K ∧G and K ∧KW ∧G are equisatisfiable in the theory of preordered

multisets.

Let TW,E be the smallest set of ground terms that satisfies the following two conditions:

75

Chapter 5. Decision Procedures for Automating Termination Proofs

1. E ⊆ TW,E

2. if t ∈ TW,E and wX ,Y ∈W then wX ,Y (t) ∈ TW,E

For a term t ∈ TW,E of the form t = wn . . . w1(e) where e ∈ S, we define t0 = e and denote by ti ,

for 1 ≤ i ≤ n, the subterm wi . . . w1(e) of t . We call t ∈ TW,E a strict chain in a structure α iff α

satisfies ti ≺ ti+1 for all i with 0 ≤ i < n. We say that a strict chain t ∈ TW,E in a structure α is

maximal if t is not a proper subterm of any other strict chain t ′ ∈ TW,E in α. For a structure α

and a set of ground terms T , we denote by α(T) the set α(T) = {α(t) | t ∈ T }.

Now, define TK ,G as the set of all terms t ∈ TW,E such that each function wX ,Y occurs at most

once in t . Clearly, the set TK ,G is finite, since W is finite. We can now show that in models of

K ∧KW , the terms TW,E are partitioned into finitely many equivalence classes, each of which

is represented by some term in TK ,G .

Lemma 5.3 For all models α of K ∧KW , α(TW,E) =α(TK ,G).

Proof. Letα be a model of K ∧KW . Note that from strictness of ≺, and axioms (5.3) and (5.5) it

follows that for all terms t of sort elem and wX ,Y ∈W , eitherα |= wX ,Y (t) = t orα |= t ≺wX ,Y (t)

holds.

The proof goes by contradiction. Thus, assume there exists t ∈ TW,E such that α(t) ∉α(TK ,G).

Then remove all function applications wi from t for which α |= wi (ti−1) = ti−1, obtaining a

term t ′ ∈ TW,E . Then t ′ is a strict chain and α |= t = t ′. From this we conclude that α(t ′) ∉
α(TK ,G) and therefore t ′ ∉ TK ,G . Hence, there exists i , j with 1 ≤ i < j < k and multiset

variables X ,Y such that w ′
i = w ′

j = wX ,Y ∈ W . We then have α |= t ′i−1≺wX ,Y (t ′i−1). Based

on strictness of ≺, axiom (5.5) and axiom ∀x.LX ,Y (x) ≥ 0 we conclude α |= LX ,Y (t ′i−1) > 0.

Similarly, we conclude α |= LX ,Y (t ′j−1) > 0. By transitivity of ≺ and construction of t ′, we

further have that α satisfies wX ,Y (t ′i−1)≺wX ,Y (t ′j−1). From axiom (5.4) we then conclude

α |= UX ,Y (wX ,Y (t ′j−1)) = 0. However, axiom (5.3) implies α |= UX ,Y (wX ,Y (t ′j−1)) > 0, which

gives us a contradiction.

From Lemma 5.3 it follows that we only need to instantiate the axioms K ∧KW with the terms

in TK ,G .

Lemma 5.4 The formulas K ∧KW ∧G and K [TK ,G]∧KW [TK ,G]∧G are equisatisfiable in

the theory of preordered multisets.

The formula K [TK ,G]∧KW [TK ,G]∧G can now be purified obtaining an equisatisfiable

formula Gelem∧Gla∧Geuf such that the three conjuncts Gelem, Gla, and Geuf only share constant

symbols and:

• Gelem is a constraint over symbols in the theory Telem

76

5.7. Complexity of POSSUM

• Gla is a linear integer arithmetic constraint, and

• Geuf is a constraint built from uninterpreted function symbols and equality

We can thus check satisfiability of F by checking satisfiability of Gelem ∧Gla ∧Geuf in the

disjoint combination of the theory Telem, the theory of linear integer arithmetic, and the

theory of uninterpreted function symbols with equality. By our assumptions on the theory

Telem, this combined theory can be decided using standard Nelson-Oppen combination

techniques [Nelson and Oppen(1979)].

Theorem 5.5 The satisfiability problem for POSSUM formulas is decidable.

5.7 Complexity of POSSUM

We will now establish that the satisfiability problem for the quantifier-bounded fragments of

POSSUM is in NP, provided the base theory Telem is also decidable in NP. Since POSSUM formulas

subsume propositional logic this bound is tight.

We have seen in the previous section that we can reduce a POSSUM conjunction F to a ground

formula K [TK ,G]∧KW [TK ,G]∧G whose satisfiability can be decided using the decision

procedure of the base theory. However, the size of the resulting formula can be exponential in

the size of the input formula F because the size of the set TK ,G used for the instantiation is

exponential in the number of ≺m-witness functions W . The following theorem implies that

this exponential blowup can be avoided.

Theorem 5.6 If the formula K ∧KW ∧G is satisfiable then it has a modelα such that |α(TK ,G)| ∈
O (|W |2 · |E |), where W is the set of all ≺m-witness functions occurring in K and E is the set of

all ground terms of sort elem appearing in K ∧G.

Proof.

Assume K ∧KW ∧G is satisfiable and let α0 be one of its models. Further, let n = |W | and

m = |E |. From α0 we construct a model α with |α(TK ,G)| ∈O (n2m) by collapsing redundant

strict chains in α0.

For this purpose, we choose a set T of strict chains in α0 such that for every term e ∈ E and

witness function wX ,Y ∈W , there is at most one chain t ∈ T that starts in LX ,Y with e, i.e., t

contains wX ,Y (e) as a subterm. Figure 5.8 shows an example of two redundant chains. Since

we consider an arbitrary preorder, not necessarily total, the figure shows that it is possible for

two elements e1 and e2, such that e1 ∈ [e2], to find the witnesses wX ,Y (e1) and wX ,Y (e2) that

are incomparable. The witness of e1 is clearly also a witness for e2 and we do not need any

77

Chapter 5. Decision Procedures for Automating Termination Proofs

LX ,Y UX ,Y

e1

e2

wX ,Y (e1)

wX ,Y (e2)

≺

≺

=

Figure 5.8: An example of two redundant chains in α0

of the chains that contain wX ,Y (e2). Therefore we demand for the set T to contain only one

chain passing through [e2] and containing a term wX ,Y (t ′), for some t ′ such that α0(t ′) ∈ [e2].

Formally, let E= be the quotient of E with respect to the interpretation of the equality predicate

= in α0 and denote by [e] ∈ E= the equivalence class of e ∈ E . Let T be a maximal subset T of

TK ,G such that

1. each t ∈ T is a maximal strict chain in α0

2. for each w ∈W , if there is some t ∈ T which contains w and starts in e ∈ E , then there is

no other t ′ ∈ T which contains w(e ′) as a subterm, for any e ′ ∈ [e]

Clearly such a set T exists. A simple algorithm to construct T runs as follows. First, create a set

T0 that contains all the maximal strict chain in α0. Then, for every w ∈W take a strict chain

t ∈ T0 such that w is contained in t . Let e be the starting element of t . Delete all t ′ from T0

such that t ′ starts with w(e ′), where e ′ ∈ [e]. Set T0 is finite so this algorithm terminates and at

the end we obtain set T . Let T ∗ be the set of all subterms t0, . . . , tk of the chains t ∈ T , where k

is the length of chain t .

We now construct α from α0 by collapsing all strict chains in α0 to the chains in T . First, we let

α agree with α0 on the interpretation of all sorts and all symbols that are not witness functions.

For each witness function w ∈W and v ∈α(elem), we then define

α(w)(v) =

α0(t) if v =α0(e) for some e ∈ E , α0(w(e)) 6=α0(e), and there is some term

t ∈ T ∗ with t = w(t ′) for some t ′ containing e ′ ∈ [e],

α0(w)(v) otherwise

Note that from the definition of T and α it follows that for all t ∈ T ∗, α(t) = α0(t). Thus all

terms in T ∗ are still strict chains in α.

We first prove that α is still a model of K ∧KW ∧G . Since α0 is a model of K ∧KW ∧G and α

agrees with α0 on all symbols that are not witness functions, we immediately conclude that α

is also a model of G and all axioms of K that do not mention the witness functions. The fact

that α still satisfies the remaining axioms (5.3)-(5.5) for all w ∈W also easily follows from the

78

5.7. Complexity of POSSUM

definition of α.

As an illustration, we will show that α satisfies axiom (5.3). Let β be a valuation and let

α,β |= LX ,Y (x) > 0. Since α and α0 agree on all the symbols but the witness function, it

clearly means α,β |=UX ,Y (wX ,Y (x)). We need to show that α,β |= x≺wX ,Y (x). Let v =β(x). If

α(wX ,Y)(v) =α0(wX ,Y)(v) then clearly α,β |= x≺wX ,Y (x), so let us assume that α(wX ,Y)(v) 6=
α0(wX ,Y v)(v). Then, by definition, v =α0(e) for some e ∈ E and α(wX ,Y)(v) =α0(t) for some

term t ∈ T ∗ such that t = wX ,Y (t ′) and t ′ contains e ′ ∈ [e]. The fact that t is a strict chain in α0

also means that t is a strict chain in α. By the transitivity of ≺ we conclude α |= e ′≺ t . Since

e ′ ∈ [e] we further have α |= e = e ′ and hence α |= e≺wX ,Y (e). Element e ∈ E is a ground term

and therefore α(e) =α0(e) = v . Since v = β(x), we have proved that α,β |= x≺wX ,Y (x). The

proofs for the other two axioms are similar.

We next observe that α(T ∗) =α(TK ,G). Since T ∗ ⊆ TK ,G , it is obvious that α(T ∗) ⊆α(TK ,G). To

show that α(TK ,G) ⊆ α(T ∗), let t ∈ TK ,G be a term. If t = e, where e is a ground term, clearly

e ∈ T ∗. If t = w(t ′) for some t ′, either there is only one chain containing w going through

[α0(t ′)] or there are several of them. In first case t ∈ T ∗. In the second case t does not need to

be contained in T ∗, but by construction of α we have α(t) ∈α(T ∗).

For proving that |α(TK ,G)| ∈O (n2m) it is therefore enough to count the number of elements

in T ∗. For this purpose, fix e ∈ E and let k be the maximal length of the chains t in T that start

from some e ′ ∈ [e]. From strictness of the chains and Lemma 5.3 it follows that k ≤ n. Let t

be a chain of the maximal length. There are k witness functions occurring in t and thus by

the second condition of the definition of T , none of those k witness functions can start a new

chain. Using the second condition of the definition of T again, we conclude that there can

be at most n −k additional maximal chains, different from t , that will start from some e ′ ∈ [e].

That means that, if k is the maximal length of the chains starting from some e ′ ∈ [e], then there

are at most n −k +1 maximal chains in T that start from some e ′ ∈ [e]. Each of these chains

has at most length k by assumption and thus at most k +1 subterms. Using this observation

we derive that T ∗ contains at most (n −k +1)(k +1) terms with some e ′ ∈ [e] as a subterm.

From max1≤k≤n{(n −k +1)(k +1)} ∈O (n2) we then conclude |T ∗| ∈O (n2m).

Theorem 5.6 implies that we can guess a polynomial subset T of the terms TK ,G and then

use this subset to instantiate the axioms in K ∧KW . The size of the resulting formula

K [T]∧KW [T]∧G is then polynomial in the size of the input formula, provided we bound

the number of quantified variables in F∀ subformulas of the input.

Theorem 5.7 If the base theory Telem is decidable in NP then for the quantifier-bounded frag-

ments of its POSSUM extension, the satisfiability problem is NP-complete.

Practical Considerations. Our decision procedure is amenable to practical implementations

using off-the-shelf SMT-solvers. In particular, using techniques developed for local theory

extensions [Jacobs(2009)], we can postpone the exponential decomposition phase of guessing

79

Chapter 5. Decision Procedures for Automating Termination Proofs

the terms used for instantiation, by generating these terms lazily from models produced by

the SMT solver. Also note that in practical applications such as checking validity of constraints

generated from termination proofs, all multiset ordering constraints X ≺m Y will typically have

negative polarity. Since only positive occurrences of such constraints generate ≺m-witness

functions, the set of terms TK ,G will, in most practical cases, already be polynomial in the size

of the input constraint.

5.8 Further Related Work

The logic POSSUM extends the logic of multisets with integers, which was shown to be NP-

complete by Zarba [Zarba(2002a)]. This extension is non-trivial. In particular, Zarba only

considers a disjoint combination of a base theory with the theory of multisets and does

not support ordering constraints on multisets. Such constraints generate axioms with ∀∃
quantification, which require a more intricate argument to establish completeness of local

instantiation. The logic of multisets with cardinality constraints [Piskac and Kuncak(2008a)]

also subsumes Zarba’s logic and was shown to be NP-complete [Piskac and Kuncak(2008c)].

It is incomparable to our logic because it also does not support ordering constraints. On the

other hand, POSSUM can only express very restricted cardinality constraints. In [Kuncak

et al.(2010c)Kuncak, Piskac, and Suter] the theory of sets with cardinality constraints over

totally ordered base sets was shown to be decidable in NP. This result can be generalized to

multisets. Decidability of multisets over partially ordered base sets and with general cardinality

constraints is open.

Local theory extensions [Sofronie-Stokkermans(2005)] formalize the general category of the-

ories for which local quantifier instantiation techniques are complete. Some local theory

extension of orders have been studied in [Sofronie-Stokkermans and Ihlemann(2007)]. Our

extension of preorders to multiset orderings is an instance of the so called Ψ-local theory

extensions, which have been introduced in [Ihlemann et al.(2008)Ihlemann, Jacobs, and

Sofronie-Stokkermans].

Simplification orderings are a common tool to prove termination of term rewrite systems [Der-

showitz(1979), Baader and Nipkow(1998)]. Among the most widely used simplification order-

ings are recursive path orderings [Dershowitz(1979)] (which have originally been defined in

terms of multiset orderings), lexicographic path orderings [Baader and Nipkow(1998)], and

Knuth-Bendix orderings [Dick et al.(1990)Dick, Kalmus, and Martin]. Constraint solving has

been shown to be decidable in NP for each of these orderings [Korovin and Voronkov(2001),

Narendran et al.(1998)Narendran, Rusinowitch, and Verma, Zhang et al.(2005)Zhang, Sipma,

and Manna, Nieuwenhuis(1993)]. Unlike simplification orderings, we do not require that the

underlying order is total. Thus, one can use our decision procedure to prove termination even

in cases where there are no natural total orderings, such as Example 1 in Section 5.2.

80

6 Combining Theories with Shared Set
Operations

Motivated by applications in software verification, we explore automated reasoning about the

non-disjoint combination of theories of infinitely many finite structures, where the theories

share set variables and set operations. We prove a combination theorem and apply it to show

the decidability of the satisfiability problem for a class of formulas obtained by applying propo-

sitional connectives to formulas belonging to: 1) Boolean Algebra with Presburger Arithmetic

(with quantifiers over sets and integers), 2) weak monadic second-order logic over trees (with

monadic second-order quantifiers), 3) two-variable logic with counting quantifiers (ranging

over elements), 4) the Bernays-Schönfinkel-Ramsey class of first-order logic with equality

(with ∃∗∀∗ quantifier prefix), and 5) the quantifier-free logic of multisets with cardinality

constraints.

6.1 Motivation

Constraint solvers based on satisfiability modulo theories (SMT) [de Moura and Bjørner(2008a),

Barrett and Tinelli(2007),Ge et al.(2007)Ge, Barrett, and Tinelli] are a key enabling technique in

software and hardware verification systems [Ball et al.(2002)Ball, Podelski, and Rajamani, Bar-

nett et al.(2004a)Barnett, DeLine, Fähndrich, Leino, and Schulte]. The range of problems

amenable to such approaches depends on the expressive power of the logics supported by the

SMT solvers. Current SMT solvers implement the combination of quantifier-free stably infinite

theories with disjoint signatures, in essence following the approach pioneered by Nelson and

Oppen [Nelson and Oppen(1979)]. Such solvers serve as decision procedures for quantifier-

free formulas, typically containing uninterpreted function symbols, linear arithmetic, and

bit vectors. The limited expressiveness of SMT prover logics translates into a limited class of

properties that automated verification tools can handle.

To support a broader set of applications, this chapter considers decision procedures for the

combination of possibly quantified formulas in non-disjoint theories. The idea of combining

rich theories within an expressive language has been explored in interactive provers [Owre

et al.(1992)Owre, Rushby, and Shankar, Boyer and Moore(1988), Basin and Friedrich(2000),

81

Chapter 6. Combining Theories with Shared Set Operations

McLaughlin et al.(2006)McLaughlin, Barrett, and Ge]. Such integration efforts are very useful,

but do not result in complete decision procedures for the combined logics. The study of

completeness for non-disjoint combination is relatively recent [Zarba(2002b), Tinelli and

Ringeissen(2003)] and provides foundations for the general problem. Under certain condi-

tions, such as local finiteness, decidability results have been obtained even for non-disjoint

theories [Ghilardi(2005)]. We consider a case of combination of non-disjoint theories sharing

operations on sets of uninterpreted elements, a case that was not considered before. The

theories that we consider have the property that the tuples of cardinalities of Venn regions

over shared set variables in the models of a formula are a semi-linear set (i.e., expressible in

Presburger arithmetic).

Reasoning about combinations of decidable logics. The idea of deciding a combination of

logics is to check the satisfiability of a conjunction of formulas A∧B by using one decision

procedure, D A , for A, and another decision procedure, DB , for B . To obtain a complete

decision procedure, D A and DB must communicate to ensure that a model found by D A and a

model found by DB can be merged into a model for A∧B .

Reduction-based decision procedure. We follow a reduction approach to decision proce-

dures. The first decision procedure, D A , computes a projection, S A , of A onto shared set

variables, which are free in both A and B . This projection is semantically equivalent to existen-

tially quantifying over predicates and variables that are free in A but not in B ; it is the strongest

consequence of A expressible only using the shared set variables. DB similarly computes

the projection SB of B . This reduces the satisfiability of A∧B to satisfiability of the formula

S A ∧SB , which contains only set variables.

A logic for shared constraints on sets. A key parameter of our combination approach is

the logic of sets used to express the projections S A and SB . A suitable logic depends on the

logics of formulas A and B . Inspired by verification of linked data structures, we consider as

the logics for A,B the following: weak monadic second-order logic of two successors WS2S

[Thatcher and Wright(1968)], two-variable logic with counting C 2 [Grädel et al.(1997)Grädel,

Otto, and Rosen, Pacholski et al.(2000)Pacholski, Szwast, and Tendera, Pratt-Hartmann(2005)],

the Bernays-Schönfinkel-Ramsey class of first-order logic [Börger et al.(1997)Börger, Grädel,

and Gurevich], BAPA [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard], and quantifier-free

logics of multisets [Piskac and Kuncak(2008c),Piskac and Kuncak(2008a)]. Remarkably, the

smallest logic needed to express the projection formulas in these logics has the expressive

power of Boolean Algebra with Presburger Arithmetic (BAPA), described in [Kuncak and

Rinard(2007)] and in Fig. 6.4. We show that the decision procedures for these four logics

can be naturally extended to a reduction to BAPA that captures precisely the constraints on

set variables. The existence of these reductions, along with quantifier elimination [Kuncak

et al.(2006)Kuncak, Nguyen, and Rinard] and NP membership of the quantifier-free fragment

[Kuncak and Rinard(2007)], make BAPA an appealing reduction target for expressive logics.

82

6.2. Example: Verifying a Code Fragment

class Node {Node left,right ; Object data;}
class Tree {

private static Node root;
private static int size ; /*:
private static specvar nodes :: objset ;
vardefs "nodes=={x. (root,x) ∈ {(x,y). left x = y ∨ right x = y}∗}";
private static specvar content :: objset ;
vardefs "content=={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} " */

private void insertAt (Node p, Object e) /*:
requires "tree [left , right] ∧ nodes ⊆ Object.alloc ∧ size = card content ∧

e ∉ content ∧ e 6= null ∧ p ∈ nodes ∧ p 6= null ∧ left p = null"
modi�es nodes,content, left , right , data, size
ensures "size = card content" */

{
Node tmp = new Node();
tmp.data = e;
p. left = tmp;
size = size + 1;
}

}

Figure 6.1: Fragment of insertion into a tree

An earlier version of some of these results is available in [Kuncak and Wies(2009)].

6.2 Example: Verifying a Code Fragment

Our example shows a verification condition formula generated when verifying an unbounded

linked data structure. The formula belongs to our new decidable class obtained by combining

several decidable logics.

Specification and verification in Jahob. Fig. 6.1 shows a fragment of Java code for insertion

into a binary search tree, factored out into a separate insertAt method. The search tree

has fields (left, right) that form a tree, and field data, which is not necessarily an injective

function (an element may be stored multiple times in the tree). The insertAt method is

meant to be invoked when the insertion procedure has found a node p that has no left child. It

inserts the given object e into a fresh node tmp that becomes the new left child of p. In addition

to Java statements, the example in Fig. 6.1 contains preconditions and postconditions, written

in the notation of the Jahob verification system [Kuncak(2007),Zee et al.(2008)Zee, Kuncak, and

Rinard, Wies(2009)]. The vardefs notation introduces two sets: 1) the set of auxiliary objects

nodes, denoting the Node objects stored in the binary tree, and 2) the set content denoting the

useful content of the tree. To verify such examples in the previously reported approach [Zee

et al.(2008)Zee, Kuncak, and Rinard], the user of the system had to manually provide the

definitions of auxiliary sets, and to manually introduce certain lemmas describing changes to

these sets. Our decidability result means that there is no need to manually introduce these

lemmas.

83

Chapter 6. Combining Theories with Shared Set Operations

tree [left , right] ∧ left p = null ∧ p ∈ nodes ∧
nodes={x. (root,x) ∈ {(x,y). left x = y|right x = y}^*} ∧
content={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ∧
e ∉ content ∧ nodes ⊆ alloc ∧
tmp ∉ alloc ∧ left tmp = null ∧ right tmp = null ∧
data tmp = null ∧ (∀ y. data y 6= tmp) ∧
nodes1={x. (root,x) ∈ {(x,y). (left (p:=tmp)) x = y) | right x = y} ∧
content1={x. ∃ n. n 6= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x} →

card content1 = card content + 1

Figure 6.2: Verification condition for Fig. 6.1

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}

WS2S FRAGMENT:
tree [left , right] ∧ left p = null ∧ p ∈ nodes ∧ left tmp = null ∧ right tmp = null ∧
nodes={x. (root,x) ∈ {(x,y). left x = y|right x = y}^*} ∧
nodes1={x. (root,x) ∈ {(x,y). (left (p:=tmp)) x = y) | right x = y}
CONSEQUENCE: nodes1=nodes ∪ {tmp}

C2 FRAGMENT:
data tmp = null ∧ (∀ y. data y 6= tmp) ∧ tmp ∉ alloc ∧ nodes ⊆ alloc ∧
content={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ∧
content1={x. ∃ n. n 6= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x}

CONSEQUENCE: nodes1 6= nodes ∪ {tmp} ∨ content1 = content ∪ {e}

BAPA FRAGMENT: e ∉ content ∧ card content1 6= card content + 1
CONSEQUENCE: e ∉ content ∧ card content1 6= card content + 1

Figure 6.3: Negation of Fig. 6.2, and consequences on shared sets

Decidability of the verification condition. Fig. 6.2 shows the verification condition formula

for a method (insertAt) that inserts a node into a linked list. The validity of this formula

implies that invoking a method in a state satisfying the precondition results in a state that

satisfies the postcondition of insertAt. The formula contains the transitive closure operator,

quantifiers, set comprehensions, and the cardinality operator. Nevertheless, there is a (syntac-

tically defined) decidable class of formulas that contains the verification condition in Fig. 6.2.

This decidable class is a set-sharing combination of three decidable logics, and can be decided

using the method we present in this chapter.

To understand the method for proving the formula in Fig. 6.2, consider the problem of showing

the unsatisfiability of the negation of the formula. Fig. 6.3 shows the conjuncts of the negation,

grouped according to three decidable logics to which the conjuncts belong: 1) weak monadic

second-order logic of two successors WS2S [Thatcher and Wright(1968)], 2) two-variable logic

with counting C 2 [Pratt-Hartmann(2005)], and 3) Boolean Algebra with Presburger Arithmetic

(BAPA) [Feferman and Vaught(1959), Kuncak et al.(2006)Kuncak, Nguyen, and Rinard, Kuncak

and Rinard(2007)]. For the formula in each of the fragments, Fig. 6.3 also shows a consequence

formula that contains only shared sets and statements about their cardinalities. (We represent

elements as singleton sets, so we admit formulas sharing elements as well.)

84

6.2. Example: Verifying a Code Fragment

A decision procedure. Note that the conjunction of the consequences of three formula

fragments is an unsatisfiable formula. This shows that the original verification condition is

valid. In general, our decidability result shows that the decision procedures of logics such

as WS2S and C 2 can be naturally extended to compute strongest consequences of formulas

involving given shared sets. These consequences are all expressed in BAPA, which is decidable.

In summary, the following is a decision procedure for satisfiability of combined formulas:

1) split the formula into fragments (belonging to WS2S, C 2, or BAPA); 2) for each fragment

compute its strongest BAPA consequence; 3) check the satisfiability of the conjunction of

consequences.

Higer-order logic. We present our problem in a fragment of classical higher-order logic

[Andrews(2002), Chapter 5] with a particular set of types, which we call sorts. We assume that

formulas are well-formed according to sorts of variables and logical symbols. Each variable

and each logical symbol have an associated sort. The primitive sorts we consider are 1) bool,

interpreted as the two-element set {true, false} of booleans; 2) int, interpreted as the set of

integers Z; and 3) obj, interpreted as a non-empty set of elements. The only sort constructor is

the binary function space constructor ‘→’. We represent a function mapping elements of sorts

s1, . . . , sn into an element of sort s0 as a term of sort s1× . . .× sn → s0 where s1× s2× . . .× sn → s0

is a shorthand for s1 → (s2 → . . . (sn → s0)). When s1, . . . , sn are all the same sort s, we abbreviate

s1 × . . .× sn → s0 as sn → s0. We represent a relation between elements of sorts s1, . . . , sn as a

function s1 × . . .× sn → bool. We use set as an abbreviation for the sort obj → bool. We call

variables of sort set set variables. The equality symbol applies only to terms of the same sort.

We assume to have a distinct equality symbol for each sort of interest, but we use the same

notation to denote all of them. Propositional operations connect terms of sort bool. We write

∀x:s.F to denote a universally quantified formula where the quantified variable has sort s

(analogously for ∃x:s.F and ∃x:sK .F for counting quantifiers of Section 6.4.3). We denote by

FV(F) the set of all free variables that occur free in F . We write FVs(F) for the free variables

of sort s. Note that the variables can be higher-order (we will see, however, that the shared

variables are of sort set). A theory is simply a set of formulas, possibly with free variables.

Structures. A structure α specifies a finite set, which is also the meaning of obj, and we

denote it α(obj). We focus on the case of finite α(obj) primarily for simplicity; we believe the

extension to the case where domains are either finite or countable is possible and can be

done using results from [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard, Section 8.1], [Pratt-

Hartmann(2005), Section 5], [Thatcher and Wright(1968)]. When α is understood we use

�X � to denote α(X), where X denotes a sort, a term, a formula, or a set of formulas. If S is a

set of formulas then α(S) = true means α(F) = true for each F ∈ X . In every structure we let

�bool� = {false,true}. Instead of α(F) = true we often write simply α(F). We interpret terms of

the sort s1 × . . .× sn → s0 as total functions �s1�× . . .×�sn� → �s0�. For a set A, we identify a

function f : A → {false,true} with the subset {x ∈ A | f (x) = true}. We thus interpret variables of

the sort objn → bool as subsets of �obj�n . If s is a sort then α(s) depends only on α(obj) and we

denote it also by �s�. We interpret propositional operations ∧,∨,¬ as usual in classical logic.

85

Chapter 6. Combining Theories with Shared Set Operations

F ::= A | F1 ∧F2 | F1 ∨F2 | ¬F | ∀x:s.F | ∃x:s.F

s ::= int | obj | set

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvdT

B ::= x | ; |Univ | {x} | B1 ∪B2 | B1 ∩B2 | B c

T ::= x | K |CardUniv | T1 +T2 | K ·T | cardB

K ::= . . .−2 | −1 | 0 | 1 | 2. . .

Figure 6.4: Boolean Algebra with Presburger Arithmetic (BAPA)

A quantified variable of sort s ranges over all elements of �s�. (Thus, as in standard model of

HOL [Andrews(2002), Section 54], quantification over variables of sort s1 → s2 is quantification

over all total functions �s1�→ �s2�.)

6.2.1 Boolean Algebra with Presburger Arithmetic

It will be convenient to enrich the language of our formulas with operations on integers,

sets, and cardinality operations. These operations could be given by a theory or defined in

HOL, but we choose to simply treat them as built-in logical symbols, whose meaning must be

respected by all structures α we consider. Fig. 6.4 shows the syntax of Boolean Algebra with

Presburger Arithmetic (BAPA) [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard, Feferman and

Vaught(1959)]. The following are the sorts of symbols appearing in BAPA formulas: ⊆ : set2 →
bool, < : int2 → bool, dvdK : int → bool for each integer constant K (with dvdK (t) denoted by

dvdK t), ;,Univ : set, singleton : obj → set (with singleton(x) denoted as {x}), ∩,∪ : set2 → set,

complement : set→ set (with complement(A) denoted by Ac), K : int for each integer constant

K , CardUniv : int, + : int2 → int, mulK : int → int for each integer constant K (with mulK (t)

denoted by K · t), and card : set→ int.

We sketch the meaning of the less common among the symbols in Fig. 6.4. Univ denotes the

universal set, that is, �Univ� = �obj�. card A denotes the cardinality of the set A. CardUniv is

interpreted as cardUniv. The formula dvdK t denotes that the integer constant K divides the

integer t . We note that the condition x ∈ A can be written in this language as {x} ⊆ A. Note

that BAPA properly extends the first-order theory of Boolean Algebras over finite structures,

which in turn subsumes the first-order logic with unary predicates and no function symbols,

because e.g. ∃x:obj.F (x) can be written as ∃X :set.card X=1∧F ′(X) where in F ′ e.g. P (x) is

replaced by X ⊆ P .

BAPA-definable relations between sets. We recall the definitions from Chapter 2. A semilin-

ear set is a finite union of linear sets. A linear set is a set of the form {~a +k1~b1 + . . .+kn~bn |
k1, . . . ,kn ∈ N} where ~a,~b1, . . . ,~bn ∈ NM . We represent a linear set by its generating vectors

86

6.3. Combination by Reduction to BAPA

~a,~b1, . . . ,~bn , and a semilinear set by the finite set of representations of its linear sets. It was

shown in [Ginsburg and Spanier(1966)] that a set of integer vectors S ⊆NM is a set of non-

negative solutions of a Presburger arithmetic formula P i.e. S = {(v1, . . . , vn).P } iff S is a semilin-

ear set. We then have the following characterization of relationships between sets expressible

in BAPA, which follows from [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard].

Lemma 6.1 (BAPA-expressible means Venn-cardinality-semilinear) Given a finite set U and

a relation ρ ⊆ (2U)p the following are equivalent:

1. there exists a BAPA formula F whose free variables are A1, . . . , Ap , and have the sort set,

such that ρ = {(s1, . . . , sp) | {A1 7→ s1, . . . , Ap 7→ sp }(F)};

2. the following subset of ZM for M = 2p is semilinear:

{(|sc
1 ∩ sc

2 ∩ . . .∩ sc
p |, |s1 ∩ sc

2 ∩ . . .∩ sc
p |, . . . , |s1 ∩ s2 ∩ . . .∩ sp |) | (s1, . . . , sp) ∈ ρ}.

Structures of interest in this chapter. In the rest of this chapter we consider structures that

interpret the BAPA symbols as defined above. Because the meaning of BAPA-specific symbols is

fixed, a structureα that interprets a set of formulas is determined by a finite setα(obj) as well as

the valuesα(x) for each variable x free in the set of formulas. Let {obj 7→ u, x1 7→ v1, . . . , xn 7→ vn}

denote the structure α with domain u that interprets each variable xi as vi .

6.3 Combination by Reduction to BAPA

The Satisfiability Problem. We are interested in an algorithm to determine whether there

exists a structure α ∈M in which the following formula is true

B(F1, . . . ,Fn) (6.1)

where

1. F1, . . . ,Fn are formulas with FV(Fi) ⊆ {A1, . . . , Ap , x1, . . . , xq }.

2. VS = {A1, . . . , Ap } are variables of sort set, whereas x1, . . . , xq are the remaining variables.1

3. Each formula Fi belongs to a given class of formulas, Fi . For each Fi , we assume that

there is a corresponding theory Ti ⊆Fi .

4. B(F1, . . . ,Fn) denotes a formula built from F1, . . . ,Fn using the propositional operations

∧,∨. The absence of negation is usually not a loss of generality because most Fi are

closed under negation so B is the negation-normal form of a quantifier-free combina-

tion.
1For notational simplicity we do not consider variables of sort obj because they can be represented as singleton

sets, of sort set.

87

Chapter 6. Combining Theories with Shared Set Operations

5. As the set of structures M , we consider all structures α of interest (with finite �obj�,

interpreting BAPA symbols in the standard way) for which α(∪n
i=1Ti).

6. (Set Sharing Condition) If i 6= j , then FV({Fi }∪Ti)∩FV({F j }∪T j) ⊆VS .

Note that, as a special case, if we embed a class of first-order formulas into our framework, we

obtain a framework that supports sharing unary predicates, but not e.g. binary predicates.

Combination Theorem. The formula B in (6.1) is satisfiable iff one of the disjuncts in its

disjunctive normal form is satisfiable. Consider a disjunct F1∧ . . .∧Fm for m ≤ n. By definition

of the satisfiability problem (6.1), F1 ∧ . . .∧Fm is satisfiable iff there exists a structure α such

that for each 1 ≤ i ≤ m, for each G ∈ {Fi }∪Ti , we have α(G) = true. Let each variable xi have

some sort si (such as obj2 → bool). Then the satisfiability of F1 ∧ . . .∧Fm is equivalent to the

following condition:

∃ finite set u. ∃a1, . . . , ap ⊆ u. ∃v1 ∈ �s1�u ∃vq ∈ �sq�u .
∧m

i=1

{obj→ u, A1 7→ a1, . . . , Ap 7→ ap , x1 7→ v1, . . . , xq 7→ vq }({Fi }∪Ti)
(6.2)

By the set sharing condition, each of the variables x1, . . . , xq appears only in one conjunct and

can be moved inwards from the top level to this conjunct. Using xi j to denote the j -th variable

in the i -th conjunct we obtain the condition

∃ finite set u. ∃a1, . . . , ap ⊆ u.
∧m

i=1 Ci (u, a1, . . . , ap) (6.3)

where Ci (u, a1, . . . , ap) is

∃vi 1. . . .∃vi wi .

{obj→ u, A1 7→ a1, . . . , Ap 7→ ap , xi 1 7→ vi 1, . . . , xi wi 7→ vi wi }({Fi }∪Ti)

The idea of our combination method is to simplify each condition Ci (u, a1, . . . , ap) into the

truth value of a BAPA formula. If this is possible, we say that there exists a BAPA reduction.

Definition 6.2 (BAPA Reduction) If Fi is a set of formulas and Ti ⊆ Fi a theory, we call a

function ρ : Fi →FBAPA a BAPA reduction for (Fi ,Ti) iff for every formula Fi ∈Fi and for all

finite u and a1, . . . , ap ⊆ u, the condition

∃vi 1 . . .∃vi wi .

{obj→ u, A1 7→ a1, . . . , Ap 7→ ap , xi 1 7→ vi 1, . . . , xi wi 7→ vi wi }({Fi }∪Ti)

is equivalent to the condition {obj→ u, A1 7→ a1, . . . , Ap 7→ ap }(ρ(Fi)).

A computable BAPA reduction is a BAPA reduction which is computable as a function on

formula syntax trees.

88

6.4. BAPA Reductions

F ::= P | F1 ∧F2 | F1 ∨F2 | ¬F | ∀x:s.F | ∃x:s.F

s ::= obj | set

P ::= B1 = B2 | B1 ⊆ B2 | r (x, y)

r ::= succL | succR

B ::= x | ε | ; |Univ | {x} | B1 ∪B2 | B1 ∩B2 | B c

Figure 6.5: Monadic Second-Order Logic of Finite Trees (FT)

Theorem 6.3 Suppose that for every 1 ≤ i ≤ n for (Fi ,Ti) there exists a computable BAPA

reduction ρi . Then the problem (6.1) in Section 6.3 is decidable.

Specifically, to check satisfiability of B(F1, . . . ,Fn), compute B(ρ1(F1), . . . ,ρn(Fn)) and then

check its satisfiability using a BAPA decision procedure [Kuncak et al.(2006)Kuncak, Nguyen,

and Rinard, Kuncak and Rinard(2007)].

6.4 BAPA Reductions

6.4.1 Monadic Second-Order Logic of Finite Trees

Figure 6.5 shows the syntax of (our presentation of) monadic second-order logic of finite trees

(FT), a variant of weak monadic second-order logic of two successors (WS2S) [Thatcher and

Wright(1968), Klarlund and Møller(2001)]. The following are the sorts of variables specific to

FT formulas: succL ,succR : obj2 → bool.

We interpret the sort obj over finite, prefix-closed sets of binary strings. More precisely, we use

{1,2} as the binary alphabet, and we let �obj� ⊂ {1,2}∗ such that

∀w ∈ {1,2}∗. (w1 ∈ �obj�∨w2 ∈ �obj�) → w ∈ �obj�

Note that the ∗ operator here refers to the Kleene star. In each model, �set� is the set of all

subsets of �obj�. We let �ε� be the empty string which we also denote by ε. We define

�succL� = {(w, w1) | w1 ∈ �obj�} and �succR� = {(w, w2) | w2 ∈ �obj�}

The remaining constants and operations on sets are interpreted as in BAPA.

Let FFT be the set of all formulas in Figure 6.5. Let MFT be the set of all (finite) structures

described above. We define TFT as the set of all formulas F ∈ FFT such that F is true in all

structures from MFT.

The models of the theory TFT correspond up to isomorphism with the interpretations in MFT.

89

Chapter 6. Combining Theories with Shared Set Operations

Lemma 6.4 If α is a structure such that α(TFT), then α is isomorphic to some structure in MFT.

Note that any FT formula F (x) with a free variable x of sort obj can be transformed into

the equisatisfiable formula ∃x : obj.y = {x}∧F (x) where y is a fresh variable of sort set. For

conciseness of presentation, in the rest of this section we only consider FT formulas F with

FVobj(F) =;.

Finite tree automata. In the following, we recall the connection between FT formulas and

finite tree automata. Let Σ be a finite ranked alphabet. We call symbols of rank 0 constant

symbols and a symbol of rank k > 0 a k-ary function symbol. We denote by Terms(Σ) the set of

all terms over Σ. We associate a position p ∈ {1, . . . ,rmax}∗ with each subterm in a term t where

rmax is the maximal rank of all symbols in Σ. We denote by t [p] the topmost symbol of the

subterm at position p. For instance, consider the term t = f (g (a,b,c), a) then we have t [ε] = f

and t [13] = c.

A finite (deterministic bottom-up) tree automaton A for alphabetΣ is a tuple (Q,Q f , ι) where Q

is a finite set of states, Q f ⊆Q is a set of final states, and ι is a function that associates with each

constant symbol c ∈Σ a state ι(c) ∈Q and with each k-ary function symbol f ∈Σ a function

ι(f) : Qk → Q. We homomorphically extend ι from symbols in Σ to Σ-terms. We say that A

accepts a term t ∈ Terms(Σ) if ι(t) ∈ Q f . The language L (A) accepted by A is the set of all

Σ-terms accepted by A.

Let F be an FT formula and let SV(F) be the set SV(F) = FV(F)∪ {Univ}. We denote by ΣF the

alphabet consisting of the constant symbol ⊥ and all binary function symbols fν where ν is

a function ν : SV(F) → {0,1}. We inductively associate a ΣF -term tα,w with every structure

α ∈MFT and string w ∈ {1,2}∗ as follows:

tα,w =
 fνα,w (tα,w1, tα,w2) if w ∈α(obj)

⊥ otherwise

such that for all x ∈ SV(F), να,w (x) = 1 iff w ∈ α(x). The language L (F) ⊆ Terms(ΣF) of F is

then defined by L (F) = { tα,ε |α ∈MFT∧α(F) }.

The following theorem states the connection between the structures satisfying FT formulas

and the languages accepted by finite tree automata2.

Theorem 6.5 (Thatcher and Wright [Thatcher and Wright(1968)]) For every FT formula F

there exists a finite tree automaton AF over alphabet ΣF such that L (F) = L (AF) and AF

can be effectively constructed from F .

2The theorem was originally stated for WS2S where the universe of all structures is fixed to the infinite binary tree
{1,2}∗ and where all set variables range over finite subsets of {1,2}∗. It carries over to finite trees in a straightforward
manner.

90

6.4. BAPA Reductions

Parikh image. We recall Parikh’s commutative image [Parikh(1966)]. The Parikh image for

an alphabet Σ is the function Parikh :Σ∗ →Σ→N such that for any word w ∈Σ∗ and symbol

σ ∈ Σ, Parikh(w)(σ) is the number of occurrences of σ in w . The Parikh image is extended

pointwise from words to sets of words: Parikh(W) = {Parikh(w) | w ∈W }. In the following, we

implicitly identify Parikh(W) with the set of integer vectors {(χ(σ1), . . . ,χ(σn)) |χ ∈Parikh(W) }

where we assume some fixed order on the symbols σ1, . . . ,σn in Σ.

Theorem 6.6 (Parikh [Parikh(1966)]) Let G be a context-free grammar and L (G) the lan-

guage generated from G then the Parikh image of L (G) is a semilinear set and its finite repre-

sentation is effectively computable from G.

We generalize the Parikh image from words to terms as expected: the Parikh image for a

ranked alphabet Σ is the function Parikh : Terms(Σ) →Σ→N such that for all t ∈Terms(Σ) and

σ ∈Σ, Parikh(t)(σ) is the number of positions p in t such that t [p] =σ. Again, we extend this

function pointwise from terms to sets of terms.

Lemma 6.7 Let A be a finite tree automaton over alphabet Σ. Then the Parikh image of L (A)

is a semilinear set and its finite representation is effectively computable from A.

6.4.2 BAPA Reduction for Monadic Second-Order Logic of Finite Trees

In the following, we prove the existence of a computable BAPA reduction for the theory of

monadic second-order logic of finite trees.

Let F be an FT formula and let Σ2
F be the set of all binary function symbols in ΣF , i.e., Σ2

F
def=

ΣF \ {⊥}. We associate with each σν ∈ Σ2
F the Venn region vr(σν), which is given by a set-

algebraic expression over SV(F): let SV(F) = {x1, . . . , xn} then

vr(σν)
def= xν(x1)

1 ∩·· ·∩xν(xn)
n .

Hereby x0
i denotes xc

i and x1
i denotes xi . Let α ∈ MFT be a model of F . Then the term tα,ε

encodes for each w ∈ α(obj) the Venn region to which w belongs in α, namely vr(tα,ε[w]).

Thus, the Parikh image Parikh(tα,ε) encodes the cardinality of each Venn region over SV(F) in

α.

Lemma 6.8 Let F be an FT formula then

Parikh(L (F))|Σ2
F
= {S(α,Σ2

F) |α ∈MFT∧α(F) },

where S(α,Σ2
F) = {σ 7→ |α(vr(σ))| |σ ∈Σ2

F }.

91

Chapter 6. Combining Theories with Shared Set Operations

F ::= P | F1 ∧F2 | F1 ∨F2 | ¬F | ∃K x:obj.F

P ::= x1 = x2 | {x} ⊆ A | r (x1, x2)

Figure 6.6: Two-Variable Logic with Counting (C 2)

According to Theorem 6.5 we can construct a finite tree automaton AF over ΣF such that

L (F) =L (AF). From Lemma 6.7 follows that Parikh(L (F)) is a semilinear set whose finite

representation in terms of base and step vectors is effectively computable from AF . From this

finite representation, we can construct a Presburger arithmetic formula φF over free integer

variables { xσ |σ ∈ΣF } whose set of solutions is the Parikh image of L (F), i.e.

Parikh(L (F)) = { {σ 7→ kσ |σ ∈ΣF } | { xσ 7→ kσ |σ ∈Σ }(φF) } (6.4)

Using the above construction of the Presburger arithmetic formula φF for a given FT formula

F , we define the function ρFT : FFT →FBAPA as follows:

ρFT(F)
def= ∃~xσ.φF ∧ ∧

σ∈Σ2
F

cardvr(σ) = xσ

where~xσ are the free integer variables of φF .

Theorem 6.9 The function ρFT is a BAPA reduction for (FFT,TFT).

6.4.3 Two-Variable Logic with Counting

Figure 6.6 shows the syntax of (our presentation of) two-variable logic with counting (denoted

C 2) [Pratt-Hartmann(2004)]. As usual in C 2, we require that every sub-formula of a formula

has at most two free variables. In the atomic formula r (x1, x2), variables x1, x2 are of sort obj

and r is a relation variable of sort obj2 → bool. The formula {x} ⊆ A replaces A(x) in predicate-

logic notation, and has the expected meaning, with the variable x is of sort obj and A of sort

set. The interpretation of the counting quantifier ∃K x:obj.F for a positive constant K is that

there exist at least K distinct elements x for which the formula F holds.

Let FC 2 be the set of all formulas in Figure 6.6. Let MC 2 be the set of structures that interpret

formulas in FC 2. We define TC 2 as the set of all formulas F ∈ FC 2 such that F is true in all

structures from MC 2. Modulo our minor variation in syntax and terminology (using relation

and set variables instead of predicate symbols), TC 2 corresponds to the standard set of valid

C 2 formulas over finite structures [Pratt-Hartmann(2004)].

92

6.4. BAPA Reductions

6.4.4 BAPA Reduction for Two-Variable Logic with Counting

We next build on the results in [Pratt-Hartmann(2005)] to define a BAPA reduction for C 2.

We fix set variables A1, . . . , Ap and relation variables r1, . . . ,rq . Throughout this section, let

ΣA = {A1, . . . , Ap }, ΣR = {r1, . . . ,rq }, and Σ0 = ΣA ∪ΣR . We call ΣA ,ΣR ,Σ0 signatures because

they correspond to the notion of signature in the traditional first-order logic formulation of

C 2.

Model theoretic types. Define the model-theoretic notion of n-type πΣ(x1, . . . , xn) in the

signature Σ as the maximal consistent set of non-equality literals in Σwhose obj-sort variables

are included in {x1, . . . , xn}. 3 Given a structure α such that α(x1), . . . ,α(xn) are all distinct, α

induces an n-type

itypα,Σ(x1, . . . , xn) = {L |α(L)∧FV(L) ⊆ {x1, . . . , xn}, L is Σ-literal without ’=’}

We also define the set of n-tuples for which a type π holds in a structure α:

Sα(π(x1, . . . , xn)) = {(e1, . . . ,en) ∈α(obj)n |α(x1 := e1, . . . , xn := en)(π)}

If Σ ⊆ Σ′ and π′ is an n-type in signature Σ′, by π′|Σ we denote the subset of π containing

precisely those literals from π whose sets and relations belong to Σ. The family of sets {Sα(π′) |
π′|Σ = π} is a partition of Sα(π′). We will be particularly interested in 1-types. We identify a

1-type π(x) in the signature ΣA with the corresponding Venn region⋂
{Ai | ({x} ⊆ Ai) ∈π(x)}∩⋂

{Ac
i | (¬({x} ⊆ Ai)) ∈π(x)}.

If π1, . . . ,πm is the sequence of all 1-types in the signature Σ and α is a structure, let Iα(Σ) =
(|Sα(π1)|, . . . , |Sα(πm)|). If M is a set of structures let I M (Σ) = {Iα(Σ) |α ∈M }.

Observation 6.10 If π is a 1-type in Σ and π′ a 1-type in Σ′ for Σ⊆Σ′, then

|Iα(π)| = ∑
π′|Σ=π

|Iα(π′)|

Making structures differentiated, chromatic, sparse preserves 1-types. Let φ be a C 2 for-

mula with signature Σ0 of relation symbols. By Scott normal form transformation [Pratt-

Hartmann(2005), Lemma 1], it is possible to introduce fresh set variables and compute another

C 2 formula φ∗ in an extended signature Σ∗ ⊇ Σ0, and compute a constant Cφ such that, for

all sets u with |u| ≥ Cφ: 1) if α0 is a Σ0 interpretation with domain u such that α0(φ), then

there exists its Σ∗ extension α∗ ⊇α0 such that α∗(φ∗), and 2) if α∗ is a Σ∗ interpretation with

domain u such that α∗(φ∗), then for its restriction α0 =α∗|Σ we have α0(φ). By introducing

3For example, if Σ has one relation variable r , and two set variables A1, A2, then each 2-type with free variables
x, y contains, for each of the atomic formulas with variables x, y (i.e. {x} ⊆ A1, {y} ⊆ A1, {x} ⊆ A2, {y} ⊆ A2, r (x, x),
r (y, y), r (x, y), r (y, x)), either the formula or its negation.

93

Chapter 6. Combining Theories with Shared Set Operations

further fresh set- and relation- symbols, [Pratt-Hartmann(2005), lemmas 2 and 3] shows that

we can extend the signature from Σ∗ to Σ such that each model α∗ in Σ∗ extends to a model

α in Σ, where α satisfies some further conditions of interest: α is chromatic and differenti-

ated. [Pratt-Hartmann(2005), Lemma 10] then shows that it is possible to transform a model

of a formula into a so-called X -sparse model for an appropriately computed integer constant

X . What is important for us is the following.

Observation 6.11 The transformations that start from α0 with α0(φ), and that produce a

chromatic, differentiated, X -sparse structure α with α(φ), have the property that, for structures

of size Cφ or more,

1. the domain remains the same: α0(obj) =α(obj),

2. the induced 1-types in the signature Σ0 remain the same: for each 1-type π in signature

Σ0, Sα0 (π) = Sα(π).

Star types. [Pratt-Hartmann(2005), Definition 9] introduces a star-type (π,~v) (denoted by letter

σ) as a description of a local neighborhood of a domain element, containing its induced 1-type

π as well as an integer vector ~v ⊆ZN that counts 2-types in which the element participates,

where N is a function of the signature Σ. A star type thus gives a more precise description

of the properties of a domain element than a 1-type. Without repeating the definition of

star type [Pratt-Hartmann(2005), Definition 9], we note that we can similarly define the set

Sα((π,~v)) of elements that realize a given star type (π,~v). Moreover, for a given 1-type π, the

family of the non-empty among the sets Sα((π,~v)) partitions the set Sα(π).

Frames. The notion of Y -bounded chromatic frame [Pratt-Hartmann(2005), Definition 11]

can be thought of as a representation of a disjunct in a normal form for the formula φ∗. It

summarizes the properties of elements in the structure and specifies (among others), the list

of possible star types σ1, . . . ,σN whose integer vectors~v are bounded by Y . For a given φ∗, it is

possible to effectively compute the set of Cφ-bounded frames F such that F |=φ∗ holds. The

‘|=’ in F |=φ∗ is a certain syntactic relation defined in [Pratt-Hartmann(2005), Definition 13].

For each frame F with star-types σ1, . . . ,σN , [Pratt-Hartmann(2005), Definition 14] introduces

an effectively computable Presburger arithmetic formula PF with N free variables. We write

PF (w1, . . . , wN) if PF is true when these variables take the values w1, . . . , wN . The following

statement is similar to the main [Pratt-Hartmann(2005), Theorem 1], and can be directly

recovered from its proof and the proofs of the underlying [Pratt-Hartmann(2005), lemmas

12,13,14].

Theorem 6.12 Given a formula φ∗, and the corresponding integer constant Cφ, there exists

a computable constant X such that if N ≤ X , if σ1, . . . ,σN is a sequence of star types in Σ

whose integer vectors are bounded by Cφ, and w1, . . . , wN are integers, then the following are

equivalent:

94

6.4. BAPA Reductions

1. There exists a chromatic differentiated structure α such that α(φ∗), wi=|Sα(σi)| for

1 ≤ i ≤ N , and α(obj) =⋃N
i=1 Sα(σi).

2. There exists a chromatic frame F with star types σ1, . . . ,σN , such that F |= φ∗ and

PF (w1, . . . , wN).

We are now ready to describe our BAPA reduction. Fix V1, . . . ,VM to be the list of all 1-types in

signature ΣA ; let s1, . . . , sM be variables corresponding to their counts. By the transformation

of models into chromatic, differentiated, X -sparse ones, the observations 6.11, 6.10, and

Theorem 6.12, we obtain

Corollary 6.13 If M = {α |α(φ∗)}, then there is a computable constant X such that I M (ΣA) =
{(s1, . . . , sM) | Fφ∗(s1, . . . , sM)} where Fφ∗(s1, . . . , sM) is the following Presburger arithmetic for-

mula

∨
N ,σ1,...,σN ,F

∃w1, . . . , wN . PF (w1, . . . , wN)∧
M∧

j=1
s j =

∑
{wi |V j = (πi |ΣA)}

where N ranges over {0,1, . . . , X }, σ1, . . . ,σN range over sequences of Cφ-bounded star types, and

where F ranges over the Cφ-bounded frames with star types σ1, . . . ,σN such that F |=φ∗.

By adjusting for the small structures to take into account Scott normal form transformation,

we further obtain

Corollary 6.14 If M = {α |α(φ)}, then

I M (ΣA) = {(s1, . . . , sM) |Gφ(s1, . . . , sM)}

where Gφ(s1, . . . , sM) is the Presburger arithmetic formula

M∑
i=1

si ≥Cφ∧Fφ∗(s1, . . . , sM)
∨

∨
{

M∧
i=1

si = di | ∃α. |α(obj)|<Cφ ∧ (d1, . . . ,dM) ∈ Iα(ΣA)}

Theorem 6.15 The following is a BAPA reduction for C 2 over finite models to variables ΣA :

given a two-variable logic formula φ, compute the BAPA formula ∃s1, . . . , sM . Gφ(s1, . . . , sM) ∧∧M
i=1 cardVi = si .

6.4.5 Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic

Figure 6.7 shows the syntax of (our presentation of) the Bernays-Schönfinkel-Ramsey fragment

of first-order logic with equality [Börger et al.(1997)Börger, Grädel, and Gurevich], often called

95

Chapter 6. Combining Theories with Shared Set Operations

F ::= ∃z1:obj. . . .∃zn :obj.∀y1:obj. . . .∀ym :obj.B

B ::= P | B1 ∧B2 | B1 ∨B2 | ¬B

P ::= x1 = x2 | {x} ⊆ A | r (x1, . . . , xk)

Figure 6.7: Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic

effectively propositional logic (EPR). The interpretation of atomic formulas is analogous as

for C 2 in previous section. Quantification is restricted to variables of sort obj and must obey

the usual restriction of ∃∗∀∗-prenex form that characterizes the Bernays-Schönfinkel-Ramsey

class.

6.4.6 BAPA Reduction for Bernays-Schönfinkel-Ramsey Fragment

Our BAPA reduction for the Bernays-Schönfinkel-Ramsey fragment (EPR) is in fact a reduction

from EPR formulas to unary EPR formulas, in which all free variables have the sort set. To

convert a unary EPR formula into BAPA, treat first-order variables as singleton sets and apply

quantifier elimination for BAPA [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard].

Theorem 6.16 (BAPA Reduction for EPR) Let φ be a quantifier-free formula whose free vari-

ables are: 1) A1, . . . , Ap , of sort set, 2) r1, . . . ,rq , each ri of sorts objK (i) → bool for some K (i) ≥ 2,

3) z1, . . . , zn , y1, . . . , ym , of sort obj. Then

∃r1, . . .rq . ∃z1, . . . , zn . ∀y1, . . . , ym . φ

is equivalent to an effectively computable BAPA formula.

The proof of Theorem 6.16 builds on and generalizes, for finite models, the results on the

spectra of EPR formulas [Fontaine(2007), Fontaine(2009), Ramsey(1930)]. We here provide

some intuition. The key insight [Ramsey(1930)] is that, when a domain of a model of an EPR

formula has sufficiently many elements, then the model contains an induced submodel S of

m nodes such that for every 0 ≤ k < m elements e1, . . . ,ek outside S the m-type induced by

e1, . . . ,ek and any m−k elements in S is the same. Then an element of S can be replicated to

create a model with more elements, without changing the set of all m-types in the model and

thus without changing the truth value of the formula. Moreover, every sufficiently large model

of the EPR formula that has a submodel S with more than m such symmetric elements can

be shrunk to a model by whose expansion it can be generated. This allows us to enumerate

a finite (even if very large) number of characteristic models whose expansion generates all

models. The expansion of a characteristic model increases by one the number of elements

of some existing 1-type, so the cardinalities of Venn regions of models are a semilinear set

96

6.4. BAPA Reductions

whose base vectors are given by characteristic models and whose step vectors are given by the

1-types being replicated.

6.4.7 Quantifier-free Mutlisets with Cardinality Constraints

Figure 2.3 in Chapter 2 defines the syntax of quantifier-free multiset constraints with cardi-

nality operators. We first give their interpretation in our new settings. Multiset expressions

have sort obj → int, which we abbreviate by mset in the following. Formulas are built from

set expressions over set variables of sort set, multiset expressions over multiset variables of

sort mset and inner and outer linear arithmetic formulas. Formally, we have distinct variables

for operations on sets and multisets, e.g., we have a variable ∪s : set2 → set and a variable

∪m : mset2 →mset, but we use the same symbol ∪ for both of them.

We restrict ourself to structures α that interpret multiset variables as functions from �obj� to

the nonnegative integers. Set and arithmetic operations are interpreted as in BAPA. Multiset

operations are interpreted as expected, in particular, ’]’ denotes additive union, ’\’ denotes

multiset difference, and ’\\’ denotes set difference. The variables multisetof and set are in-

terpreted as functions that convert between multisets and sets, e.g., �set� maps a multiset

M : �obj�→N to the set {e | M(e) > 0}. The variable ite is interpreted as the conditional choice

function, i.e., �ite(F, t1, t2)� denotes �t1� if �F � = true and �t2� otherwise. Finally, the atom

(u1, . . . ,un)=∑
(t1, . . . , tn) denotes true iff for all i ∈ [1,n]

α(ui) = ∑
o∈�ob j �

α[e := o](ti)

Let FMS be the set of all formulas defined in Figure 2.3 and let MMS be the set of all structures

interpreting formulas in FMS as described above. We define the theory of quantifier-free

multisets with cardinality constraints TMS as the set of all formulas F ∈FMS such that α(F) is

true for all structures α in MMS.

6.4.8 BAPA Reduction for Quantifier-free Multiset Constraints

The satisfiability of the quantifier-free fragment of multisets with cardinality operators is

decidable (Theorem 2.25). There is, in fact, also a BAPA reduction from a quantifier-free

multiset formula over multiset and set variables to a BAPA formula ranging only over the set

variables.

Let F ∈ FMS be a multiset constraint containing set variables A1, . . . , Ap and multiset vari-

ables M1, . . . , Mq . To obtain a BAPA reduction, we apply the decision procedure described in

Chapter 2 to the formula F1

F1 ≡ F ∧
w∧

i=1
cardVi=ki

97

Chapter 6. Combining Theories with Shared Set Operations

where k1, . . . ,kw are fresh integer variables and V1, . . . ,Vw are the Venn regions over the set

variables A1, . . . , Ap . Before applying the decision procedure we convert F1 to a formula F2

that only ranges over multiset variables. This is done by replacing every set operation in F

by the corresponding multiset operation, replacing every set variable Ai by a fresh multiset

variable MAi , and conjoining the formula

∀e : obj.
p∧

i=1
(MAi (e) = 0∨MAi (e) = 1) .

The decision procedure constructs a Presburger arithmetic formula P with {k1, . . . ,kw } ⊆FV(P).

From the proofs of Theorem 2.2, Theorem 2.4 and Theorem 2.14 follows that for every structure

α in which formula F2 evaluates to true, there exists a structureα′ in which formula P evaluates

to true and for every variable ki , α(ki) =α′(ki). The converse holds as well, i.e. for every model

of P there is a model of F2 with the previous property. We conclude that the following holds:

{α|{k1,...,kw } |α(F2) } = {α|{k1,...,kw } |α(P) }

If x1, . . . , xn are the variables in P other than k1, . . . ,kw then the result of the BAPA reduction is

the formula

PF
def= ∃k1 : int. . . .∃kw : int. (

w∧
i=1

cardVi=ki)∧ (∃x1:int. . . .∃xn :int. P) (6.5)

Theorem 6.17 The function mapping a formula F ∈FMS to the BAPA formula PF is a BAPA

reduction for (FMS,TMS).

The proof of Theorem 6.17 uses Equation 6.5 following a similar argument than in the proof of

Theorem 6.9.

6.5 Further Related Work

There are combination results for the disjoint combinations of non-stably infinite theories

[Tinelli and Zarba(2005), Krstic et al.(2007)Krstic, Goel, Grundy, and Tinelli, Fontaine(2007),

Fontaine(2009)]. These results are based on the observation that such combinations are

possible whenever one can decide for each component theory whether a model of a specific

cardinality exists. Our combination result takes into account not only the cardinality of the

models, i.e. the interpretation of the universal set, but cardinalities of Venn regions over the

interpretations of arbitrary shared set variables. It is a natural generalization of the disjoint

case restricted to theories that share the theory of finite sets, thus, leading to a non-disjoint

combination of non-stably infinite theories.

Ghilardi [Ghilardi(2005)] proposes a model-theoretic condition for decidability of the non-

disjoint combination of theories based on quantifier elimination and local finiteness of the

98

6.6. Conclusions

shared theory. Note that BAPA is not locally finite and that, in general, we need the full

expressive power of BAPA to compute the projections on the shared set variables. For instance,

consider the C 2 formula

(∀x.∃=1 y.r (x, y))∧ (∀x.∃=1 y.r (y, x))∧ (∀y. y ∈ B ↔ (∃x.x ∈ A∧ r (x, y)))

where r is a binary relation variable establishing the bijection between A and B . This constraint

expresses |A| = |B | without imposing any additional constraint on A and B . Similar examples

can be given for weak monadic second-order logic of finite trees.

Another example, belonging to WS1S logic, further demonstrates why Venn regions are impor-

tant in constructing a reduction. Consider a formula ((A∧¬B)(B ∧¬A))∗(¬B ∧¬A)∗. Every

Venn region denotes a letter of the alphabet Σ of the accepting automaton for the formula:

Σ= (A∧B , A∧¬B ,¬A∧B ,¬A∧¬B). The Parikh image of the all models of the formula is the

set {(0, p, p, q) | q, p ≥ 0}. The elements of this semilinear set are all the solutions of the formula

|A∩B c | = |Ac ∩B |∧ |A∩B | = 0, which is exactly the projection of the original formula.

The reduction approach to combination of decision procedures has previously been applied in

the simpler scenario of reduction to propositional logic [Lahiri and Seshia(2004)]. Like propo-

sitional logic, quantifier-Free BAPA is NP-complete, so it presents an appealing alternative for

combination of theories that share sets.

Gabbay and Ohlbach [Gabbay and Ohlbach(1992)] present a procedure, called SCAN, for

second-order quantifier elimination. However, [Gabbay and Ohlbach(1992)] gives no char-

acterization of when SCAN terminates. We were therefore unable to use SCAN to derive any

BAPA reductions.

The general combination of weak monadic second-order logics with linear cardinality con-

straints has been proven undecidable by Klaedtke and Rueß [Klaedtke and Rueß(2002),

Klaedtke and Rueß(2003)]. They introduce the notion of Parikh automata to identify de-

cidable fragments of this logic which inspired our BAPA reduction of MSOL of finite trees.

Our combined logic is incomparable to the decidable fragments identified by Klaedtke and

Rueß because it supports non-tree structures as well. However, by applying projection to C 2

and the Bernays-Schönfinkel-Ramsey class, we can combine our logic with [Klaedtke and

Rueß(2002), Klaedtke and Rueß(2003)], obtaining an even more expressive decidable logic.

6.6 Conclusions

Many verification techniques rely on decision procedures to achieve a high degree of automa-

tion. The class of properties that such techniques are able to verify is therefore limited by the

expressive power of the logics supported by the underlying decision procedures. We have

presented a combination result for logics that share operations on sets. This result yields an

expressive decidable logic that is useful for software verification. We therefore believe that we

99

Chapter 6. Combining Theories with Shared Set Operations

made an important step in increasing the class of properties that are amenable to automated

verification.

100

7 Complete Functional Synthesis

In this chapter we discuss complete functional synthesis. Synthesis of program fragments

from specifications can make programs easier to write and easier to reason about. To integrate

synthesis into programming languages, synthesis algorithms should behave in a predictable

way - they should always find a code for a well-defined class of specifications. To guarantee

correctness and applicability to software (and not just hardware), these algorithms should

also support unbounded data types, such as numbers and data structures.

This chapter describes how to generalize decision procedures into predictable and complete

synthesis procedures. Such procedures are guaranteed to find code that satisfies the specifica-

tion if such code exists. Moreover, we identify conditions under which synthesis will statically

decide whether the solution is guaranteed to exist, and whether it is unique. We demonstrate

our approach by starting from a quantifier elimination decision procedure for Boolean Algebra

of set with Presburger Arithmetic (BAPA) and transforming it into a synthesis procedure.

7.1 Motivation

Synthesis of software from specifications, discussed already in [Manna and Waldinger(1971),

Manna and Waldinger(1980), Green(1969)], promises to make programmers more produc-

tive. Despite substantial recent progress [Solar-Lezama et al.(2006)Solar-Lezama, Tancau,

Bodík, Seshia, and Saraswat, Solar-Lezama et al.(2008)Solar-Lezama, Jones, and Bodík, Vechev

et al.(2009)Vechev, Yahav, and Yorsh, Srivastava et al.(2010)Srivastava, Gulwani, and Foster],

synthesis is limited to small pieces of code. We expect that this will continue to be the case for

some time in the future, for two reasons: 1) synthesis is algorithmically a difficult problem,

and 2) synthesis requires detailed specifications, which for large programs become difficult to

write.

We therefore expect that practical applications of synthesis lie in its integration into the

compilers of general-purpose programming languages. To make this integration feasible,

we aim to identify well-defined classes of expressions and synthesis algorithms guaranteed

101

Chapter 7. Complete Functional Synthesis

to succeed for these classes of expressions, just like a compilation attempt succeeds for any

well-formed program. Our starting point for such synthesis algorithms are decision procedures.

A decision procedure for satisfiability of a class of formulas accepts a formula in its class

and checks whether the formula has a solution. On top of this basic functionality, many

decision procedure implementations provide the additional feature of generating a satisfying

assignment (a model) whenever the given formula is satisfiable. Such a model-generation

functionality has many uses, including better error reporting in verification [Moskal(2009)]

and test-case generation [Anand et al.(2008)Anand, Godefroid, and Tillmann]. An important

insight is that model generation facility of decision procedures could also be used as an

advanced computation mechanism. Given a set of values for some of the variables, a constraint

solver can at run-time find the values of the remaining variables such that a given constraint

holds. Two recent examples of integrating such a mechanism into a programming language

are the quotations of the F # language [Syme et al.(2007)Syme, Granicz, and Cisternino] and

a Scala library [Köksal et al.(2011)Köksal, Kuncak, and Suter], both interfacing to the Z3

satisfiability modulo theories (SMT) solver [de Moura and Bjørner(2008a)]. Such mechanisms

promise to bring the algorithmic improvements of SMT solvers to declarative paradigms such

as Constraint Logic Programming [Jaffar and Maher(1994)]. However, they involve a possibly

unpredictable search at run-time, and require the deployment of the entire decision procedure

as a component of the run-time system.

Our goal is to provide the benefits of the declarative approach in a more controlled way: we

aim to run a decision procedure at compile time and use it to generate code. The generated

code then computes the desired values of variables at run-time. Such code is thus specific to

the desired constraint, and can be more efficient. It does not require the decision procedure

to be present at run-time, and gives the developer static feedback by checking the conditions

under which the generated solution will exist and be unique. We use the term synthesis for

our approach because it starts from an implicit specification, and involves compile-time

precomputation. Because it computes a function that satisfies a given input/output relation,

we call our synthesis functional, in contrast to reactive synthesis approaches [Pnueli and

Rosner(1989)] (another term for the general direction of our approach is AE-paradigm or

Skolem paradigm). Finally, we call our approach complete because it is guaranteed to work for

all specification expressions from a well-specified class.

We demonstrate our approach by describing synthesis algorithms for the domains of linear

arithmetic and collections of objects. We have implemented these synthesis algorithms

and deployed them as a compiler extension of the Scala programming language [Odersky

et al.(2008)Odersky, Spoon, and Venners]. We have found that using such constraints we were

able to express a number of program fragments in a more natural way, stating the invariants

that the program should satisfy as opposed to the computation details of establishing these

invariants.

In the area of integer arithmetic, we obtain a language extension that can implicitly define

102

7.2. Example

integer variables to satisfy given constraints. The applications of integer arithmetic synthesis

include conversions of quantities expressed in terms of multiple units of measure, coordinate

transformations, as well as a substantially more general notion of pattern matching on integers,

going well beyond matching on constants or (n +k)-patterns of the Haskell programming

language [Jones and group of authors(2010)].

In the area of data structures, we describe a synthesis procedure that can compute sets of

elements subject to constraints expressed in terms of basic set operations (union, intersection,

set difference, subset, equality) as well as linear constraints on sizes of sets. We have found

these constraints to be useful for manipulating sets of objects in high-level descriptions

of algorithms, from simple operations such as choosing an element from a set or a fresh

element, or splitting sets subject to size constraints. Such constructs arise in pseudo code

notations, and they provide a useful addition to the transformations previously developed for

the SETL programming language [Dewar(1979), Sharir(1982)]. Regarding data structures, in

our synthesis procedure we focus on sets, but the approach applies to other constraints for

which decision procedures are available [Kuncak et al.(2010d)Kuncak, Piskac, Suter, and Wies],

including multisets (Chapters 2 and 4) and algebraic data types [Suter et al.(2010)Suter, Dotta,

and Kuncak].

We implemented our approach to program synthesis as a plugin for the Scala compiler. Our

implementation can be used as a starting point for the development of further synthesis

approaches.

7.2 Example

We first illustrate the use of a synthesis procedure for integer linear arithmetic. Consider the

following example to break down a given number of seconds (stored in the variable totsec)

into hours, minutes, and leftover seconds.

val (hrs , mns, scs) = choose((h: Int , m: Int , s: Int) ⇒
h * 3600 + m * 60 + s == totsec &&

0 ≤ m && m ≤ 60 &&

0 ≤ s && s ≤ 60)

Our synthesizer succeeds, because the constraint is in integer linear arithmetic. However, the

synthesizer emits the following warning:

Synthesis predicate has multiple solutions

for variable assignment: totsec = 0

Solution 1: h = 0, m = 0, s = 0

Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds on m and s are not strict. After correcting the

103

Chapter 7. Complete Functional Synthesis

error in the specification, replacing m≤ 60 with m< 60 and s≤ 60 with s< 60, the synthesizer

emits no warnings and generates code corresponding to the following:

val (hrs , mns, scs) = {

val loc1 = totsec div 3600

val num2 = totsec + ((−3600)* loc1)

val loc2 = min(num2 div 60, 59)

val loc3 = totsec + ((−3600)* loc1) + (−60 * loc2)

(loc1, loc2, loc3)

}

The absence of warnings guarantees that the solution always exists and that it is unique. The

developer directly ensures that the condition h∗3600+m∗60+ s== totsec will be satisfied,

making program understanding easier, by writing the code in this style. Note that, if the

developer imposes the constraint

val (hrs , mns, scs) = choose((h: Int , m: Int , s: Int) ⇒
h * 3600 + m * 60 + s == totsec &&

0 ≤ h < 24 &&

0 ≤ m && m < 60 &&

0 ≤ s && s < 60)

our system emits the following warning:

Synthesis predicate is not satisfiable

for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions when the totsec parameter is too

large.

Our approach and implementation also work for parametrized integer arithmetic formulas,

which become linear only once the parameters are known. For example, our synthesizer

accepts the following specification that decomposes an offset of a linear representation of a

three-dimensional array with statically unknown dimensions into indices for each coordinate:

val (x1, y1, z1) = choose((x: Int , y: Int , z: Int) ⇒
o�set == x + dimX * y + dimX * dimY * z &&

0 ≤ x && x < dimX &&

0 ≤ y && y < dimY &&

0 ≤ z && z < dimZ)

Here dimX, dimY, dimZ are variables whose value is unknown until runtime. Note that the

satisfiability of constraints that contain multiplications of variables is in general undecidable.

104

7.3. From Decision to Synthesis Procedures

In such parametrized case, our synthesizer is complete in the sense that it generates code that

1) always terminates, 2) detects at run-time whether a solution exists for current parameter

values, and 3) computes one solution whenever a solution exists.

In addition to integer arithmetic, other theories are amenable to synthesis and provide similar

benefits. Consider the problem of splitting a set collection in a balanced way. The following

code attempts to do that:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size == a2.size)

It turns out that for the above code our synthesizer emits a warning indicating that there are

cases where the constraint has no solutions. Indeed, there are no solutions when the set s is of

odd size. If we weaken the specification to

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size − a2.size ≤ 1 &&

a2.size − a1.size ≤ 1)

then our synthesizer can prove that the code has a solution for all possible input sets s.

The synthesizer emits code that, for each input, computes one such solution. The nature

of constraints on sets is that if there is one solution, then there are many solutions. Our

synthesizer resolves these choices at compile time, which means that the generated code is

deterministic.

7.3 From Decision to Synthesis Procedures

We next define precisely the notion of a synthesis procedure and describe a methodology for

deriving synthesis procedures from decision procedures.

Preliminaries. Each of our algorithms works with a set of formulas, Formulas, build from

terms, whose set we denote with Terms. Formulas denote truth values, whereas terms and

variables denote values from the domain (e.g. integers). We denote the set of variables by

Vars. FV(q) denotes the set of free variables in a formula or a term q . If~x = (x1, . . . , xn) then~xs

denotes the set of variables {x1, . . . , xn}. If q is a term or formula,~x = (x1, . . . , xn) is a vector of

variables and~t = (t1, . . . , tn) is a vector of terms, then q[~x :=~t] denotes the result of substituting

in q the free variables x1, . . . , xn with terms t1, . . . , tn , respectively. Given a substitution σ :

FV(F) →Terms, we write Fσ for the result of substituting each x ∈FV(F) with σ(x). Formulas

are interpreted over elements of a first-order structure D with a countable domain D. We

assume that for each e ∈ D there exists a ground term ce whose interpretation in D is e; let

105

Chapter 7. Complete Functional Synthesis

C = {ce | e ∈ D}. We further assume that if F ∈ Formulas then also F [x := ce] ∈ Formulas (the

class of formulas is closed under partial grounding with constants).

The choose programming language construct. We integrate into a programming language

a construct of the form

~r = choose(~x ⇒ F) (7.1)

Here F is a formula (typically represented as a boolean-valued programming language expres-

sions) and~x ⇒ F denotes an anonymous function from~x to the value of F (that is, λ~x.F). Two

kinds of variables can appear within F : output variables~x and parameters ~a. The parameters

~a are program variables that are in scope at the point where choose occurs; their values will

be known when the statement is executed. Output variables~x denote values that need to be

computed so that F becomes true, and they will be assigned to~r as a result of the invocation

of choose.

We can translate the above choose construct into the following sequence of commands in a

guarded command language [Dijkstra(1976)]:

assert(∃~x.F);

havoc (~r);

assume (F [~x :=~r]);

The simplicity of the above translation indicates that it is natural to represent choose within ex-

isting verification systems (e.g. [Flanagan et al.(2002)Flanagan, Leino, Lilibridge, Nelson, Saxe,

and Stata, Zee et al.(2008)Zee, Kuncak, and Rinard]) The use of choose can help verification

because the desired property F is explicitly assumed and can aid in proving the subsequent

program assertions.

Model-generating decision procedures. As a starting point for our synthesis algorithms for

choose invocations we consider a model-generating decision procedure. Given F ∈Formulas

we expect this decision procedure to produce either

a) a substitution σ : FV(F) →C such that Fσ is a true, or

b) a special value unsat indicating that the formula is unsatisfiable.

We assume that the decision procedure is deterministic and behaves as a function. We write

Z (F)=σ or Z (F)=unsat to denote the result of applying the decision procedure to F .

Baseline: invoking a decision procedure at run-time. Just like an interpreter can be consid-

ered as a baseline implementation for a compiler, deploying a decision procedure at run-time

106

7.3. From Decision to Synthesis Procedures

can be considered as a baseline for our approach. In this scenario, we replace the statement

(7.1) with the code

F = makeFormulaTree(makeVars(~x), makeGroundTerms(~a));

~r = (Z (F) match {

case σ ⇒ (σ(x1), . . . ,σ(xn))

case unsat ⇒ throw new Exception("No solution exists")

})

Such dynamic invocation approach is flexible and useful. However, there are important

performance and predictability advantages of an alternative compilation approach.

Synthesis based on decision procedures. Our goal is therefore to explore a compilation

approach where a modified decision procedure is invoked at compile time, converting the

formula into a solved form.

Definition 7.1 (Synthesis Procedure) We denote an invocation of a synthesis procedure by

�~x,F � = (pre,~Ψ). A synthesis procedure takes as input a formula F and a vector of variables~x

and outputs a pair of

1. a precondition formula pre with FV(pre) ⊆FV(F) \~xs

2. a tuple of terms ~Ψwith FV(~Ψ) ⊆FV(F) \~xs

such that the following two implications are valid:

(∃~x.F) → pre

pre → F [~x := ~Ψ]

Observation 7.2 Because another implication always holds:

F [~x := ~Ψ] →∃~x.F

the above definition implies that the three formulas are all equivalent: (∃~x.F),pre,F [~x := ~Ψ].

Consequently, if we can define a function witn where for witn(~x,F) = ~Ψ we have FV(~Ψ) ⊆
FV(F) \~xs and ∃~x.F implies F [~x := ~Ψ], then we can define a synthesis procedure by

�~x,F � = (F [~x :=witn(~x,F)],witn(~x,F))

The reason we use the translation that computes pre in addition to witn(~x,F) is that the

synthesizer performs simplifications when generating pre, which can produce a formula faster

to evaluate than F [~x :=witn(~x,F)].

107

Chapter 7. Complete Functional Synthesis

The synthesizer emits the terms ~Ψ in compiler intermediate representation; the standard

compiler then processes them along with the rest of the code. We identify the syntax tree of ~Ψ

with its meaning as a function from the parameters ~a to the output variables~x. The overall

compile-time processing of the choose statement (7.1) involves the following:

1. emit a non-feasibility warning if the formula ¬pre is satisfiable, reporting the counterex-

ample for which the synthesis problem has no solutions;

2. emit a non-uniqueness warning if the formula

F ∧F [~x :=~y]∧~x 6=~y

is satisfiable, reporting the values of all free variables as a counterexample showing that

there are at least two solutions;

3. as the compiled code, emit the code that behaves as

assert(pre); ~r = ~Ψ

The existence of a model-generating decision procedure implies the existence of a ‘trivial’

synthesis procedure, which satisfies Definition 7.1 but simply invokes the decision procedure

at run-time. (In the realm of conventional programming languages, this would be analogous

to ‘compiling’ the code by shipping its source code bundled with an interpreter.) The use-

fulness of the notion of synthesis procedure therefore comes from the fact that we can often

create compiled code that avoids this trivial solution. Among the potential advantages of the

compilation approach are:

• improved run-time efficiency, because part of the reasoning is done at compile-time;

• improved error reporting: the existence and uniqueness of solutions can be checked at

compile time;

• simpler deployment: the emitted code can be compiled to any of the targets of the

compiler, and requires no additional run-time support.

We decided therefore pursue the compilation approach. As for the processing of more tradi-

tional programming language constructs, we do believe that there is space in the future for

mixed approaches, such as ‘just-in-time synthesis’ and ‘profiling-guided synthesis’.

Efficiency of synthesis. We introduce the following measures to quantify the behavior of

synthesis procedures as a function of the specification expression F :

• time to synthesize the code, as a function of F ;

108

7.4. Selected Generic Techniques

• size of the synthesized code, as a function of F ;

• running time of the synthesized code as a function of F and a measure of the run-time

values for the parameters ~a.

When using F as the argument of the above measures, we often consider not only the size of F

as a syntactic object, but also the dimension of the variable vector~x and the parameter vector

~a of F .

From quantifier elimination to synthesis. The precondition pre can be viewed as a result of

applying quantifier elimination (see e.g. [Hodges(1993), Page 67], [Nipkow(2008)]) to remove

~x from F , with the following differences.

1. Synthesis procedures strengthen quantifier elimination procedures by identifying not

only pre but also emitting the code ~Ψ that efficiently computes a witness for~x.

2. Quantifier elimination is typically applied to arbitrary quantified formulas of first-order

logic and aims to successively eliminate all variables. To enable recursive application of

variable elimination, pre must be in the same language of formulas as F . This condition

is not required in the final step of synthesis procedure, because no further elimination

is applied to the final precondition. Therefore, if the final precondition becomes a run-

time check, it can contain arbitrary executable code. If the final precondition becomes

a compile-time satisfiability check for the totality of the relation, then it suffices for it to

be in any decidable logic.

3. Worst-case bounds on quantifier elimination algorithms measure the size of the gen-

erated formula and the time needed to generate it, but not the size of ~Ψ or the time to

evaluate ~Ψ. For some domains, it can be computationally more difficult to compute (or

even ’print’) the solution than to simply check the existence of a solution.

Despite the differences, we have found that we can naturally extend existing quantifier elimi-

nation procedures with explicit computation of witnesses that constitute the program ~Ψ.

7.4 Selected Generic Techniques

We next describe some basic observations and techniques for synthesis that are independent

of a particular theory.

7.4.1 Synthesis for Multiple Variables

Suppose that we have a function witn(x,F) that corresponds to constructive quantifier elimina-

tion step for one variable and produces a termΨ such that F [x :=Ψ] holds iff ∃x.F holds. We

109

Chapter 7. Complete Functional Synthesis

�_ , _� :
⋃
n

(
Varsn ×Formulas→ Formulas×Termsn)

�(),F � = (F, ())

�(x1, . . . , xn),F � = (pre, (Ψ1, . . . ,Ψn−1,Ψ′
n)),

where
Ψn =witn(xn ,F)

F ′ = simplify(F [xn :=Ψn])

(pre, (Ψ1, . . . ,Ψn−1)) = �(x1, . . . , xn−1),F ′�
Ψ′

n =Ψn[x1 :=Ψ1, . . . , xn−1 :=Ψn−1]

Figure 7.1: Successive Elimination of Variables for Synthesis

can then lift witn(x,F) to synthesis for any number of variables, using the (non-tail recursive)

translation scheme in Figure 7.1. This translation includes the base case in which there are no

variables to eliminate, so F becomes the precondition, and the recursive case that applies the

witn function.

In implementation, we can use local variable definitions instead of substitutions. Given (7.1),

we generate as ~Ψ a Scala code block

val x1 =Ψ1

. . .

val xn−1=Ψn−1

val xn =Ψn

~x

where the variables in Ψn directly refer to variables computed in Ψ1, . . . ,Ψn−1 and where

FV(Ψi) ⊆ FV(F) \ {xi , . . . , xn}. A consequence of this recursive translation pattern is that the

synthesized code computes values in reverse order compared to the steps of a quantifier

elimination procedure. This observation can be helpful in understanding the output of our

synthesis procedures.

7.4.2 One-Point Rule Synthesis

If x ∉FV(t) we can define

witn(x, x = t ∧F) = t

If the formula does not have the form x = t ∧F , we can often rewrite it into this form using

theory-specific transformations.

110

7.4. Selected Generic Techniques

7.4.3 Output-Independent Preconditions

Whenever FV(F1)∩~xs =;, we can apply the following synthesis rule:

�~x,F1 ∧F2� = (pre∧F1,~Ψ),

where

(pre,~Ψ) = �~x,F2�

which moves a ‘constant’ conjunct of the specification into the precondition. We assume

that this rule is applied whenever possible and do not explicitly mention it in the rest of the

chapter.

7.4.4 Propositional Connectives in First-Order Theories

Consider a quantifier-free formula in some first-order theory. Consider the tasks of checking

formula satisfiability or applying elimination of a variable. For both tasks, we can first rewrite

the formula into disjunctive normal form and then process each disjunct independently. This

allows us to focus on handling conjunctions of literals as opposed to arbitrary propositional

combination.

We next show that we can similarly use disjunctive normal form in synthesis. Consider a

formula D1∨ . . .∨Dn in disjunctive normal form. We can apply synthesis to each Di yielding a

precondition prei and the solved form ~Ψi . We can then synthesize code with conditionals that

select the first ~Ψi that applies:

�~x,D1 ∨ . . .∨Dn� =

n∨

i=1
prei ,

if (pre1) ~Ψ1

else if (pre2) ~Ψ2

. . .

else if (pren) ~Ψn

else

throw new Exception(“No solution”)

,

where

(pre1,~Ψ1) = �~x,D1�
. . .

(pren ,~Ψn) = �~x,Dn�

Although the disjunctive normal form can be exponentially larger than the original formula, the

transformation to disjunctive normal form is used in practice [Pugh(1992)] and has advantages

in terms of the quality of synthesized code generated for individual disjuncts. What further

justifies this approach is that we expect a small number of disjuncts in our specifications, and

may need different synthesized values for variables in different disjuncts.

Other methods can have better worst-case quantifier elimination complexity [Cooper(1972),

111

Chapter 7. Complete Functional Synthesis

Ferrante and Rackoff(1979), Weispfenning(1997), Nipkow(2008)] than disjunctive normal form

approaches. We discuss these alternative approaches in the sequel as well, but it is the above

disjunctive normal form approach that we currently use in our implementation.

7.4.5 Synthesis for Propositional Logic

We are focused on synthesis for formulas over unbounded domains. Nonetheless, to illustrate

the potential asymptotic gain of precomputation in synthesis, we illustrate synthesis for

the case when F is a propositional formula (see e.g. [Kukula and Shiple(2000)] for a more

sophisticated approach to this problem). Suppose that~x are output variables and ~a are the

remaining propositional variables (parameters) in F .

To synthesize a function from ~a to ~x, build an ordered binary decision diagram (OBDD)

[Bryant(1986)] for F , treating both ~a and~x as variables for OBDD construction, and using a

variable ordering that puts all parameters ~a before all output variables~x. Then split the OBDD

graph at the point where all the decisions on ~a have been made. That is, consider the set of

nodes that terminate on some paths on which all decisions on ~a have been made and no

decisions on~x have been made. For each of these OBDD nodes, we precompute whether this

node reaches the true sink node. As the result of synthesis, we emit the code that consists of

nested if-then-else tests encoding the decisions on ~a, followed by the code that assigns values

to~x that will lead to the true sink node.

Consider the code generated using the method above. Note that, although the size of the

code is bounded by a single exponential, the code executes in time close to linear in the

total number of variables ~a and~x. This is in contrast to NP-hardness of finding a satisfying

assignment for a propositional formula F , which would occur in the baseline approach of

invoking a SAT solver at run-time. In summary, for propositional logic synthesis (and, more

generally, for NP-hard constraints over bounded domains) we can precompute solutions and

generate code that computes the desired values in deterministic polynomial time in the size

of inputs and outputs.

In the next several sections, we describe synthesis procedures for several useful decidable

logics over infinite domains (numbers and data structures) and discuss the efficiency improve-

ments due to synthesis.

7.5 Synthesis for Linear Rational Arithmetic

We next consider synthesis for quantifier-free formulas of linear arithmetic over rationals. In

this theory, variables range over rational numbers, terms are linear expressions c0+c1x1+ . . .+
cn xn , and the relations in the language are < and =. Synthesis for this theory can be used to

synthesize exact fractional arithmetic computations (or floating-point computations if we are

willing to ignore the rounding errors). It also serves as an introduction to the more complex

112

7.5. Synthesis for Linear Rational Arithmetic

problem of integer arithmetic synthesis that we describe in the following sections.

Given a quantifier-free formula, we can efficiently transform it to negation-normal form.

Furthermore, we observe that ¬(t1 < t2) is equivalent to (t2 < t1)∨ (t1 = t2) and that ¬(t1 = t2)

is equivalent to (t1 < t2)∨ (t2 < t1). Therefore, there is no need to consider negations in the

formula. We can also normalize the equalities to the form t = 0 and the inequalities to the

form 0 < t .

7.5.1 Solving Conjunctions of Literals

Given the observations in Section 7.4.4, we consider conjunctions of literals. The method

follows Fourier-Motzkin elimination [Schrijver(1998)]. Consider the elimination of a variable

x.

Equalities. If x occurs in an equality constraint t = 0, then solve the constraint for x and

rewrite it as x = t ′, where t ′ does not contain x. Then simply apply the one-point rule synthesis

(Section 7.4.2). This step amounts to Gaussian elimination. We follow this step whenever

possible, so we first eliminate those variables that occur in some equalities and only then

proceed to inequalities.

Inequalities. Next, suppose that x occurs only in strict inequalities 0 < t . Depending on the

sign of x in t , we can rewrite these inequalities into ap < x or x < bq for some terms ap ,bq .

Consider the more general case when there is both at least one lower bound ap and at least

one upper bound bq . We can then define:

witn(x,F) = (max
p

{ap }+min
q

{bq })/2

As one would expect from quantifier elimination, the pre corresponding to this case results

from F by replacing the conjunction of all inequalities containing x with the conjunction∧
p,q

ap < bq

In case there are no lower bounds ap , we define witn(x,F) = minq {bq }−1; if there are no upper

bounds bq , we define witn(x,F) = maxp {ap }+1.

Complexity of synthesis for conjunctions. We next examine the size of the generated code

for linear rational arithmetic. The elimination of input variables using equalities is a polynomial-

time transformation. Suppose that after this elimination we are left with N inequalities and V

remaining input variables. The above inequality elimination step for one variable replaces N

inequalities with (N /2)2 inequalities in the worst case. After eliminating all output variables,

an upper bound on the formula increase is (N /2)2V
. Therefore, the generated formula can

113

Chapter 7. Complete Functional Synthesis

be in the worst case doubly exponential in the number of output variables V . However, for

a fixed V , the generated code size is a (possibly high-degree) polynomial of the size of the

input formula. Also, if there are 4 or fewer inequalities in the original formula, the final size is

polynomial, regardless of V . Finally, note that the synthesis time and the execution time of

synthesized code are polynomial in the size of the generated formula.

7.5.2 Disjunctions for Linear Rational Arithmetic

We next consider linear arithmetic constraints with disjunctions, which are constraints for

which the satisfiability is NP-complete. One way to lift synthesis for rational arithmetic from

conjunctions of literals to arbitrary propositional combinations is to apply the disjunctive

normal form method of Section 7.4.4. We then obtain a complexity that is one exponential

higher in formula size than the complexity of synthesis for conjunctions.

In the rest of this section, we consider an alternative to disjunctive normal form. This alter-

native synthesizes code that can execute exponentially faster (even though it is not smaller)

compared to the disjunctive normal form approach of Section 7.4.4.

The starting point of this method are quantifier elimination techniques that avoid disjunctive

normal form transformation, e.g. [Ferrante and Rackoff(1979)], [Nipkow(2008)], [Bradley and

Manna(2007), Section 7.3]. To remove a variable from negation normal form, this method

finds relevant lower bounds ap and upper bounds bq in the formula, then computes the

values mpq = (ap +bq)/2 and replaces a variable xi with the values from the set {mpq }p,q ex-

tended with “sufficiently small” and “sufficiently large” values [Nipkow(2008)]. This quantifier

elimination method gives us a way to compute pre.

We next present how to extend this quantifier elimination method to synthesis, namely to the

computation of witn(x,F). Consider a substitution in quantifier elimination step that replaces

variable xi with the term m. We then extend this step to also attach to each literal a special

substitution syntactic form (xi 7→ m). When using this process to eliminate one variable, the

size of the formula can increase quadratically. After eliminating all output variables, we obtain

a formula pre with additional annotations; the size of this formula is bounded by n2O(V)
where n

is the original formula size. (Again, although it is doubly exponential in V , it is not exponential

in n.)

We can therefore build a decision tree that evaluates the values of all n2O(V)
literals in pre. On

each complete path of this tree, we can, at synthesis time, determine whether the truth values

of literals imply that pre is true. Indeed, such computation reduces to evaluating the truth

value of a propositional formula in a given assignment to all variables. In the cases when

the literals imply that pre holds, we use the attached substitution (xi 7→ m) in true literals to

recover the synthesized values of variables xi . Such decision tree has the depth n2O(V)
, because

it tests the values of all literals in the result of quantifier elimination. For a constant number of

variables V , this tree represents a synthesized program whose running time is polynomial in

114

7.6. Synthesis for Linear Integer Arithmetic

n. Thus, we have shown that using basic methods of quantifier elimination (without relying

on detailed geometric facts about the theory of linear rational arithmetic) we can synthesize

for each specification formula a polynomial-time function that maps the parameters to the

desired values of output variables.

7.6 Synthesis for Linear Integer Arithmetic

We next describe our main algorithm, which performs synthesis for quantifier-free formulas of

Presburger arithmetic (integer linear arithmetic). In this theory variables range over integers.

Terms are linear expressions of the form c0 +c1x1 + . . .+cn xn , n ≥ 0, ci is an integer constant

and xi is an integer variable. Atoms are built using the relations ≥, = and |. The atom c|t is

interpreted as true iff the integer constant c divides term t . We use a < b as a shorthand for

a ≤ b ∧¬(a = b). We describe a synthesis algorithm that works for conjunction of literals.

Pre-processing. We first apply the following pre-processing steps to eliminate negations

and divisibility constraints. We remove negations by transforming a formula into its negation-

normal form and translating negative literals into equivalent positive ones: ¬(t1 ≥ t2) is

equivalent to t2 ≥ t1 + 1 and ¬(t1 = t2) is equivalent to (t1 ≥ t2 + 1)∨ (t2 ≥ t1 + 1). We also

normalize equalities into the form t = 0 and inequalities into the form t ≥ 0.

We transform divisibility constraints of a form c|t into equalities by adding a fresh variable q .

The value obtained for the fresh variable q is ignored in the final synthesized program:

�~x, (c|t)∧F � = (pre,~Ψ),

where (pre, (~Ψ,Ψn+1)) = �(~x, q), t = c q ∧F �

The negation of divisibility ¬(c|t) can be handled in a similar way by introducing two fresh

variables q and r :

�~x,¬(c|t)∧F � = (pre,~Ψ),

where

F ′ ≡ t + r = c q ∧1 ≤ r ≤ c −1∧F

(pre, (~Ψ,Ψn+1,Ψn+2)) = �(~x, q,r),F ′�

In the rest of this section we assume the input formula F to have no negation or divisibility

constraints (these constructs can, however, appear in the generated code and precondition).

7.6.1 Solving Equality Constraints for Synthesis

Because equality constraints are suitable for deterministic elimination of output variables, our

procedure groups all equalities from a conjunction and solves them first, one by one. Let E be

one such equation, so the entire formula is of the form E ∧F . Let ~y be the output variables

115

Chapter 7. Complete Functional Synthesis

�_ , _� :
⋃
n

(
Varsn ×Formulas→ Formulas×Termsn)

�(~y ,~x),E ∧F � = (preY ∧pre, (~ΨY 0,~ΨX)),
where

(preY ,~ΨY ,~λ) = eqSyn(~y ,E)

F ′ = simplify(F [~y := ~ΨY])

(pre, (~Ψλ,~ΨX)) = �(~λ,~x),F ′�
~ΨY 0 = ~ΨY [~λ := ~Ψλ]

eqSyn:
⋃
n

Varsn×Formulas→ Formulas×Termsn×Varsn−1

eqSyn(y1,Σm
i=1βi bi +γ1 y1 = 0) = (γ1|(Σm

i=1βi bi), −(Σm
i=1βi bi)/γ1, ())

eqSyn(y1, . . . , yn ,Σm
i=1βi bi +Σn

j=1γ j y j=0) =
eqSyn(y1, . . . , yn , t/d +Σn

j=1(γ j /d)y j=0),

where
t =Σm

i=1βi bi

d = gcd(β1, . . . ,βm ,γ1, . . . ,γn)
d > 1

eqSyn(y1, . . . , yn ,Σm
i=1βi bi +Σn

j=1γ j y j=0) = (pre,~Ψ,~λ),

where
(~s1, . . . ,~sn−1) = linearSet(γ1, . . . ,γn)
(w1, . . . , wn) = particularSol(Σm

i=1βi bi ,γ1, . . . ,γn)
pre≡ gcd(γ1, . . . ,γn)|(Σm

i=1βi bi)
λ1, . . . ,λn−1 − fresh variable names
~Ψ= (w1, . . . , wn)+λ1~s1 + . . .+λn−1~sn−1

Figure 7.2: Algorithm for Synthesis Based on Integer Equations

that appear in E .

Given an output variable y1 and E of the form c y1 + t = 0 for c 6= 0, a simple way to solve

it would be to impose the precondition c|t , use the witness y1 = −t/c in synthesized code,

and substitute −t/c instead of y1 in the remaining formula. However, to keep the equations

within linear integer arithmetic, this would require multiplying the remaining equations and

disequations in F by c, potentially increasing the sizes of coefficients substantially.

We instead perform synthesis based on one of the improved algorithms for solving integer

equations. This algorithm avoids the multiplication of the remaining constraints by simul-

taneously replacing all n output variables ~y in E with n −1 fresh output variables~λ. Using

this algorithm we obtain the synthesis procedure in Figure 7.2. An invocation of eqSyn(~y ,F) is

similar to �~y ,F � but returns a triple (pre,~Ψ,~λ), which in addition to the precondition pre and

116

7.6. Synthesis for Linear Integer Arithmetic

the witness term tuple ~Ψ also has the fresh variables~λ.

The eqSyn Synthesis Algorithm

Consider the application of eqSyn in Figure 7.2 to the equation Σm
i=1βi bi +Σn

j=1γ j y j = 0. If

there is only one output variable, y1, we directly eliminate it from the equation. Assume

therefore n > 1. Let d = gcd(β1, . . . ,βm ,γ1, . . . ,γn). If d > 1 we can divide all coefficients by d ,

so assume d = 1.

Our goal is to derive an alternative definition of the set K = {~y |Σm
i=1βi bi +Σn

j=1γ j y j = 0} which

will allow a simple and effective computation of elements in K . Note that the set K describes

the set of all solutions of a Presburger arithmetic formula.

Recall that a semilinear set (cf. Chapter 2) is a set of all non-negative solutions of a Presburger

arithmetic formula. However, beside the fact that we search for all, non-negative and negative

solutions, we cannot apply this result because the values of parameter variables are not known

until run-time. Instead, we proceed in the following steps, as described in Figure 7.2:

1. obtain a linear set representation of the set

SH = {~y |
n∑

j=1
γ j y j = 0}

of solutions for the homogeneous part using the function linearSet (defined in Theo-

rem 7.3) to compute~s1, . . . ,~sn−1 such that

SH = {~y | ∃λ1, . . . ,λn−1 ∈Z.~y =
n−1∑
i=1

λi~si }

2. find one particular solution, that is, use the function particularSol (defined in Figure 7.3)

to find a vector of terms ~w (containing the parameters bi) such that t +∑n
j=1γ j w j = 0

for all values of parameters bi .

3. return as the solution ~w +
n−1∑
i=1

λi~si

To see that the algorithm is correct, fix the values of parameters and let~γ= (γ1, . . . ,γn). From

linearity we have t +~γ · (~w +∑
j λ j~s j) = t − t +0 = 0, which means that each ~w +∑

j λ j~s j is a

solution. Conversely, if ~y is a solution of the equation then~γ(~y − ~w) = 0, so ~y − ~w ∈ SH , which

means ~y − ~w =∑n
i=1λi~si for some λi . Therefore, the set of all solutions of t +∑n

j=1γ j w j = 0

is the set {~w +∑n−1
i=1 λi~si |λi ∈Z}. It remains to define linearSet to find~si and particularSol to

find ~w .

117

Chapter 7. Complete Functional Synthesis

Computing a Linear Set for a Homogeneous Equation

This section describes our version of the algorithm linearSet(γ1, . . . ,γn) that computes the set

of solutions of an equation Σn
i=1γi yi = 0. A related algorithm is a component of the Omega

test [Pugh(1992)].

Theorem 7.3 Let γ1, . . . ,γn ∈Z be integer coefficients. The set of all solutions of Σn
i=1γi yi = 0 is

described with:

linearSet(γ1, . . . ,γn) = (~s1, . . . ,~sn−1)

where~s j = (K1 j , . . . ,Kn j) and the integers Ki j are computed as follows:

• if i < j , Ki j = 0 (the matrix K is lower triangular)

• K j j =
gcd((γk)k≥ j+1)

gcd((γk)k≥ j)

• for each index j , 1 ≤ j ≤ n −1, we compute Ki j as follows. Consider the equation

γ j K j j +
n∑

i= j+1
γi ui j = 0

and find any solution. That is, compute

(K(j+1) j , . . . ,Kn j) = particularSol(−γ j K j j ,γ j+1, . . . ,γn)

where particularSol is given in Figure 7.3.

Proof. Let SH = {~y |Σn
i=1γi yi = 0} and let

SL = {λ1~s1 + . . .+λn~sn |λ1, . . . ,λn ∈Z} =

λ1

K11

...

Kn1

+ . . .+λn−1

K1(n−1)

...

Kn(n−1)

∣∣∣∣∣∣∣∣λi ∈Z

We claim SH = SL .

First we show that each vector~s j belongs to SH . Indeed, by definition of Ki j we have γ j K j j +∑n
i= j+1γi Ki j = 0. This means precisely that~s j ∈ SH , by definition of~s j and SH . Next, observe

that SH is closed under linear combinations. Because SL is the set of linear combinations of

vectors~s j , we have SL ⊆ SH .

To prove that the converse also holds, let ~y ∈ SH . We will show that the triangular system

of equations
∑n−1

i=1 λi~si =~y has some solution λ1, . . . ,λn−1. We start by showing that we can

find λ1. Let G1 = gcd((γk)k≥1). From ~y ∈ SH we have Σn
i=1γi yi = 0, that is, G1(Σn

i=1βi yi) = 0

118

7.6. Synthesis for Linear Integer Arithmetic

for βi = γi /G1. This implies β1 y1 +Σn
i=2βi yi = 0 and gcd((βk)k≥1) = 1. Let G2 = gcd((βk)k≥2).

From β1 y1 +Σn
i=2βi yi = 0 we then obtain β1 y1 +G2(Σn

i=2β
′
i yi) = 0 for β′

i = βi /G2. Therefore

y1 = −G2(Σn
i=2β

′
i yi)/β1. Because gcd(β1,G2) = 1 we have β1|Σn

i=2β
′
i yi so we can define the

integer λ1 =−Σn
i=2β

′
i yi /β1 and we have y1 =λ1G2. Moreover, note that

G2 = gcd((βk)k≥2) = gcd((γk)k≥2)/G1 = K11

Therefore, y1 =λ1K11, which ensures that the first equation is satisfied.

Consider now a new vector~z =~y−λ1~s1. Because~y ∈ SH and and~s1 ∈ SH also~z ∈ SH . Moreover,

note that the first component of~z is 0. We repeat the described procedure on~z and~s2. This way

we derive the value for an integer α2 and a new vector that has 0 as the first two components.

We continue with the described procedure until we obtain a vector ~u ∈ SH that has all com-

ponents set to 0 except for the last two. From ~u ∈ SH we have γn−1un−1 +γnun = 0. Letting

βn−1 = γn−1/gcd(γn−1,γn) and βn = γn/gcd(γn−1,γn) we conclude that βn−1un−1 +βnun = 0,

so un−1/βn is an integer and we let λn−1 = un−1/βn . By definitions of βi it follows λn−1 =
un−1 ·gcd(γn−1,γn)/γn . Next, observe the special form of the vector~sn−1:~sn−1 has the form

(0, . . . ,0,γn/gcd(γn−1,γn),−γn−1/gcd(γn−1,γn)). It is then easy to verify that ~u =λn−1~sn−1.

This procedure shows that every element of SH can be represented as a linear combination of

vectors~s j , which shows SH ⊆ SL and concludes the proof.

Finding a Particular Solution of an Equation

We finally describe the particularSol function to find a solution (as a vector of terms) for an

equation t+Σn
i=1γi ui = 0. We use the Extended Euclidean algorithm (for a detailed description

see for example, [Cormen et al.(2001)Cormen, Leiserson, Rivest, and Stein, Figure 31.1]). Given

the integers a1 and a2, the Extended Euclidean algorithm finds their greatest common divisor

d and two integers w1 and w2 such that a1w1 + a2w2 = d . Our algorithm generalizes the

Extended Euclidean Algorithm to arbitrary number of variables and uses it to find a solution

of an equation with parameters. We chose the algorithm presented here because of its sim-

plicity. Other algorithms for finding a solution of an equation t +Σn
i=1γi ui = 0 can be found

in [Banerjee(1988), Ford and Havas(1996)]. They also run in polynomial time. [Banerjee(1988)]

additionally allows bounded inequality constraints, whereas [Ford and Havas(1996)] guaran-

tees that the returned numbers are no larger than the largest of the input coefficients divided

by 2.

The equation t +Σn
i=1γi ui = 0 has a solution iff gcd((γk)k≥1)|t , and the result of particularSol

is guaranteed to be correct under this condition. Our synthesis procedure ensures that when

the results of this algorithm are used, the condition gcd((γk)k≥1)|t is satisfied.

We start with the base case where there are only two variables, t +γ1u1 +γ2u2 = 0. By the

Extended Euclidean Algorithm let v1 and v2 be integers such that γ1v1 +γ2v2 = gcd(γ1,γ2).

119

Chapter 7. Complete Functional Synthesis

With d we denote d = gcd(γ1,γ2) and let r = t/d . Then one solution is the pair of terms

(−v1r,−v2r):

particularSol2(t ,γ1,γ2) = (−v1r,−v2r),

where

(d , v1, v2) =ExtendedEuclid(γ1,γ2)

r = t/d

If there are more than two variables, we observe that Σn
i=2γi ui is a multiple of gcd((γk)k≥2). We

introduce the new variable u′ and find a solution of the equation t +γ1u1+gcd((γk)k≥2)·u′ = 0

as described above. This way we obtain terms (w1, w ′) for (u1, w ′). To derive values of u2, . . . ,un

we solve the equationΣn
i=2γi ui = gcd((γk)k≥2)·w ′. Given that the initial equation was assumed

to have a solution, the new equation can also be showed to have a solution. Moreover, it has

one variable less, so we can solve it recursively:

particularSol(t ,γ1, . . . ,γn) = (w1, . . . , wn),
where

(w1, w ′) = particularSol2(t ,γ1,gcd((γk)k≥2))
(w2, . . . , wn) = particularSol(−gcd((γk)k≥2)w ′,γ2, . . . ,γn)

Figure 7.3: Algorithm for Computing one Solution of the Equation

Example. We demonstrate the process of eliminating equations on an example. Consider the

following synthesis problem

�(x, y, z),2a −b +3x +4y +8z = 0∧5x +4z ≤ 2y −b�

To eliminate an equation from the formula and to reduce a number of output variables, we

first invoke eqSyn((x, y, z),2a −b +3x +4y +8z = 0), which works in two phases. In the first

phase, we compute the linear set describing a set of solutions of the homogeneous equality

3x +4y +8z = 0. Applying Theorem 7.3, the resulting set SL is:

SL =

λ1

 4

−3

0

+λ2

 0

2

−1

∣∣∣∣∣∣∣λ1,λ2 ∈Z

The second phase computes a witness vector ~w and a precondition formula. Applying the

procedure described in Section 7.6.1 results in the vector ~w = (2a−b,b−2a,0) and the formula

1|2a −b. Finally, we compute the output of eqSyn applied to 2a −b +3x +4y +8z = 0: it is a

triple consisting of

1. a precondition 1|2a −b

120

7.6. Synthesis for Linear Integer Arithmetic

2. a list of terms denoting witnesses for (x, y, z):

Ψ1 = 2a −b +4λ1

Ψ2 = b −2a −3λ1 +2λ2

Ψ3 =−λ2

3. a list of fresh variables (λ1,λ2).

We then replace each occurrence of x, y and z by the corresponding terms in the rest of the

formula. This results in a new formula 7a −3b +13λ1 ≤ 4λ2, that has the same input variables,

but the output variables are now λ1 and λ2. To find a solution for the initial problem, we let

(preX , (Φ1,Φ2)) = �(λ1,λ2),7a −3b +13λ1 ≤ 4λ2�

Since 1|2a−b is a valid formula, we do not add it to the final precondition. Therefore, the final

result has the form

(preX , (2a −b +4Φ1,b −2a −3Φ1 +2Φ2,−Φ2))

7.6.2 Solving Inequality Constraints for Synthesis

In the following, we assume that all equalities are already processed and that a formula is a

conjunction of inequalities. Dealing with inequalities in the integer case is similar to the case

of rational arithmetic: we process variables one by one and proceed further with the resulting

formula.

Let x be an output variable that we are processing. Every conjunct can be rewritten in one of

the two following forms:

[Lower Bound] Ai ≤ αi x

[Upper Bound] β j x ≤ B j

As for rational arithmetic, x should be a value which is greater than all lower bounds and

smaller than all upper bounds. However, this time we also need to enforce that x must be

an integer. Let a = maxi dAi /αi e and b = min j
⌊

B j /β j
⌋

. If b is defined (i.e. at least one upper

bound exists), we use b as the witness for x, otherwise we use a.

The corresponding formula with which we proceed is a conjunction stating that each lower

bound is smaller than every upper bound:∧
i , j

dAi /αi e ≤
⌊

B j /β j
⌋

(7.2)

Because of the division, floor, and ceiling operators, the above formula is not in integer linear

arithmetic. However, in the absence of output variables, it can be evaluated using standard

121

Chapter 7. Complete Functional Synthesis

programming language constructs. On the other hand, if the terms Ai and B j contain output

variables, we convert the formula into an equivalent linear integer arithmetic formula as

follows.

With lcm we denote the least common multiple. Let L = lcmi , j (αi ,β j). We introduce new

integer linear arithmetic terms A′
i = L

αi
Ai and B ′

j = L
β j

B j . Using these terms we derive an

equivalent integer linear arithmetic formula:

dAi /αi e ≤
⌊

B j /β j
⌋⇔ ⌈

A′
i /L

⌉≤ ⌊
B ′

j /L
⌋
⇔ A′

i

L
≤

B ′
j −B ′

j mod L

L

⇔ B ′
j mod L ≤ B ′

j − A′
i ⇔ B ′

j = L · l j +k j ∧k j ≤ B ′
j − A′

i

Formula (7.2) is then equivalent to∧
j

(B ′
j = L · l j +k j ∧

∧
i

(k j ≤ B ′
j − A′

i))

Although this formula belongs to linear integer arithmetic, we still cannot simply apply the

synthesizer on that formula. Let {1, . . . , J } be a range of j indices. The newly derived formula

contains J equalities and 2 · J new variables. The process of eliminating equalities as described

in Section 7.6.1 will at the end result in a new formula which contains J new output variables

and this way we cannot assure termination. Therefore, this is not a suitable approach.

However, we observe that the value of k j is always bounded: k j ∈ {0, . . . ,L −1}. Thus, if the

value of k j were known, we would have a formula with only J new variables and J additional

equations. The equation elimination procedure described before would then result in a

formula that has one variable less than the original starting formula, and that would guarantee

termination of the approach.

Since the value of each k j variable is always bounded, there are finitely many (J ·L) possible

instantiations of k j variables. Therefore, we need to check for each instantiation of all k j

variables whether it leads to a solution. As soon as a solution is found, the generated code

stops and proceeds with the obtained values of output variables. If no solution is found,

we raise an exception, because the original formula has no integer solution. This leads to

a translation schema that contains J ·L conditional expression. In our implementation we

generate this code as a loop with constant bounds.

We finish the description of the synthesizer with an example that illustrates the above algo-

rithm.

Example. Consider the formula 2y−b ≤ 3x+a∧2x−a ≤ 4y+b where x and y are output vari-

ables and a and b are input variables. If the resulting formula
⌈

2y −b −a/3
⌉≤ ⌊

4y +a +b/2
⌋

has a solution, then the synthesizer emits the value of x to be
⌊

4y +a +b/2
⌋

. This newly de-

rived formula has only one output variable y , but it is not an integer linear arithmetic formula.

122

7.6. Synthesis for Linear Integer Arithmetic

It is converted to an equivalent integer linear arithmetic formula (4y +a +b) ·3 = 6l +k ∧k ≤
8y +5a +5b, which has three variables: y,k and l . The value of k is bounded: 0 ≤ k ≤ 5, so we

treat it as a parameter. We start with elimination of the equality: it results in the precondition

6|3a +3b −k, the list of terms l = (3a +3b −k)/6+2α, y = α and a new variable: α. Using

this, the inequality becomes k −5a −5b ≤ 8α. Because α is the only output variable, we can

compute it as d(k −5a −5b)/8e. The synthesizer finally outputs the following code, which

computes values of the initial output variables x and y :

val kFound = false

for k = 0 to 5 do {

val v1 = 3 * a + 3 * b − k

if (v1 mod 6 == 0){

val alpha = ((k − 5 * a − 5 * b)/8). ceiling

val l = (v1 / 6) + 2 * alpha

val y = alpha

val kFound = true

break } }

if (kFound)

val x = ((4 * y + a + b)/2).�oor

else

throw new Exception("No solution exists")

The precondition formula is ∃k. 0 ≤ k ≤ 5∧ 6|3a +3b −k, which our synthesizer emits as a

loop that checks 6|3a +3b −k for k ∈ {0, . . . ,5} and throws an exception if the precondition is

false.

7.6.3 Disjunctions in Presburger Arithmetic

We can again lift synthesis for conjunctions to synthesis for arbitrary propositional combi-

nations by applying the method of Section 7.4.4. We also obtain a complexity that is one

exponential higher than the complexity of synthesis from the previous section. Approaches

that avoid disjunctive normal form can be used in this case as well [Nipkow(2008), Ferrante

and Rackoff(1979), Weispfenning(1997)].

7.6.4 Optimizations used in the Implementation

In this section, we describe some optimizations and heuristics that we use in our implementa-

tion. Using some of them, we obtained a speedup of several orders of magnitude.

Merging inequalities. Whenever two inequalities t1 ≤ t2 and t2 ≤ t1 appear in a conjunction,

we substitute them with an equality t1 = t2. This makes the process of variable elimination

123

Chapter 7. Complete Functional Synthesis

more efficient.

Heuristic for choosing the right equality for elimination. When there are several equalities

in a formula, we choose to eliminate an equality for which the least common multiple of all

the coefficients is the smallest. We observed that this reduces the number of integers to iterate

over.

Some optimizations on modulo operations. When processing inequalities, as described

in Section 7.6.2, as soon as we introduce the modulo operator, we face a potentially longer

processing time. This is because finding the suitable value of the remainder in equation B ′
j

mod L ≤ B ′
j − A′

i requires invoking a loop. While searching for a witness, we might need to test

all possible L values. Therefore, we try not to introduce the modulo operator in the first place.

This is possible in several cases. One of them is when either αi = 1 or b j = 1. In that case, if for

example αi = 1, an equivalent integer arithmetic formula is easily derived:

dAi /αi e ≤
⌊

B j /β j
⌋⇔ Ai ≤

⌊
B j /β j

⌋⇔β j Ai ≤ B j

Another example where we do not introduce the modulo operator is when A′
i −B ′

j evaluates to

a number N such that N > L. In that case, it is clear that B ′
j mod L ≤ B ′

j − A′
i is a valid formula

and thus the returned formula is true.

Finally, we describe an optimization that leads to a reduction in the number of loop executions.

This is possible when there exists an integer N such that B ′
j = N ·T j and L = N ·L1. (Unless

L = β j , this is almost always the case.) In the case where N exists, then k j also has to be

a multiple of N . Putting this together, an equivalent formula of B ′
j mod L ≤ B ′

j − A′
i is the

formula T j mod L1 = k j ∧N ·k j ≤ B ′
j − A′

i . This reduces the number of loop iterations by at

least a factor of N .

7.7 Synthesis Algorithm for Parametrized Presburger Arithmetic

In addition to handling the case when the specification formula is an integer linear arithmetic

formula of both parameters and output variables, we have generalized our synthesizer to

the case when the coefficients of the output variables are not only integers, but can be any

arithmetic expression over the input variables. This extension allows us to write e.g. the offset

decomposition program from Section 7.2 with statically unknown dimensions dimX, dimY,

dimZ. As a slightly simpler example, consider the following invocation:

val (valueX, valueY) = choose((x: Int, y: Int) ⇒
(o�set == x + dim * y && 0 ≤ x && x < dim))

Here offset and dim are input variables, whereas x and y are output variables. Note that dim∗y

124

7.7. Synthesis Algorithm for Parametrized Presburger Arithmetic

is not a linear term. However, at run-time we know the exact value of dim, so the term will

become linear. Our synthesizer can handle such cases as well through a generalization of the

algorithm in Section 7.6.

Given the problem above, we first eliminate the equality offset= x +dim∗ y and we obtain the

new problem consisting of two inequalities: dim∗ t ≤ offset∧offset−dim+1 ≤ dim∗ t . The

variable t is a freshly introduced integer variable and it is also the only output variable. At

this point, the synthesizer needs to divide a term by the variable dim. In general it thus needs

to generate code that distinguishes the cases when dim is positive, negative, or zero. In this

particular example, due to the constraint 0 ≤ x < dim, only one case applies. The synthesizer

returns the following precondition:

pre≡ d(offset−dim+1)/dime ≤ boffset/dimc

It can easily be verified that this is a valid formula for all positive values of dim. The synthesizer

also returns the code that computes the values for x and y :

val t = (o�set /dim).�oor

val valueY = t

val valueX = o�set − dim * t

Our general algorithm for handling parametrized Presburger arithmetic follows the algorithm

described in Section 7.6. The main difference is that instead of manipulating known integer

coefficients, it manipulates arbitrary arithmetic expressions as coefficients. It therefore needs

to postpone to run-time certain decisions that involve coefficients. The key observation

that makes this algorithm possible is that many compile-time decisions depend not on the

particular values of the coefficients, but only on their sign (positive, negative, or zero). In the

presence of a coefficient that depends on a parameter, the synthesizer therefore generates

code with multiple branches that cover the different cases of the sign.

As an illustration, consider using synthesis to compute, when it exists, the positive integer

ratio x between two integers a and b:

val a: Int = . . .

val b: Int = . . .

val x = choose((x: Int) ⇒ a * x == b && x ≥ 0)

In this example, the synthesizer needs to distinguish between the cases where a, which is used

as a coefficient, is zero, negative and positive: when a is zero, it computes as a precondition

pre0 ≡ b = 0

when a is negative, the precondition is

preª ≡−b ≥ 0∧a|b

125

Chapter 7. Complete Functional Synthesis

and similarly, when a is positive

pre⊕ ≡ b ≥ 0∧a|b

In fact, when the positive and negative cases differ only by a sign, our synthesized factors this

out by using the expression a
|a| for the sign of a (note that since the case where a is zero is

treated before, there is no risk of a division by zero). The generated code for computing x is:

if (a == 0 && b == 0){

0

} else if (−(a/Math.abs(a))* b ≥ 0 && b % a == 0) {

b / a

} else {

throw new Exception("No solution exists")

}

(Note that when both a and b are zero, any value for x is valid, 0 is just the option picked by

the synthesizer.)

The coefficients of the invocation of the Extended Euclidean algorithm generally also become

known only at run-time, so the generated code invokes this algorithm as a library function. The

situation is analogous for the gcd function. The following example illustrates this situation:

choose((x: Int) ⇒ 6*x + a*y = b

On this example, our synthesizer produces the following code:

if (b % gcd(6,a) == 0){

val t1 = gcd(6,a)

val t2 = −b / t1

val (t3, t4) = coe�s(1, 6/t1, a/t1)

(t2 * t3, t2 * t4)

} else {

throw new Exception("No solution exists")

}

In this code, gcd computes the greatest common divisor, and (a,b) = coeffs(1,c,d) com-

putes a and b such that a*c + b*d + 1 == 0 holds. Note that there are no tests on the

signs of a and b, because the precondition and the code are the same in all cases (we define

gcd(x,0) to be x).

Finally, note that the running time of the programs in this case is not uniform with respect

to the values of all parameters. In particular, the upper bounds of the generated for loops

in Section 7.6.2 can now be a function of parameters. Nevertheless, for each value of the

126

7.8. Synthesis for Sets with Size Constraints

F ::= A | F1 ∧F2 | F1 ∨F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | (K |T)

B ::= x | ; |U | B1 ∪B2 | B1 ∩B2 | B c

T ::= k | K | T1 +T2 | K ·T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2. . .

Figure 7.4: A Logic of Sets and Size Constraints (BAPA)

parameter, the generated code terminates.

7.8 Synthesis for Sets with Size Constraints

In this section, we recall the definiton a logic of sets with cardinality constraints (introduced in

Chapter 6) and describe a synthesis procedure for it. The logic we consider is BAPA (Boolean

Algebra with Presburger Arithmetic). It supports the standard operators union, intersection,

complement, subset, and equality. In addition, it supports the size operator on sets, as well

as integer linear arithmetic constraints over these sizes. Its syntax is shown in Figure 7.4.

Decision procedures for BAPA were considered in a number of scenarios [Feferman and

Vaught(1959), Zarba(2004), Zarba(2005), Kuncak et al.(2006)Kuncak, Nguyen, and Rinard,

Kuncak and Rinard(2007)]. As in the previous sections, we consider the problem (7.1)

~r = choose(~x ⇒ F (~x,~a))

where the components of vectors ~a,~x,~r are either set or integer variables and F is a BAPA

formula.

Figure 7.5 describes our BAPA synthesis procedure that returns a precondition predicate

pre(~a) and a solved form ~Ψ. The procedure is based on the quantifier elimination algorithm

presented in [Kuncak et al.(2006)Kuncak, Nguyen, and Rinard], which reduces a BAPA formula

to an equisatisfiable integer linear arithmetic formula. The algorithm eliminates set variables

in two phases. In the first phase all set expressions are rewritten as unions of disjoint Venn

regions. The second phase introduces a fresh integer variable for the cardinality of each Venn

region. It thus reduces the entire formula to an integer linear arithmetic formula F1. The input

variables in F1 are the integer input variables from the original formula, as well as fresh integer

variables denoting cardinalities of Venn regions of the input set variables. Note that all values

of those input variables are known from the program. The output variables are the original

integer output variables and freshly introduced integer variables denoting cardinalities of

Venn regions that are contained in the output set variables.

We can therefore build a synthesizer for BAPA on top of the synthesizer for integer linear

127

Chapter 7. Complete Functional Synthesis

INPUT: a formula F (~X ,~k) in the logic defined in Figure 7.4 with input variables X1, . . . ,
Xn , k1, . . . , km and output variables Y1, . . . ,Ys , l1, . . . , lt , where Xi and Y j are set
variables, ki and l j are integer variables

OUTPUT: code that computes values for the output variables from the input variables

1. Apply the first steps towards a Presburger arithmetic formula:

(a) Replace each atom S1 = S2 with S1 ⊆ S2 ∧S2 ⊆ S1

(b) Replace each atom S1 ⊆ S2 with |S1 ∩Sc
2| = 0

2. Introduce the Venn regions of sets Xi ’s and Y j ’s: let u be a binary word of the length n+m.
The set variable Ru represents a Venn region where each ’1’ stands for a set and ’0’ stands
for a complement. To illustrate, if n = 2, m = 1 and u = 001, then R001 = X c

1 ∩ X c
2 ∩Y1.

Rewrite each set expression as a disjoint union of corresponding Venn regions.

3. Create a Presburger arithmetic formula: an integer variable hu denotes the cardinality
of the Venn region Ru . Use the fact that |S1 ∪S2| = |S1|+ |S2| iff S1 and S2 are disjoint to
rewrite the whole formula as the Presburger arithmetic formula. We denote the resulting
formula by F1(~hu ,~l).

4. Create a Presburger arithmetic formula that corresponds to quantifier elimination: let
v be a binary word of length n. A set variable Pv denotes a Venn region of input set
variables, which means that |Pv | is a known value. Create a formula that expresses each
|Pv | as a sum of corresponding hu ’s. Define the formula F2(~hu , ~|Pv |) as the conjunction
of all those formulas.

5. Create code that computes values of output vectors. First invoke the linear arithmetic
synthesizer described in Section 7.6 to generate the code corresponding to:
val (~hu n , ~ln) = choose((~hu , ~l) ⇒ F1(~hu , ~l) ∧F2(~hu , ~|Pv |))

Invoking the synthesizer returns code that computes expressions for the integer output
variables~ln and for the variables ~hu n . For each set output variable Yi , do the following:
let Si be a set containing already known or defined set variables, let T j be a Venn region
of Si ∪Yi that is contained in Yi . Each T j region is contained in the bigger Venn region
U j which is a Venn region of sets in Yi . For each T j do: take all Ru that belong to T j

and let d j be the sum of all corresponding hu n . Based on the value of d j , output the
following code:

• if T j ⊆∩S∈Si Sc and d j > 0, output the assignment K j = fresh(d j)

• if d j = 0, output the assignment K j = ;
• if d j = |U j |, output the assignment K j = U j

• otherwise output the assignment K j = take(d j , U j)

Finally, construct Yi as a union of all K j sets: Yi = ∪ j K j

Figure 7.5: Algorithm for synthesizing a functionΨ such that F [~x :=Ψ(~a)] holds, where F has
the syntax of Figure 7.4

128

7.8. Synthesis for Sets with Size Constraints

arithmetic described in Section 7.6. The integer arithmetic synthesizer outputs the precondi-

tion predicate pre and emits the code for computing values of the new output variables. The

generated code can use the returned integer values to reconstruct a model for the original

formula. Notice that the precondition predicate pre will be a Presburger arithmetic formula

with the terms built using the original integer input variables and the cardinalities of Venn

regions of the original input set variables. As an example, if i is an integer input variable and a

and b are set input variables then the precondition predicate might be the following formula

pre(i , a,b) = |a ∩b| < i ∧|a| ≤ |b|.

In the last step of the BAPA synthesis algorithm, when outputting code, we use functions

fresh and take. The function take takes as arguments an integer k and a set S, and returns

a subset of S of size k. The function fresh(k) is invoked when k fresh elements need to be

generated. These functions are used only in the code that computes output values of set

variables (the linear integer arithmetic synthesizer already produces the code to compute

the values of integer output variables). The set-valued output variables are computed one

by one. Given an output set variable Yi , the code that effectively computes the value of Yi

is emitted in several steps. With Si we denote a set containing set variables occurring in the

original formula whose values are already known. Initially, Si contains only the input set

variables. Our goal is to describe the construction of Yi in terms of sets that are already in Si .

We start by computing the Venn regions for Yi and all the sets in Si in order to define Yi as a

union of those Venn regions. Therefore we are interested only in those Venn regions that are

subset of Yi . Let T j be one such a Venn region. It can be represented as T j = Yi ∩U j where U j

has a form U j =∩S∈Si S(c) and S(c) denotes either S or Sc . On the other hand, T j can also be

represented as a disjoint union of the original Ru Venn regions. Those Ru are Venn regions

that were constructed in the beginning of the algorithm for all input and output set variables.

As the linear integer arithmetic synthesizer outputs the code that computes the values hu ,

where hu = |Ru |, we can effectively compute the size of each T j . If T j = Ru1 ∪ . . .∪Ruk , then

the size of T j is |T j | = d j =∑k
l=1 hul . Note that d j is easily computed from the linear integer

arithmetic synthesizer and based on the value of d j we define a set K j as K j = take(d j , U j).

Finally, we emit the code that defines Yi as a finite union of K j ’s: Yi = ∪ j K j .

Based of the values of d j , we can introduce further simplifications. If d j = 0, none of elements

of U j contributes to Yi and thus K j =;. On the other hand, if d j = |U j |, applying a simple

rule S = take(|S|,S) results in K j = U j . A special case is when U j = ∩S∈Si Sc . If in this case

it also holds that d j > 0, we need to take d j elements that are not contained in any of the

already known sets, i.e. we need to generate fresh d j elements. For this purpose we invoke the

command fresh.

Partitioning a Set. We illustrate the BAPA synthesis algorithm through an example. Consider

the following invocation of the choose function that generalizes the example in Section 7.2.

val (setA, setB) = choose((a: Set[O], b: Set[O]) ⇒

129

Chapter 7. Complete Functional Synthesis

(−maxDi� ≤ a.size − b.size && a.size − b.size ≤ maxDi�

&& a union b == bigSet && a intersect b == empty

))

This example combines integer and set variables. Given a set bigSet, the goal is to divide it

into two partition. The previously defined integer variable maxDiff specifies the maximum

amount by which the sizes of the two partitions may differ. We apply the algorithm from

Figure 7.5 step-by-step to illustrate how it works. After completing Step 3, we obtain the

formula

F1(~hu) ≡ h100 = h110 = h010 = h001 = h111 = 0

∧ -maxDiff ≤ h101 −h011 ∧h101 −h011 ≤ maxDiff

We simplify the formula obtained in Step 4 by applying the constraints from Step 3 and obtain

the formula

F2(~hu) ≡ |bigSet| = h101 +h011 ∧|bigSetc | = h000

Next we call the linear arithmetic synthesizer on the formula F1(~hu)∧F2(~hu). The only two

variables whose values we need to find are h101 and h011. The synthesizer first eliminates the

equation |bigSet| = h101 +h011: a fresh new integer variable k is introduced such that h101 = k

and h011 = |bigSet|−k. This way there is only one output variable: k. Variable k has to be a

solution of the following two inequalities: |bigSet| −maxDiff ≤ 2k ∧2k ≤ |bigSet| +maxDiff.

This results in the precondition

pre≡
⌈ |bigSet|−maxDiff

2

⌉
≤

⌊ |bigSet|+maxDiff

2

⌋
Note that pre is defined entirely in terms of the input variables and can be easily checked at

run-time. The synthesizer outputs the following code, which computes values for the output

variables:

val k = ((bigSet. size + maxDi�)/2).�oor

val h101 = k

val h011 = bigSet.size − k

val setA = take(h101, bigSet)

val setB = take(h011, bigSet −− setA)

In the code above, ‘�’ denotes the set difference operator. The synthesized code first computes

the size k of one of the partitions, as approximately one half of the size of bigSet. It then

selects k elements from bigSet to form setA, and selects bigSet.size−k of the remaining

elements for setB.

130

7.9. Implementation and Experience

Comfusy scalac

scala class..
code generation

parsing,
name analysis,
type-checking

optimization,

Figure 7.6: Interaction of Comfusy with scalac, the Scala compiler. Comfusy takes as an
input the abstract syntax tree of a Scala program and rewrites calls to choose to syntax trees
representing the synthesized function.

7.9 Implementation and Experience

Comfusy tool. We have implemented our synthesis procedures as a Scala compiler extension,

which we call Comfusy. We chose Scala because it supports higher-order functions that make

the concept of a choose function natural, and extensible pattern matching in the form of

extractors [Emir et al.(2007)Emir, Odersky, and Williams]. Moreover, the compiler supports plu-

gins that work as additional compilation phases, so our extension is seamlessly integrated into

compilation process (see Figure 7.6). We used an off-the-shelf decision procedure [de Moura

and Bjørner(2008a)] to handle the compile-time checks (we could, in principle, also use

our synthesis procedure for compile-time checks because synthesis subsumes satisfiability

checking).

Our plugin supports the synthesis of integer values through the choose function constrained

by linear arithmetic predicates (including predicates in parametrized linear arithmetic), as

well as the synthesis of set values constrained by predicates of the logic described in Section 7.8.

Additionally, it can synthesize code for pattern-matching expressions on integers such as the

ones presented in Section 7.2.

Compilation times. Figure 7.7 shows the compile times for a set of benchmarks, with and

without our plugin. Without the plugin, the code is of no use (the choose function, when

not rewritten, just throws an exception), but the difference between the timings indicates

how much time is spent generating the synthesized code. We also measure how much time

is used for the compile-time checks for satisfiability and uniqueness. The examples Second-

sToTime, FastExponentiation, SplitBalanced and Coordinates were presented in Section 7.2.

ScaleWeights computes solutions to a puzzle, PrimeHeuristic contains a long pattern-matching

expression where every pattern is checked for reachability, and SetConstraints is a variant

of SplitBalanced. There is no measurement for Coordinates with compile-time checks, be-

cause the formulas to check are in an undecidable fragment, as the original formula is in

parametrized linear arithmetic. We also measured the times with all benchmarks placed in a

single file, as an attempt to balance out the time taken by the Scala compiler to start up.

Our numbers show that the additional time required for the code synthesis is minimal. More-

131

Chapter 7. Complete Functional Synthesis

scalac w/ plugin w/ checks
SecondsToTime 3.05 3.2 3.25
FastExponentiation 3.1 3.15 3.25
ScaleWeights 3.1 3.4 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.3 3.5 3.5
SplitBalanced 3.3 3.9 4.0
Coordinates 3.2 4.2 −−
All 5.75 6.35 6.75

Figure 7.7: Measurement of compile times: without applying synthesis (scalac), with syn-
thesis but with no call to Z3 (w/ plugin) and with both synthesis and compile-time checks
activated (w/ checks). All times are in seconds.

over, note that the code we tested contained almost exclusively calls to the synthesizer. The

increase in compilation time in practice would thus be lower for code that mixes standard

Scala with selected choose construct invocations.

Execution times of generated code. In our experience, the execution time of the synthesized

code is similar to equivalent hand-written code. Our experience so far was restricted to small

examples, not because of performance problems, but rather because this is the intended way

of using the tool: to synthesize code blocks as opposed to entire procedures or algorithms.

Code size. An older version of Comfusy generated if-then-else statements that correspond

to large disjunctions that appear in quantifier elimination algorithms. In certain cases, this led

to formulas of large size. We have improved this by generating code that executes about as fast

but uses a “for” loop instead of disjunctions. This eliminated the problems with code size, and

enabled synthesis for parametric coefficients, discussed above.

7.10 Further Related Work

Early work on synthesis [Manna and Waldinger(1971), Manna and Waldinger(1980)] focused

on synthesis using expressive and undecidable logics, such as first-order logic and logic

containing the induction principle. Consequently, while it can synthesize interesting programs

containing recursion, it cannot provide completeness and termination guarantees as synthesis

based on decision procedures.

Recent work on synthesis [Srivastava et al.(2010)Srivastava, Gulwani, and Foster] resolves

some of these difficulties by decoupling the problem of inferring program control structure

and the problem of synthesizing the computation along the control edges. Furthermore,

132

7.10. Further Related Work

the work leverages verification techniques that use both approximation and lattice theoretic

search along with decision procedures. As such, it is more ambitious and aims to synthesize

entire algorithms. By nature, it cannot be both terminating and complete over the space of all

programs that satisfy an input/output specification (thus the approach of specifying program

resource bounds). In contrast, we focus on synthesis of program fragments with very specific

control structure dictated by the nature of the decidable logical fragment.

Our work further differs from the past ones in 1) using decision procedures to guarantee the

computation of synthesized functions whenever a synthesized function exists, 2) bounds

on the running times of the synthesis algorithm and the synthesized code size and running

time, and 3) deployment of synthesis in well-delimited pieces of code of a general-purpose

programming language.

Program sketching has demonstrated the practicality of program synthesis by focusing its

use on particular domains [Solar-Lezama et al.(2006)Solar-Lezama, Tancau, Bodík, Seshia,

and Saraswat, Solar-Lezama et al.(2007)Solar-Lezama, Arnold, Tancau, Bodík, Saraswat, and

Seshia, Solar-Lezama et al.(2008)Solar-Lezama, Jones, and Bodík]. The algorithms employed

in sketching are typically focused on appropriately guided search over the syntax tree of the

synthesized program. Search techniques have also been applied to automatically derived con-

current garbage collection algorithms [Vechev et al.(2007)Vechev, Yahav, Bacon, and Rinetzky].

In contrast, our synthesis uses the mathematical structure of a decidable theory to explore

the space of all functions that satisfy the specification. This enables our approach to achieve

completeness without putting any a priori bound on the syntax tree size. Indeed, some of the

algorithms we describe can generate fairly large yet efficient programs. We expect that our

techniques could be fruitfully integrated into search-based frameworks.

Synthesis of reactive systems generates programs that run forever and interact with the envi-

ronment. However, known complete algorithms for reactive synthesis work with finite-state

systems [Pnueli and Rosner(1989)] or timed systems [Asarin et al.(1995)Asarin, Maler, and

Pnueli]. Such techniques have applications to control the behavior of hardware and embedded

systems or concurrent programs [Vechev et al.(2009)Vechev, Yahav, and Yorsh]. These tech-

niques usually take specifications in temporal logic [Piterman et al.(2006)Piterman, Pnueli,

and Sa’ar] and have resulted in tools that can synthesize useful hardware components [Jobst-

mann et al.(2007)Jobstmann, Galler, Weiglhofer, and Bloem,Jobstmann and Bloem(2006)]. Our

work examines non-reactive programs, but supports infinite data without any approximation,

and incorporates the algorithms into a compiler for a general-purpose programming language.

Computing optimal bounds on the size and running time of the synthesized code for Pres-

burger Arithmetic is beyond the scope of the current state of our research. Relevant re-

sults in the area of decision procedures are automata-based decision procedures [Boigelot

et al.(2005)Boigelot, Jodogne, and Wolper, Klaedtke(2003)], the bounds on quantifier elimina-

tion [Weispfenning(1997)] and results on integer programming in fixed dimensions [Eisen-

brand and Shmonin(2008)].

133

Chapter 7. Complete Functional Synthesis

Automata-based decision procedures, such as those implemented in the MONA tool [Klarlund

and Møller(2001)] could be used to synthesize efficient (even if large) code from expres-

sive specifications. The work on graph types [Klarlund and Schwartzbach(1993)] proposes

to synthesize fields given by definitions in monadic second-order logic. Automata have

also been applied to the synthesis of efficient code for pattern-matching expressions [Sekar

et al.(1995)Sekar, Ramesh, and Ramakrishnan].

Synthesis of constraints for rational arithmetic has been previously applied to automatically

construct abstract transfer functions in abstract interpretation of linear constraints over

rationals [Monniaux(2009)]. Our results apply this technique to integer linear arithmetic and

constraints on sets. More generally, we observe that such synthesis is useful as a general-

purpose programming construct.

Our approach is also sharing some of the goals with partial evaluation [Jones et al.(1993)Jones,

Gomard, and Sestoft]. However, we do not need to employ general-purpose partial evaluation

techniques (which typically provide linear speedup), because we have the knowledge of a

particular decision procedure. We use this knowledge to devise a synthesis algorithm that,

given formula F , generates the code corresponding to the invocation of this particular decision

procedure. This synthesis process checks the uniqueness and the existence of the solutions,

emitting appropriate warnings. Moreover, the synthesized code can have reduced complexity

compared to invoking the decision procedure at run time, especially when the number of

variables to synthesize is bounded.

134

8 Interactive Synthesis of Code Snippets

In this chapter we describe a synthesis tool called InSynth that applies theorem proving tech-

nology to synthesize code fragments. InSynth interactively displays a ranked list of suggested

code fragments that are appropriate for the current program point (see Figure 8.1). To deter-

mine candidate code fragments, our tool takes into account polymorphic type constraints

coming from the library functions, as well as test cases. In our experiments, InSynth was useful

for synthesizing code fragments for common programming tasks.

8.1 Motivation

Algorithmic software synthesis from specifications is a difficult problem. Yet software develop-

ers perform a form of synthesis on a daily basis, by transforming their intentions into concrete

programming language expressions. The goal of our tool, InSynth, is to explore the relationship

and synergy between algorithmic synthesis and developers’ activities by deploying synthesis

for code fragments in interactive settings. To make the problem more tractable, InSynth aims

to synthesize small fragments, as opposed to entire algorithms. InSynth builds code fragments

containing functions drawn from large and complex libraries. The goal of InSynth to save the

developers the effort of searching for appropriate methods and their compositions. InSynth is

deployed within an integrated development environment. When invoked, it suggests multiple

meaningful expressions at a given program point, using type information and test cases.

InSynth primarily relies on type information to perform its synthesis task. When the developer

needs a piece of code that computes a value of a given type, they declare the type of this

value, using the usual syntax of the Scala programming language [Odersky et al.(2008)Odersky,

Spoon, and Venners]. They then invoke InSynth to find suggested code fragments of this

type. It uses Ensime [Cannon(2011)], an incremental Scala compiler integrated into the

editor, to gather the available values, fields, and functions. The use of type information

is inspired by Prospector [Mandelin et al.(2005)Mandelin, Xu, Bodík, and Kimelman], but

InSynth has an important additional dimension: it handles generic (parametric) types [Damas

and Milner(1982)]. Generic types are a mainstream mechanism to write safe and reusable

135

Chapter 8. Interactive Synthesis of Code Snippets

Figure 8.1: InSynth displays suitable code fragments

code in, e.g., Java, ML, and Scala. They are particularly frequent in libraries.

The support for generic types is a fundamental generalization compared to previous tools,

which handled only ground types. With generic types, a finite set of declarations will generate

an infinite set of possible values, and the synthesis of a value of a given type becomes unde-

cidable. InSynth therefore encodes the synthesis problem in first-order logic. This encoding

has the property that a value of the desired type can be built from functions of given types iff

there exists a proof for the corresponding theorem in first-order logic. It is therefore related to

known connections between proof theory and type theory. In type-theoretic terms, InSynth

attempts to check whether there exists a term of a given type in a given polymorphic type

environment. This is known as the type inhabitation problem. If such terms exist, the goal of

InSynth is to produce a finite subset of them, ranked according to some criterion.

InSynth implements a prover, which finds multiple proofs representing candidate code frag-

ments. Our implementation was inspired by first-order resolution. The use of resolution is

related to the traditional deductive program synthesis [Manna and Waldinger(1980)], but our

approach attempts to derive code fragments by using type information instead of the code

136

8.2. Examples

itself. As a post-processing step, InSynth filters out the candidate code fragments that crash

the program, or that violate assertions or postconditions. This functionality incorporates

input/output behavior [Jha et al.(2010)Jha, Gulwani, Seshia, and Tiwari], but uses it mostly to

improve the precision of the primary mechanism, the type-driven synthesis.

In the software development process an accurate specification is often not available. A syn-

thesis tool should thus be equipped to deal with under-specified problems, and be prepared

to generate multiple alternative solutions when asked to do so. Our algorithm fulfills this

requirement: it generates multiple solutions and ranks them using a system of weights. The

current weight computation takes into account the proximity of values to the point in which

the values are used, as well as user-specified hints, if any. A database of code samples is

additionally used to derive weights, providing effects similar to some of the previous sys-

tems [Sahavechaphan and Claypool(2006), Mandelin et al.(2005)Mandelin, Xu, Bodík, and

Kimelman]. Given a weight function, InSynth directs its search using a technique related to

ordered resolution [Bachmair and Ganzinger(2001a)].

8.2 Examples

Consider the problem of retrieving data stored in a file. Suppose that we have the following

definitions:

def fopen(name:String): File = { ... }
def fread (f : File, p: Int): Data = { ... }
var currentPos : Int = 0
var fname : String = ""
def getData():Data =

The developer is about to define, at the position marked by , the body of the function getData

that computes a value of type Data. When the developer invokes InSynth, the result is a list

of valid expressions (snippets) for the given program point, composed from the values in the

scope. Assuming that among the definitions we have functions fopen and fread, with the types

shown above, InSynth will return as one of the suggestions fread(fopen(fname),currentPos),

which is a simple way to retrieve data from the file given the available operations. In our

experience, InSynth often returns snippets in a matter of milliseconds. Such snippets may

be difficult to find manually for complex and unknown APIs, so InSynth can also be seen as a

sophisticated extension of a search and code completion functionality.

Parametric polymorphism. We next illustrate the support of parametric polymorphism in

InSynth. Consider the standard higher-order function map that applies a given function to

each element of the list. Assume that the map function is in the scope. Further assume that we

wish to define a method that takes as arguments a function from integers to strings and a list

of strings, and returns a list of strings.

def map[A,B](fun:A ⇒ B, array:Array[A]):Array[B] = { ... }
def createStringArray (name:String): Array[String] = { ... }
def createIntArray (fun: String ⇒ Int, name:String):Array[Int] =

137

Chapter 8. Interactive Synthesis of Code Snippets

As seen in Figure 8.2, InSynth returns map[String, Int](fun,createStringArray(name)) as a result,

instantiating polymorphic definition of map and composing it with createStringArray. InSynth

efficiently handles polymorphic types through resolution and unification.

Figure 8.2: Polymorphic behavior of InSynth

Using code behavior. The next example shows how InSynth applies testing to discard

those snippets that would make code inconsistent. Define the class FileManager containing

methods for opening files either for reading or for writing.

class Mode(mode:String)
class File (name:String, val state :Mode)
object FileManager {
private �nal val WRITE:Mode = new Mode("write")
private �nal val READ:Mode = new Mode("read")
def openForReading(name:String):File =
ensuring { result => result.state == READ}

}
object Tests { FileManager.openForReading("book.txt") }

If it were based only on types, InSynth would return both snippets new File(name,WRITE) and

new File(name,READ). However, InSynth also checks run-time method contracts (pre- and

138

8.3. From Scala to Types

post-conditions) and verifies whether each of the returned snippets passes the test cases with

them. Because of postconditions requiring that the file is open for reading, InSynth discards

the snippet new File(name,WRITE) and returns only new File(name,READ).

Applying user preferences. The last example demonstrates one way in which a developer can

influence the ranking of the returned solutions. We consider the following functionality for

managing calendar events.

private val events: List [Event] = List. empty[Event]
def reserve (user : User, date: Date):Event = { ... }
def getEvent(user: User, date: Date):Event = { ... }
def remove(user:User, date: Date):Event =

Assume that a user wishes to obtain a code snippet for remove. In general, InSynth ranks

the results based on the weight function. We have found that the default computation of

the weight is often adequate. Running the above example returns reserve(user,date) and

getEvent(user,date), in this order. If this order is not the preferred one, the developer can

modify it using elements of text search. To do so, the developer supplies a list of suggested

strings indicating the names of some of the methods expected to appear in the code snippet.

For example, if the developer invokes InSynth with “getEvent” as a suggestion, the ranking of

returned snippets changes, and getEvent(user,date) appears first in the list.

8.3 From Scala to Types

For the main question of finding a code snippet for the given type, the corresponding problem

in type theory is the type inhabitation problem. In this section we review basic definitions and

facts and establish a connection between the type inhabitation problem and the problem of

finding code snippets.

Let T be set of types and let E be a set of expressions. A type environment Γ is a finite set

{e1 : τ1, . . . ,en : τn}, containing pairs of the form ei : τi , where xi is an expression and τi is a

type. The pair ei : τi is called a type binding.

An expression Γ` e : τ denotes that from an environment Γwe can derive a type binding e : τ

by applying rules of some calculus. The type inhabitation problem for the given calculus is

stated as: given a type τ and a type environment Γ, does there exist an expression e such that

Γ` e : τ.

The first step is to construct the type environment from a Scala program. For every type

declaration that appears in the given program, we create a type binding and add it to the

context. The bindings is constructed in the following way:

1. Primitive types such as Int, Bool, String are represented with the constants of the

same name:

139

Chapter 8. Interactive Synthesis of Code Snippets

val x : Int ; x : Int

2. To encode complex types, such as Map[Int, String], lists, sets and similar, we use the

same formalism as for the primitive types:

val x : List[String] ; x : List(String)

val x : Map[Int, String] ; x : Map(Int,String)

3. To capture type constraints on functions and methods, we use the Hindley-Milner type

description [Damas and Milner(1982)] and the → notation. Function f that returns a

value of type R and takes n arguments as an input, with i -th argument being of type Ti ,

is declared as f : T1 → . . . → Tn → R:

def f : (a : Int, b: String): Bool ; f : Int → String → Bool

Additionally, for the instance methods we add the receiver type. In a standard imple-

mentation, to an instance method is passed a hidden reference to the object where it

belongs to. We model this by adding an arrow from the receiver type to the method. This

will also help us in term reconstruction. Consider the following instance method m:

class C {
def m (a:T1, b:T2): R

}

It is encoded as m : C → T1 → T2 → R.

4. In Scala it is possible to pass a function as a method’s argument. For example,

def m(f: String => Int, a: String): Int = f(a) + 2

is a higher order function that takes function f as an argument. Both f and m are

encoded using the → symbol:

m : (String → Int) → String → Int

f : String → Int

5. InSynth supports polymorphic functions as well. This is done using universal quantifiers.

Consider as an illustration a generic method that takes a value of any type and creates a

list:

def elem2list [A] (x: A): List [A] = {List(x)}

The type binding derived from this method is

elem2list : ∀α.α→ List(α)

By adding quantifiers we are above the expressivity of the ground types and the proposi-

tional logic.

6. Finally, to encode the query, which is to answer whether there is a value of a type τ, we

add the following type binding:

140

8.4. Type Inhabitation in the Ground Applicative Calculus

goal : τ→⊥
Both symbols goal and ⊥ have the special meaning and they cannot be used for any

other encoding. We solve the type inhabitation problem by find an inhabitant of type ⊥.

Once there is an inhabitant of type ⊥, we should be able easily to derive an inhabitant of

type τ.

8.4 Type Inhabitation in the Ground Applicative Calculus

Before going to the general framework that includes polymorphic types, we frist describe

reasoning about the ground types.

Definition 8.1 (Ground Types) Let C be a fixed finite set. For every c ∈C , with c/n we denote

the arity of the element. The elements of arity 0 are called constants. The set of all ground types

Tg is defined by the grammar:

Tg ::=C (Tg , . . . ,Tg) | Tg → Tg

To establish a connection between Tg and the Scala types, one could consider the set C as a

set containing the Scala primitive types (such as Int or String) and type constructors (such

as List/1, Map/2).

Let S be a set containing function symbols. The set of all ground terms Eg is formed inductively

from S as follows: all constants of S are ground terms. If t1, . . . , tn are ground terms and f /n ∈ S,

then f (t1, . . . , tn) is a ground term.

Figure 8.3 lists the rules of a calculus for the ground types. We call this calculus the ground

applicative calculus. It supports the application of a function to a term, and the function

composition. Those two rules have a natural interpretation in a programming language.

Through the application we construct a snippet, where a method is applied on its argument,

while the composition represents a combination of several methods.

AXIOM
x : τ ∈ Γ
Γ` x : τ

APP
Γ` f : τ1 → τ2 Γ` x : τ1

Γ` f (x) : τ2

COMPOSE
Γ` f1 : τ0 → τ1 . . . Γ` fn : τn−1 → τn

Γ` fn ◦ . . .◦ f1 : τ0 → τn

Figure 8.3: Calculus for the Ground Types

141

Chapter 8. Interactive Synthesis of Code Snippets

8.4.1 Type Inhabitation in the Ground Applicative Calculus

The problem of a type inhabitation is widely studied for various calculi. However, very often

this problem is undecidable. The ground applicative calculus can be seen as a sub-calculus

of the simply typed lambda calculus, which additionally contains the lambda abstraction.

In the simply typed lambda calculus the type inhabitation problem is decidable, but very

hard. By reduction to the canonical quantified Boolean formula (QBF) problem, it was shown

in [Statman(1979)] that the problem is PSPACE-complete. In this section we show that if the

lambda abstraction is disabled, the type inhabitation problem can be solved much faster.

Theorem 8.2 The type inhabitation problem in the ground applicative calculus can be solved

in polynomial time.

Proof. Let Γ be a type environment Γ= {e1 : τ1, . . . ,en : τn}, with ei ∈ Eg and τi ∈ Tg . Let τ0 be

a type for which we ask if there is an expression e0 such that Γ` e0 : τ0. We encode the query

as the type binding goal : τ0 →⊥, where ⊥ is a designated symbol, previously unused. The

goal of an algorithm is to derive a type binding e : ⊥. The expression e can only be of the form

goal(x) and the term x has the desired type τ0.

Let TParts(Γ) denote the set of all types appearing in Γ, together with τ0. In addition, if

the type is not a constant, then TParts(Γ) also contains all its components: if f (t1, . . . , tn) ∈
TParts(Γ), then also t1, . . . , tn ∈TParts(Γ). The cardinality of the set TParts(Γ) is clearly finite

and polynomial in the size of Γ.

We consider a sequence of type bindings that starts with an enumeration of Γ and continues

with the application of inference rules until reaching type judgment of the form e0 : τ0. We

show that there is a term e0 such that that Γ` e0 : τ0, then it can be derived in polynomial time.

For this purpose we can assume that each step produces a term that is non-redundant, that is,

it is subsequently used in the derivation (otherwise we could eliminate it).

We first assume that there is no COMPOSE rule, so we only apply the APP rule. In that case each

derived term has a type from TParts(Γ). The set of derived types does not change if we always

adopt the following principle: never use in premises elements t : τ of a sequence if there is a

term t ′ : τ with the same type appearing earlier in the sequence. If we adopt this policy, the

number of newly introduced elements is bounded by |TParts(Γ)|2. Therefore, the process

terminates. The resulting sequence also gives a representation of the (possibly infinite) set of

terms that have given type. The infinite sets of solutions appear precisely from derivations that

use a term of some type to derive a new term of the same type. However, the policy described

ensures that such loops are detected and not followed.

We next assume that we can also use the composition rule. This problem does not reduce the

to the case of application because viewing ◦ as a higher-order function would require assigning

it a polymorphic type. Nonetheless, we show that we also obtain a polynomial bound.

142

8.5. Quantitative Applicative Ground Inhabitation

First we observe that, if the COMPOSE rule is used to obtain a term of the form (f1 ◦ . . .◦ fn)(x)

then it was not not necessary for producing a new type: we could have instead directly used

APP alone to construct f1(. . . fn(x) . . .). We next use the fact that the COMPOSE rule already

accounts for any number of function symbols and that the composition is associative and

producing the same type for different composition orders, to conclude that it is not necessary

to use the result of a compose rule multiple times in a sequence. From those observations we

conclude that COMPOSE always produces either an argument of APP or the required type τ0. In

the second case, by using the APP rule, we derive an inhabitant of the ⊥ type, i.e. that COMPOSE

again produced an argument of APP.

We can therefore replace COMPOSE rule with the following APPCOMPOSE rule, in a process

similar to completion in term rewriting. This results in the following system, which again has

the crucial property that its result is always an element of TParts(Γ):

APP
Γ` f : τ1 → τ2 Γ` x : τ1

Γ` f (x) : τ2

APPCOMPOSE
Γ` c : (τ→ τn) →σ Γ` f1 : τ→ τ1 . . . Γ` fn : τn−1 → τn

Γ` c(fn ◦ . . .◦ f1) :σ

Therefore, application of such rules also finishes in at most |TParts(Γ)|2 steps. This com-

pletes the proof that type inhabitation problem where we restrict terms to be obtained from

application and function composition is polynomial.

8.5 Quantitative Applicative Ground Inhabitation

There might be many terms belonging to a given type, and the question of finding the best

term naturally arises. We address this problem by assigning a weight to every expression.

Similar to resolution-based theorem proving, a lower weight indicates the higher relevance of

the term.

The ranking of the snippets and the entire algorithm strongly rely on a system of weights. The

system considers snippets of a smaller weight as preferable to those of a larger weight. The

weights of terms extend to the weights of clauses, as in the multiset ordering of clauses in

first-order resolution [Bachmair and Ganzinger(2001a)].

To begin with, we define an ordering on the symbols and assign a weight to each symbol. The

user-preferred symbols have the smallest weight (highest preference). They are followed by the

local symbols occurring in the current method. The remaining symbols of the corresponding

class have a larger weight than the local symbols. Finally, the symbols outside the current class

have the largest weight. This includes symbols from the imported libraries and APIs.

Once the ordering and the weights of the symbols are fixed, we compute the weights of types

143

Chapter 8. Interactive Synthesis of Code Snippets

and expressions. The weight of a type or of an expression is computed as the sum of the

weights of all the symbols occurring in the type or in the expression.

8.5.1 Finding the Best Type Inhabitant

In this section we further extend the type inhabitation problem with the additional require-

ment to find an expression of the minimal weight.

Theorem 8.3 Let w be a weight function defined on the type and expression symbols. We extend

w to type bindings as described above. For a type environment Γ and a type τ0 in the ground

applicative calculus it is possible to find in polynomial time an expression e of the type τ0, such

that the weight of e is smaller than the weight of all other expressions of the type τ0.

Proof. The proof extends the proof of Theorem 8.2. It builds a sequence of type bindings

that can be derived from Γ. To every element τ of TParts(Γ) we assign a pair (n, t) where

n is the minimum weight of all terms of type τ, which are currently in the sequence, and

t is an expression such that w(t) = n. Initially, to all the elements of TParts(Γ) we assign

(∞,−). As before, we construct a sequence of type bindings. With every type binding e : τ

added to the sequence, we recalculate the annotation of τ. If its current minimum weight

is strictly greater than w(e : τ), then the new annotation becomes (w(e),e). In the sequence

we also replace every occurrence of the expression e ′ of the type τ by e. We can do such a

replacement safely, since e ′ does not appear in the derivation of e (otherwise it would not

hold w(e ′) > w(e)). We continue with the enumeration of the derived type bindings as in the

proof of Theorem 8.2, using the same restrictive principle about the type bindings that can

participate in the derivations. Applying the same arguments we prove that it is possible to find

a term of the minimum weight in polynomial time.

8.6 Quantitative Inhabitation for Generics

This section presents our algorithm for type inhabitation in the presence of generic (paramet-

ric) types as in the Hindley-Milner type system, without nested type quantifiers. We represent

type variables implicitly, as in resolution proof systems for first-order logic.

Definition 8.4 (Generic Types) Let C be a fixed finite set. For every c ∈C , with c/n we denote

the arity of the element. Let V be a set of type variables. The set of all generic types T is defined

by the grammar:

Tb ::=V |C (Tb , . . . ,Tb) | Tb → Tb

T ::= Tb | ∀V.T

144

8.6. Quantitative Inhabitation for Generics

APP
Γ` f : τ1 → τ2 Γ` x : τ′1

Γ` f (x) : τ′2

σ=mgu(τ1,τ′1)
τ′2 =σ(τ2)

COMPOSE
Γ` f : τ1 → τ2 Γ` g : τ0 → τ′1

Γ` (f ◦ g) : τ′0 → τ′2

σ=mgu(τ1,τ′1)
τ′0 =σ(τ0)
τ′2 =σ(τ2)

Figure 8.4: Rules for Generic Types used by Our Algorithm

Those types are also known under the names ML-style types or Hindley-Milner types. Fig-

ure 8.4 shows the rules for application, as well as the rule for composition (which we introduce

to improve performance).

Before we execute an algorithm for type inhabitation, we add a complete set of combinators

belongs to the initial environment, with their polymorphic types. We denote this set by ΓComb.

For example, we can use

{K:α→β→α,S:(α→β→ γ) → (α→β) →α→ γ}

This make the application rule complete for the purpose of finding a term of a given type,

thanks to the translation from lambda calculus to combinatory logic. We therefore omit the

lambda abstraction rule. This approach is also used in [Rehof and Urzyczyn(2011)], but for a

non-generic type system with intersection types.

Description of the algorithm. Figure 8.5 shows the algorithm that systematically applies

rules in Figure 8.4, while avoiding cycles due to repeated types whose terms have non-minimal

weights.

The algorithm maintains two sets of bindings (pairs of expressions and their types): Γ, which

holds all initial and derived bindings, and q, which is a work list containing the bindings

that still need to be processed. Initially, Γ contains program declarations, as well as the

combinators and the goal encoded as (G:τG →⊥ f r esh) where τG is the type for which the user

wishes to generate expressions. The work list initially contains all these declarations as well.

The algorithm accumulates the expressions of the desired type in the set res. The main loop of

the algorithm runs until the timeout is reached or the work list q becomes empty.

The body of the main loop of the algorithm selects a minimal (given by best(_)) binding (e1:τ1)

from the work list q and attempts to combine it with all other bindings in Γ for which the types

τ1 and τ2 can be unified to participate in one of the inference rules (we denote this condition

using the cmpt(τ1,τ2) relation). Note, however, that there is no point to combine (e1:τ1) with a

(e2:τ2) if there is another (e ′2:τ2), with the same τ2 but with a strictly smaller w(e ′2). Therefore,

145

Chapter 8. Interactive Synthesis of Code Snippets

INPUT: Γ0 - environment at program point
INPUT: τG - desired type
OUTPUT: res - set of resulting expressions e with Γ0 ` e:τG

Definitions:
w(e:τ) := w(e)+w(τ)
bestT(τ,Γ) := {(e:τ) ∈ Γ | (∀(e ′:τ) ∈ Γ. w(e) ≤ w(e ′))}
bestT(e ′:τ′,Γ) := bestT(τ′,Γ)
w(bestT(b,Γ)) = w(b), if ∃b ∈ bestT(b,Γ), +∞ otherwise
best(q) := {b ∈ q | ∀b′ ∈ Γ. w(b) ≤ w(b′)}
cmpt(τ1,τ2) := an mgu in APP or COMPOSE of Figure 8.4 exists

Code:
Γ= Γ0 ∪ΓComb∪ {(G:τG →⊥ f r esh)}
q= Γ
res=;
while ¬timeout∧q 6= ; do

let (e1:τ1) ∈ best(q)
q= q \ {(e1:τ1)}
for all (e2:τ2) ∈ {(e2:τ2) ∈ bestT(τ2,Γ) | cmpt(τ1,τ2)} do

derived=App(e1:τ1,e2:τ2)∪Comp(e1:τ1,e2:τ2)

res= {e ′ | (e : ⊥ f r esh) ∈ derived,e[G := I]
I(t)→t
;∗ e ′}

q= q∪ {b ∈ derived | w(b) < w(bestT(b,Γ))}
Γ= Γ∪derived

end for
end while

Figure 8.5: The Search Algorithm for Quantiative Inhabitation for Generic Types

the algorithm restricts the choice of (e2:τ2) to those where w(e2) is minimal for a given τ2. We

formalize this using the function bestT(τ2,Γ) that finds a set of such bindings with minimal

e2. We also extend the function to accept a candidate e ′2 (which is ignored in looking up the

minimal e2). Moreover, we define w(bestT(τ2,Γ)) to denote the value of this minimum (if it

exists).

The sets App(e1:τ1,e2:τ2) and Comp(e1:τ1,e2:τ2) are results of applying the rules from Fig-

ure 8.4. If no rule can be applied the result is the empty set. We use derived to denote the set

of results of applying the inference rules to selected bindings. These results may need to be

processed further and therefore the algorithm may need to insert them into q. However, it

avoids inserting them if the derived binding has a type that already exists in Γ and the newly

derived expression does not have a strictly smaller weight. This reduces the amount of search

that the algorithm needs to perform.

Because of the declaration (G:τG →⊥ f r esh), the algorithm detects expressions of type τG using

the expressions e of fresh type ⊥ f r esh . To obtain the expression of the desired type, we replace

in e every occurrence of G with the identity combinator I. This is justified because ⊥ f r esh is a

146

8.7. Subtyping using Coercions

fresh constant, so replacing it with τG in a derivation of Γ∪ {(G:τG →⊥ f r esh)}(e:⊥ f r esh) yields

a derivation of Γ∪ {(G:τG → τG)} ` (e:τG), in which we can use I instead of G. The algorithm

also simplifies the accumulated expressions by reducing I where possible. In the presence of

higher-order functions I may still remain in the expressions, which is not a problem because it

is deducible from any complete set of combinators.

Finally, under the assumption that a linear weight function is given, and the weight of each

expression symbol is strictly positive, it is straightforward to see that the algorithm finds the

derivations for all types that can be obtained using the rules from Figure 8.4. Indeed, the

weight of an expression strictly increases during the derivation, so an algorithm, if it runs long

enough, reaches arbitrarily long value as the minimum of the work list. This shows that the

algorithm is complete.

8.7 Subtyping using Coercions

A powerful method to model subtyping is to use coercion functions [Luo(2008),Reynolds(1980),

Breazu-Tannen et al.(1991)Breazu-Tannen, Coquand, Gunter, and Scedrov]. This approach

raises non-trivial issues when we perform type checking or type inference, but becomes simple

and natural if the types are given but we search for the terms.

Simple conversions. In the absence of variant constructors and type bounds, we can model

the subtyping relation A <: B by the existence of a coercion expression c:A → B . For example,

if a class A[~T] with type parameters ~T extends or mixes-in another class B [~τ(~T)], we introduce

into the environment a conversion function c:A[~T] → B [~τ(~T)]. Note that the composition of

coercion functions immediately accounts for the transitivity of the subtyping relation.

We demonstrate the use of coercions on the following example:

Example. Consider the following code:

class ArrayList [T] extends AbstractList [T] with List [T]
with RandomAccess with Cloneable with Serializable { ... }

abstract class AbstractList [E] extends AbstractCollection [E]
with List [E] {
...
def iterator () : Iterator [E] = {...}

}

Because ArrayList [T] extends AbstractList [T], and AbstractList [E] extends AbstractCollection [

E], we generate two coercion functions:

c1 : ∀α. ArrayList[α] → AbstractList[α]
c2 : ∀β. AbstractList[β] → AbstractCollection[β]

There is a declared member of AbstractList [E], which is encoded as a type binding:

147

Chapter 8. Interactive Synthesis of Code Snippets

iterator : ∀γ. AbstractList[γ] → Iterator[γ]

Let us assume that there is local variable declaration in main method of the example that yields

the binding

al : ArrayList [String]

Finally, let us assume that the goal in the example is to find an expression of type Iterator [

String]. This results in a type binding

τG : Iterator[String] →⊥ f r esh

Using rules in Figure 8.4, the algorithm in Figure 8.5 unifies the type variables and ground type

of String and derives in Γ the type binding

τG(iterator(c1(al))) : ⊥ f r esh

This produces I(iterator (c1(al))) in the res variable of the algorithm in Figure 8.5. We further

simplify this expression to to iterator (c1(al)). Finally, we erase all conversion functions and

obtain iterator (al), which is displayed to the user as the Scala code al . iterator ().

8.8 InSynth Implementation and Evaluation

Program # Loaded Declarations # Methods in Synthesized Snippets Time [s]

FileReader 6 4 < 0.001
Map 4 4 < 0.001

FileManager 3 3 < 0.001
Calendar 7 3 < 0.001
FileWriter 320 6 0.093

SwingBorder 161 2 0.016
TcpService 89 2 < 0.001

Figure 8.6: Basic algorithm for synthesizing code snippets

InSynth is implemented in Scala and built on top of the Ensime plugin [Cannon(2011)]. It

can therefore directly use program information computed by the Scala compiler, including

abstract syntax trees and the inferred types. Furthermore, it can generate an appropriate

pop-up window with suggested synthesized snippets and allow the user to interactively select

the desired fragment.

Figure 8.6 gives an idea of the performance of the system. We ran all examples on Intel(R)

Core(TM) i7 CPU 2.67 GHz with 4 GB RAM. The running times to find the first solution are

usually bellow two milliseconds. Our experience suggests that the algorithm scales well. As

an illustration, we were able to synthesize a snippet containing six methods in 0.093 seconds

from the set of 320 declarations. Times to encode declarations into FOL formulas range from

148

8.8. InSynth Implementation and Evaluation

0.015 (Calendar) to 0.046 (FileWriter) seconds. If the synthesized snippets need to use more

methods from imported libraries, the synthesis typically takes longer, but is typically fast

enough to be useful.

149

9 Conclusions

In this dissertation we have explored the use of decision procedures for increasing software re-

liability. We particularly focused on decision procedures for the verification of data structures,

for software synthesis, and for proving program termination. In addition, we also presented

a new combination procedure for non-disjoint theories, obtaining a logic in which we can

express and verify complex properties of data structures.

Motivated by applications in verification, we introduced an expressive class of constraints on

multisets. Our constraints support arbitrary multiset operations, as well as the cardinality

operator. We presented a decision procedure for the satisfiability of these constraints, showing

that they efficiently reduce to an extension of quantifier-free Presburger arithmetic. For the

later problem we presented a decision procedure based on a semilinear set representation

of the set of solutions of a Presburger arithmetic formula. We proved that the satisfiability

problem for our constraints is an NP-complete problem.

This thesis further contains two extensions of the logic for reasoning about multisets with

cardinality constraints. First, we extended the logic to one that allows reasoning about sets,

multisets, and fuzzy sets, as well as their cardinality bounds. We developed a decision proce-

dure similar to the original one, which translates a formula into an extension of mixed-integer

linear arithmetic (MLIRA). We proved that the star operator can also be eliminated when

applied to a MLIRA formula. The second extension that we considered, was adding to the

above logic multisets that result from the application of an uninterpreted function to a set. On

top of the previous decision procedure, we built a decision procedure for this extended logic.

We showed that the satisfiability problem for this new extended logic is NEXPTIME complete.

Next, we presented POSSUM , a new logic and decision procedure for reasoning about multi-

set orderings. POSSUM can express constraints over complex well-founded orderings, which

makes it a useful tool for proving termination. The logic subsumes linear integer arithmetic

which has been traditionally used to express ranking functions in automated termination

proofs. We established that the satisfiability problem for POSSUM is NP-complete, provided

the base theory is in NP. Thus, POSSUM has the same complexity as quantifier-free linear

151

Chapter 9. Conclusions

integer arithmetic. Furthermore, our decision procedure is amenable to a practical imple-

mentation. We thus believe that POSSUM provides a valuable tool for extending the scope of

existing termination provers.

As a unifying framework for our individual decision procedures, we developed a combination

procedure for non-disjoint theories, which share set symbols and operators. The combination

is possible if the component theories can be reduced to a common theory, namely to the

logic of sets with cardinality constraints. We have shown that the following theories can

be combined: 1) Boolean Algebra with Presburger Arithmetic (with quantifiers over sets

and integers), 2) weak monadic second-order logic over trees (with monadic second-order

quantifiers), 3) two-variable logic with counting quantifiers (ranging over elements), 4) the

Bernays-Schönfinkel-Ramsey class of first-order logic with equality (with ∃∗∀∗ quantifier

prefix), and 5) the quantifier-free logic of multisets with cardinality constraints.

As for software synthesis, we presented the general idea of turning decision procedures into

synthesis procedures. We have explored in greater detail how to do this transformation for

theories admitting quantifier elimination, in particular linear arithmetic. We have further

transformed a BAPA decision procedure into a synthesis procedure, illustrating, in the process,

how to layer multiple synthesis procedures one top of each other. We have pointed out that

synthesis can be viewed as a powerful programming language extension. Such an extension

can be seamlessly introduced into popular programming languages in the form of a new

programming construct.

Finally, we have presented an algorithm for synthesizing snippets of Scala code. The algo-

rithm is based on automated reasoning and implements an intuitionistic calculus based

on first-order resolution. The synthesized snippets can combine all declared values, fields,

and methods that are in the scope at the current program point, so the problem is closely

related to the problem of type inhabitation for type systems. Our system supports parametric

polymorphism and uses a theorem prover to find proofs that correspond to code snippets.

To conclude, we believe that the decision procedures presented in this thesis have increased

the range of properties of various programming constructs that can be automatically verified.

Additionally, synthesis procedures generate code that is correct by construction, thereby

rendering obsolete any further need to verify this code. As indicated, we have implemented

most of the decision and synthesis procedures presented in this dissertation and explored

their practical potential.

9.1 Future Work

We conclude this dissertation by giving an outline of possible directions for future research.

152

9.1. Future Work

9.1.1 Complete Reasoner for Sets and Multisets

MUNCH is currently implemented as an incomplete tool. We plan to further develop MUNCH

so that it will become a complete reasoner for set and multisets. One way to make it complete

is by applying the Decomposition Theorem for Polyhedra and using the ideas from Chapter 4.

We would compute a semilinear set by relaxing an integer formula with rational constraints.

We should then check for the integer vectors that describe the integer solution set. This

way we would avoid computing Gröbner bases, which are currently used for computation of

semilinear sets. With such an implementation, MUNCH will become the first tool that can

compute a semilinear set. Semilinear sets as non-negative solutions of an arithmetic formula

F have many intriguing applications that we would like to explore. In order to makes this

approach scalable, we plan to investigate how semilinear sets can be optimally represented.

9.1.2 Software Synthesis by Combining Subroutines

The technique of complete functional synthesis described in Chapter 7 generates programs

using only built-in programming language constructs. On the other hand, our tool InSynth

to derive code snippets also takes into account methods and functions that are defined by

APIs or the programmer, in addition to the built-in constructs. We are interested in improving

algorithms for complete functional synthesis, so that they can also make calls to custom-

made functions and procedures. We believe that the experience that we gained by developing

InSynth, will help us to developer a decision procedure that can reason about such subrou-

tines. The most natural way for specifying the behavior of a subroutine is by using pre and

postconditions. Since these specifications are given in a formal logic, we should be able to

reduce reasoning about subroutines to existing decision procedures.

9.1.3 Additional Theories for Complete Synthesis

We plan to extend the range of theories supported by our tool Comfusy. For instance, reasoning

about multisets with cardinality constraints reduces to reasoning in linear integer arithmetic.

A synthesis procedure for multisets will, thus, rely on a synthesis procedure for linear integer

arithmetic. Since we already provided such a synthesis procedure in this thesis, multisets

with cardinalities are an ideal candidate for inclusion into Comfusy. However, unlike sets with

cardinality constraints, multisets with cardinalities do not admit quantifier elimination. We

therefore need to develop new complete synthesis techniques that go beyond the techniques

presented in this thesis.

In general, every decision procedures that outputs a model is amenable to transformation into

a synthesis procedure. However, applying this transformation naively, without investigating

the structure of the models and developing optimizations, can result in code that is too

complex to be of practical use. We therefore plan to develop new algorithms that can give

complexity guarantees for the synthesized code.

153

A Appendix A

To make our results on NP-completeness of logics of multisets more self-contained, this

appendix gives the proof of Theorem 2.19.

Theorem 2.19, denoted Theorem 1 (ii) in [Eisenbrand and Shmonin(2006)]. Let X ⊆ Zd be

a finite set of integer vectors and let b ∈ X ∗. Then there exists a subset X̃ such that b ∈ X̃ ∗ and

|X̃ | ≤ 2d log(4d M), where M = maxx∈X ||x||∞.

For X ⊆ Zd , a set of integer vectors, and a vector b ∈ X ∗, the question is how many vectors

from X are needed to generate b? If those were vectors with the real coefficients, Carathéodory

theorem states that b is generated with at most d vectors [Schrijver(1998)]. However, in the

integer case things are more complicated and the answer to this question was not known until

relatively recently. In [Eisenbrand and Shmonin(2006)], Eisenbrand and Shmonin showed that

in the integer case the number is not only bounded by d but that the size of the vectors in the

set X also influences the bound.

We recall the definition of the norm infinity: for an integer vector x = (x1, . . . , xn), ||x||∞ =
max{|x1|, . . . , |xn |}. In order to avoid possible confusions, for a set of vectors S we define

MS = maxx∈X ||x||∞.

The first step towards a proof of the Theorem 2.19 is Lemma A.1. Given a set of integer vectors

X and a vector b, Lemma A.1 establishes a bound on the size of the set. If the set is bigger than

this bound, there is a smaller subset of X , which also generates b. The proof of the lemma

relies only on the combinatorial arguments.

Lemma A.1 Let X ⊆ Zd be a set of integer vectors and let b ∈ X ∗. If |X | > d log2(2|X |MX +1),

then there exists a proper subset X̃ ⊂ X such that b ∈ X̃ ∗.

Proof. The fact that b ∈ X ∗ means that b =∑
x∈X λx x, λx ≥ 0. Without loss of generality we

consider only those λi that are non-zero. This way we represent b as b =∑
x∈X λx x, λx > 0.

Let S be a subset of X and consider the vector s =∑
x∈S x. Vector s is bounded: ||s||∞ ≤ |X |MX

155

Appendix A. Appendix A

and its coordinates are in the range {−|X |MX , . . . , |X |MX }. This implies that the number

of different vectors which are representable as the sum of vectors of S ⊆ X is bounded by

(2|X |Mx +1)d .

The lemma assumption is that 2|X | > (2|X |Mx +1)d . As 2|X | is the number of the subsets of X ,

there are two different subsets, A and B , such that
∑

x∈A x =∑
x∈B x. If A and B are not disjoint,

we define new sets A′ = A \ (A∪B) and B ′ = B \ (A∪B). Note that
∑

x∈A′ x =∑
x∈B ′ x.

Up to this point, using combinatorial arguments, we showed that there are two disjoint subsets

A,B ⊆ X such that
∑

x∈A x =∑
x∈B x. Having A and B and the assumption b =∑

x∈X λx x, λx > 0,

we define value λ= min{λx | x ∈ A}. We can now rewrite b by using λ.

b = ∑
x∈X

λx x = ∑
x∈X \A

λx x + ∑
x∈A

λx x = ∑
x∈X \A

λx x + ∑
x∈A

(λx −λ)x +λ ∑
x∈A

x

= ∑
x∈X \A

λx x + ∑
x∈A

(λx −λ)x +λ ∑
x∈B

x

We define the new coefficients µx as follows: µx =

λx , x ∈ X \ (A∪B)

λx −λ, x ∈ A

λx +λ, x ∈ B
Note that at least one of µx is zero and all of them are non-negative. We can further rewrite b

as:

b = ∑
x∈X \(A∪B)

λx x + ∑
x∈B

λx x + ∑
x∈A

(λx −λ)x +λ ∑
x∈B

x

= ∑
x∈X \(A∪B)

λx x + ∑
x∈A

(λx −λ)x + ∑
x∈B

(λx +λ) = ∑
x∈X

µx x

This way we managed to show that b is a linear combination of vectors in X where at least

one vector does not appear in that combination. We define set X̃ = {x ∈ X |µx > 0}. Note that

X̃ ⊂ X and b ∈ X̃ ∗ which proves the lemma.

This result was crucial for the proof of Theorem 2.19:

Proof. [Theorem 2.19] Let X̃ be a minimal subset such that b ∈ X̃ ∗ and let us assume that

|X̃ | > 2d log2(4d Mx). In the following Lemma A.2 we show that |X̃ | > 2d log2(4d Mx) implies

|X̃ | > d log2(2|X |Mx +1). We apply previous Lemma A.1 and conclude that there exist X1, a

proper subset of X̃ such that b ∈ X ∗
1 . This contradicts the minimality of X̃ , so we conclude

that |X̃ | ≤ 2d log2(4d Mx).

The last missing peace in the proof is to show that, if

|X | > 2d log2(4d Mx)

then |X | > d log2(2|X |Mx +1). We prove that in the following lemma.

156

Lemma A.2 Let X ⊆ Zd be a set of integer vectors and let Mx = maxx∈X ||x||∞. Suppose that

|X | > 2d log2(4d Mx). Then |X | > d log2(2|X |Mx +1).

Proof. From the fact that |X | > 2d log2(4d Mx) using simple rewriting follows that

Mx < 2|X |/(2d)/(4d)

We multiply the both sides by 2|X | and add 1 afterwards, so we obtain: 2|X |Mx +1 < |X |/(2d)∗
2|X |/(2d) +1. Since 1 ≤ 2|X |/(2d) we obtain:

2|X |Mx +1 ≤ 2|X |/(2d)(|X |/(2d)+1)

We first apply the log2 function to the both side, and then multiply by d . This results in

d log2(2|X |Mx +1) < |X |/2+d log2(|X |/(2d)+1). For every number y ≥ 1, log2(y +1) ≤ y . From

the fact that |X | > 2d log2(4d Mx), we conclude that |X | ≥ 2d , i.e. |X |/(2d) ≥ 1. Combining all

those facts together, we obtain formula:

d log2(2|X |Mx +1) < |X |/2+d ∗|X |/(2d) = |X |

This way we completed the proof of Theorem 2.19.

157

Bibliography

[Anand et al.(2008)Anand, Godefroid, and Tillmann] Saswat Anand, Patrice Godefroid, and

Nikolai Tillmann. Demand-driven compositional symbolic execution. In Tools and

Algorithms for the Construction and Analysis of Systems, 2008.

[Andrews(2002)] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:

To Truth Through Proof. Springer (Kluwer), 2nd edition, 2002. ISBN ISBN 1402007639.

[Asarin et al.(1995)Asarin, Maler, and Pnueli] Eugene Asarin, Oded Maler, and Amir Pnueli.

Symbolic controller synthesis for discrete and timed systems. In Hybrid Systems II, pages

1–20, 1995.

[Baader and Nipkow(1998)] Franz Baader and Tobias Nipkow. Term Rewriting and All That.

Cambridge University Press, 1998.

[Bachmair and Ganzinger(2001a)] Leo Bachmair and Harald Ganzinger. Resolution theorem

proving. In Handbook of Automated Reasoning, pages 19–99. Elsevier, 2001a.

[Bachmair and Ganzinger(2001b)] Leo Bachmair and Harald Ganzinger. Resolution theorem

proving. In Handbook of Automated Reasoning, pages 19–99. MIT Press, 2001b.

[Ball et al.(2001)Ball, Majumdar, Millstein, and Rajamani] Thomas Ball, Rupak Majumdar,

Todd Millstein, and Sriram K. Rajamani. Automatic predicate abstraction of C pro-

grams. In Proc. ACM PLDI, 2001.

[Ball et al.(2002)Ball, Podelski, and Rajamani] Thomas Ball, Andreas Podelski, and Sriram K.

Rajamani. Relative completeness of abstraction refinement for software model checking.

In TACAS’02, volume 2280 of LNCS, page 158, 2002.

[Ball et al.(2004)Ball, Cook, Levin, and Rajamani] Thomas Ball, Byron Cook, Vladimir Levin,

and Sriram K. Rajamani. Slam and static driver verifier: Technology transfer of formal

methods inside microsoft. Technical report, MSR-TR-2004-08, 2004.

[Balser et al.(2000)Balser, Reif, Schellhorn, Stenzel, and Thums] M. Balser, W. Reif, G. Schell-

horn, K. Stenzel, and A. Thums. Formal system development with KIV. In FASE, number

1783 in LNCS, 2000.

159

Bibliography

[Banâtre and Métayer(1993)] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by

multiset transformation. Commun. ACM, 36(1):98–111, 1993. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/151233.151242.

[Banerjee(1988)] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1988. ISBN 0898382890.

[Barnett et al.(2004a)Barnett, DeLine, Fähndrich, Leino, and Schulte] Mike Barnett, Robert

DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte. Verification

of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56,

2004a.

[Barnett et al.(2004b)Barnett, Leino, and Schulte] Mike Barnett, K. Rustan M. Leino, and Wol-

fram Schulte. The Spec# programming system: An overview. In CASSIS: Int. Workshop

on Construction and Analysis of Safe, Secure and Interoperable Smart devices, 2004b.

[Barnett et al.(2005)Barnett, Chang, DeLine, Jacobs, and Leino] Mike Barnett, Bor-Yuh Evan

Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie: A modular reusable

verifier for object-oriented programs. In FMCO, 2005.

[Barrett and Tinelli(2007)] Clark Barrett and Cesare Tinelli. CVC3. In CAV, volume 4590 of

LNCS, 2007.

[Basin and Friedrich(2000)] David Basin and Stefan Friedrich. Combining WS1S and HOL. In

D.M. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems 2, volume 7 of

Studies in Logic and Computation, pages 39–56. Research Studies Press/Wiley, Baldock,

Herts, UK, February 2000.

[Berdine et al.(2006)Berdine, Cook, Distefano, and O’Hearn] Josh Berdine, Byron Cook, Dino

Distefano, and Peter W. O’Hearn. Automatic termination proofs for programs with

shape-shifting heaps. In CAV, pages 386–400, 2006.

[Berdine et al.(2011)Berdine, Cook, and Ishtiaq] Josh Berdine, Byron Cook, and Samin Ishtiaq.

Slayer: Memory safety for systems-level code. In CAV, pages 178–183, 2011.

[Berezin et al.(2003)Berezin, Ganesh, and Dill] Sergey Berezin, Vijay Ganesh, and David L.

Dill. An online proof-producing decision procedure for mixed-integer linear arithmetic.

In TACAS, 2003.

[Beyer et al.(2007)Beyer, Henzinger, Jhala, and Majumdar] Dirk Beyer, Thomas A. Henzinger,

Ranjit Jhala, and Rupak Majumdar. The software model checker blast. STTT, 9(5-6):

505–525, 2007.

[Boigelot et al.(2005)Boigelot, Jodogne, and Wolper] Bernard Boigelot, Sébastien Jodogne,

and Pierre Wolper. An effective decision procedure for linear arithmetic over the inte-

gers and reals. ACM Trans. Comput. Logic, 6(3):614–633, 2005. ISSN 1529-3785. doi:

http://doi.acm.org/10.1145/1071596.1071601.

160

Bibliography

[Börger et al.(1997)Börger, Grädel, and Gurevich] Egon Börger, Erich Grädel, and Yuri Gure-

vich. The Classical Decision Problem. Springer-Verlag, 1997.

[Bouajjani et al.(2011)Bouajjani, Drăgoi, Enea, and Sighireanu] Ahmed Bouajjani, Cezara

Drăgoi, Constantin Enea, and Mihaela Sighireanu. On inter-procedural analysis of

programs with lists and data. In Proceedings of the 32nd ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’11, pages 578–589, 2011.

[Boyer and Moore(1988)] R. S. Boyer and J S. Moore. Integrating decision procedures into

heuristic theorem provers: A case study of linear arithmetic. In Machine Intelligence,

volume 11, pages 83–124. Oxford University Press, 1988.

[Bradley and Manna(2007)] Aaron R. Bradley and Zohar Manna. The Calculus of Computation.

Springer, 2007.

[Breazu-Tannen et al.(1991)Breazu-Tannen, Coquand, Gunter, and Scedrov] Val Breazu-

Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as

implicit coercion. Inf. Comput., 93:172–221, July 1991. ISSN 0890-5401. doi:

10.1016/0890-5401(91)90055-7.

[Bruttomesso et al.(2008)Bruttomesso, Cimatti, Franzén, Griggio, and Sebastiani] Roberto

Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto

Sebastiani. The mathsat 4smt solver. In CAV, pages 299–303, 2008.

[Bruttomesso et al.(2010)Bruttomesso, Pek, Sharygina, and Tsitovich] Roberto Bruttomesso,

Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The opensmt solver. In Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), volume 6015, pages 150–153, Paphos, Cyprus, 2010. Springer, Springer. URL

http://dx.doi.org/10.1007/978-3-642-12002-2_12.

[Bryant(1986)] R. E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[Cannon(2011)] Aemon Cannon. Ensime. https://github.com/aemoncannon/ensime/, 2011.

Last checked August 2011.

[Clarke et al.(2004)Clarke, Kroening, and Lerda] Edmund M. Clarke, Daniel Kroening, and

Flavio Lerda. A tool for checking ansi-c programs. In TACAS, pages 168–176, 2004.

[Colón and Sipma(2001)] Michael Colón and Henny Sipma. Synthesis of linear ranking func-

tions. In TACAS, pages 67–81, 2001.

[Cook et al.(2005)Cook, Podelski, and Rybalchenko] Byron Cook, Andreas Podelski, and An-

drey Rybalchenko. Abstraction refinement for termination. In SAS, pages 87–101, 2005.

[Cook et al.(2006)Cook, Podelski, and Rybalchenko] Byron Cook, Andreas Podelski, and An-

drey Rybalchenko. Terminator: Beyond safety. In CAV, pages 415–418, 2006.

161

http://dx.doi.org/10.1007/978-3-642-12002-2_12
https://github.com/aemoncannon/ensime/

Bibliography

[Cooper(1972)] D. C. Cooper. Theorem proving in arithmetic without multiplication. In

B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7, pages 91–100. Edin-

burgh University Press, 1972.

[Cormen et al.(2001)Cormen, Leiserson, Rivest, and Stein] Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction to Algorithms (Second Edition).

MIT Press and McGraw-Hill, 2001.

[Damas and Milner(1982)] Luis Damas and Robin Milner. Principal type-schemes for func-

tional programs. In POPL, 1982.

[de Moura and Bjørner(2008a)] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient

SMT solver. In TACAS, pages 337–340, 2008a. URL http://dx.doi.org/10.1007/

978-3-540-78800-3_24.

[de Moura and Bjørner(2008b)] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An

efficient smt solver. In TACAS, pages 337–340, 2008b.

[Deng and Sangiorgi(2006)] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typa-

bility. Inf. Comput., 204(7):1045–1082, 2006.

[Dershowitz(1979)] Nachum Dershowitz. Orderings for term-rewriting systems. In Sympo-

sium on Foundations of Computer Science (SFCS), pages 123–131, 1979.

[Dershowitz and Manna(1979)] Nachum Dershowitz and Zohar Manna. Proving termination

with multiset orderings. Commun. ACM, 22(8):465–476, 1979. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/359138.359142.

[Dewar(1979)] Robert K. Dewar. Programming by refinement, as exemplified by the SETL

representation sublanguage. ACM TOPLAS, July 1979.

[Dick et al.(1990)Dick, Kalmus, and Martin] Jeremy Dick, John Kalmus, and Ursula Martin.

Automating the Knuth Bendix Ordering. Acta Inf., 28(2):95–119, 1990.

[Dijkstra(1976)] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., 1976.

[Dutertre and de Moura(2006a)] Bruno Dutertre and Leonardo de Moura. A Fast Linear-

Arithmetic Solver for DPLL(T). In CAV, volume 4144 of LNCS, 2006a.

[Dutertre and de Moura(2006b)] Bruno Dutertre and Leonardo de Moura. Integrating Sim-

plex with DPLL(T). Technical Report SRI-CSL-06-01, SRI International, 2006b.

[Eisenbrand and Shmonin(2008)] Friedrich Eisenbrand and Gennady Shmonin. Parametric

integer programming in fixed dimension. Math. Oper. Res., 33(4):839–850, 2008.

[Eisenbrand and Shmonin(2006)] Friedrich Eisenbrand and Gennady Shmonin.

Carathéodory bounds for integer cones. Operations Research Letters, 34(5):564–

568, September 2006. http://dx.doi.org/10.1016/j.orl.2005.09.008.

162

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1016/j.orl.2005.09.008

Bibliography

[Emir et al.(2007)Emir, Odersky, and Williams] Burak Emir, Martin Odersky, and John

Williams. Matching objects with patterns. In ECOOP, 2007.

[Feferman and Vaught(1959)] S. Feferman and R. L. Vaught. The first order properties of

products of algebraic systems. Fundamenta Mathematicae, 47:57–103, 1959.

[Ferrante and Rackoff(1979)] Jeanne Ferrante and Charles W. Rackoff. The Computational

Complexity of Logical Theories, volume 718 of Lecture Notes in Mathematics. Springer-

Verlag, 1979.

[Filliâtre and Marché(2007)] Jean-Christophe Filliâtre and Claude Marché. The Why/Kraka-

toa/Caduceus platform for deductive program verification. In CAV, pages 173–177, 2007.

URL http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf.

[Flanagan et al.(2002)Flanagan, Leino, Lilibridge, Nelson, Saxe, and Stata] Cormac Flanagan,

K. Rustan M. Leino, Mark Lilibridge, Greg Nelson, James B. Saxe, and Raymie Stata.

Extended Static Checking for Java. In ACM Conf. Programming Language Design and

Implementation (PLDI), 2002.

[Floyd(1967)] Robert W. Floyd. Assigning meanings to programs. In Proc. Amer. Math. Soc.

Symposia in Applied Mathematics, volume 19, pages 19–31, 1967.

[Fontaine(2007)] Pascal Fontaine. Combinations of theories and the bernays-schönfinkel-

ramsey class. In VERIFY, 2007.

[Fontaine(2009)] Pascal Fontaine. Combinations of decidable fragments of first-order logic.

In FroCoS, 2009.

[Ford and Havas(1996)] David Ford and George Havas. A new algorithm and refined bounds

for extended gcd computation. In ANTS, pages 145–150, 1996.

[Gabbay and Ohlbach(1992)] Dov M. Gabbay and Hans Jürgen Ohlbach. Quantifier elimina-

tion in second-order predicate logic. In Bernhard Nebel, Charles Rich, and William

Swartout, editors, Principles of Knowledge Representation and Reasoning (KR92), pages

425–435. Morgan Kaufmann Publishers, Inc., 1992.

[Ge et al.(2007)Ge, Barrett, and Tinelli] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving

quantified verification conditions using satisfiability modulo theories. In CADE, 2007.

[Ghilardi(2005)] Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability.

Journal of Automated Reasoning, 33(3-4):221–249, 2005.

[Giles and Pulleyblank(1979)] F. R. Giles and W. R. Pulleyblank. Total dual integrality and

integer polyhedra. Linear Algebra and its Applications, 25:191 – 196, 1979. ISSN 0024-

3795.

[Ginsburg and Spanier(1964)] S. Ginsburg and E. Spanier. Bounded algol-like languages.

Transactions of the American Mathematical Society, 113(2):333–368, 1964.

163

http://www.lri.fr/~filliatr/ftp/publis/cav07.pdf

Bibliography

[Ginsburg and Spanier(1966)] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas

and languages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[Givan et al.(2002)Givan, McAllester, Witty, and Kozen] Robert Givan, David McAllester, Carl

Witty, and Dexter Kozen. Tarskian set constraints. Inf. Comput., 174(2):105–131, 2002.

ISSN 0890-5401. doi: http://dx.doi.org/10.1006/inco.2001.2973.

[Grädel et al.(1997)Grädel, Otto, and Rosen] Erich Grädel, Martin Otto, and Eric Rosen. Two-

variable logic with counting is decidable. In LICS, 1997. URL http://www-mgi.

informatik.rwth-aachen.de/Publications/pub/graedel/gorc2.ps.

[Green(1969)] Cordell Green. Application of theorem proving to problem solving. In Proc.

Int’l. Joint Conf. Artificial Intelligence, pages 219–239. Morgan Kaufmann, 1969.

[Gvero et al.(2011)Gvero, Kuncak, and Piskac] Tihomir Gvero, Viktor Kuncak, and Ruzica

Piskac. Interactive synthesis of code snippets. In CAV, pages 418–423, 2011.

[Hodges(1993)] Wilfrid Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1993.

[Ihlemann et al.(2008)Ihlemann, Jacobs, and Sofronie-Stokkermans] Carsten Ihlemann,

Swen Jacobs, and Viorica Sofronie-Stokkermans. On local reasoning in verification. In

TACAS, pages 265–281, 2008.

[Jacobs(2009)] Swen Jacobs. Incremental instance generation in local reasoning. In CAV,

pages 368–382, 2009.

[Jaffar and Maher(1994)] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A

survey. J. Log. Program., 19/20:503–581, 1994.

[Jha et al.(2010)Jha, Gulwani, Seshia, and Tiwari] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia,

and Ashish Tiwari. Oracle-guided component-based program synthesis. In ICSE (1),

2010.

[Jobstmann and Bloem(2006)] Barbara Jobstmann and Roderick Bloem. Optimizations for

LTL synthesis. In FMCAD, 2006.

[Jobstmann et al.(2007)Jobstmann, Galler, Weiglhofer, and Bloem] Barbara Jobstmann, Ste-

fan Galler, Martin Weiglhofer, and Roderick Bloem. Anzu: A tool for property synthesis.

In CAV, 2007.

[Jones et al.(1993)Jones, Gomard, and Sestoft] Neil D. Jones, Carsten K. Gomard,

and Peter Sestoft. Partial Evaluation and Automatic Program Generation.

http://www.dina.kvl.dk/ sestoft/pebook/pebook.html, 1993.

[Jones and group of authors(2010)] Simon Peyton Jones and group of authors. Haskell 98

language and libraries: The revised report, November 2010. URL http://haskell.org/

onlinereport.

164

http://www-mgi.informatik.rwth-aachen.de/Publications/pub/graedel/gorc2.ps
http://www-mgi.informatik.rwth-aachen.de/Publications/pub/graedel/gorc2.ps
http://haskell.org/onlinereport
http://haskell.org/onlinereport

Bibliography

[Jovanovic and Barrett(2010)] Dejan Jovanovic and Clark Barrett. Polite theories revisited. In

LPAR (Yogyakarta), pages 402–416, 2010.

[Klaedtke(2003)] Felix Klaedtke. On the automata size for presburger arithmetic. Technical

Report 186, Institute of Computer Science at Freiburg University, 2003.

[Klaedtke and Rueß(2003)] Felix Klaedtke and Harald Rueß. Monadic second-order logics

with cardinalities. In ICALP, volume 2719 of LNCS, 2003.

[Klaedtke and Rueß(2002)] Felix Klaedtke and Harald Rueß. Parikh automata and monadic

second-order logics with linear cardinality constraints. Technical Report 177, Institute

of Computer Science at Freiburg University, 2002.

[Klarlund and Møller(2001)] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual.

BRICS Notes Series NS-01-1, Department of Computer Science, University of Aarhus,

January 2001.

[Klarlund and Schwartzbach(1993)] Nils Klarlund and Michael I. Schwartzbach. Graph types.

In Proc. 20th ACM POPL, Charleston, SC, 1993.

[Köksal et al.(2011)Köksal, Kuncak, and Suter] Ali Köksal, Viktor Kuncak, and Philippe Suter.

Scala to the power of z3: Integrating smt and programming. In Nikolaj Bjørner and

Viorica Sofronie-Stokkermans, editors, Automated Deduction – CADE-23, volume 6803

of Lecture Notes in Computer Science, pages 400–406. Springer Berlin / Heidelberg, 2011.

[Korovin(2009)] Konstantin Korovin. Instantiation-based automated reasoning: From theory

to practice. In CADE, pages 163–166, 2009.

[Korovin and Voronkov(2001)] Konstantin Korovin and Andrei Voronkov. Knuth-bendix con-

straint solving is np-complete. In ICALP, pages 979–992, 2001.

[Kroening and Strichman(2008)] Daniel Kroening and Ofer Strichman. Decision Procedures –

an Algorithmic Point of View. EATCS. Springer, 2008.

[Krstic et al.(2007)Krstic, Goel, Grundy, and Tinelli] Sava Krstic, Amit Goel, Jim Grundy, and

Cesare Tinelli. Combined satisfiability modulo parametric theories. In TACAS, volume

4424 of LNCS, pages 602–617, 2007.

[Kukula and Shiple(2000)] James H. Kukula and Thomas R. Shiple. Building circuits from

relations. In CAV, 2000.

[Kuncak(2007)] Viktor Kuncak. Modular Data Structure Verification. PhD thesis, EECS De-

partment, Massachusetts Institute of Technology, February 2007.

[Kuncak and Rinard(2003)] Viktor Kuncak and Martin Rinard. On the theory of structural

subtyping. Technical Report 879, LCS, Massachusetts Institute of Technology, 2003.

165

Bibliography

[Kuncak and Rinard(2007)] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability

checking for Boolean Algebra with Presburger Arithmetic. In CADE-21, 2007.

[Kuncak and Wies(2009)] Viktor Kuncak and Thomas Wies. On set-driven combination of

logics and verifiers. Technical Report LARA-REPORT-2009-001, EPFL, February 2009.

[Kuncak et al.(2005)Kuncak, Nguyen, and Rinard] Viktor Kuncak, Hai Huu Nguyen, and Mar-

tin Rinard. An algorithm for deciding BAPA: Boolean Algebra with Presburger Arithmetic.

In 20th International Conference on Automated Deduction, CADE-20, Tallinn, Estonia,

July 2005.

[Kuncak et al.(2006)Kuncak, Nguyen, and Rinard] Viktor Kuncak, Hai Huu Nguyen, and Mar-

tin Rinard. Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated

Reasoning, 2006. http://dx.doi.org/10.1007/s10817-006-9042-1.

[Kuncak et al.(2010a)Kuncak, Mayer, Piskac, and Suter] Viktor Kuncak, Mikaël Mayer, Ruzica

Piskac, and Philippe Suter. Comfusy: A tool for complete functional synthesis. In CAV,

pages 430–433, 2010a.

[Kuncak et al.(2010b)Kuncak, Mayer, Piskac, and Suter] Viktor Kuncak, Mikaël Mayer, Ruzica

Piskac, and Philippe Suter. Complete functional synthesis. In PLDI, 2010b.

[Kuncak et al.(2010c)Kuncak, Piskac, and Suter] Viktor Kuncak, Ruzica Piskac, and Philippe

Suter. Ordered sets in the calculus of data structures. In CSL, pages 34–48, 2010c.

[Kuncak et al.(2010d)Kuncak, Piskac, Suter, and Wies] Viktor Kuncak, Ruzica Piskac, Philippe

Suter, and Thomas Wies. Building a calculus of data structures. In Verification, Model

Checking, and Abstract Interpretation (VMCAI), 2010d.

[Lahiri and Seshia(2004)] Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision pro-

cedure. In CAV’04, 2004.

[Lahiri et al.(2009)Lahiri, Qadeer, Galeotti, Voung, and Wies] Shuvendu K. Lahiri, Shaz

Qadeer, Juan P. Galeotti, Jan W. Voung, and Thomas Wies. Intra-module inference. In

CAV, pages 493–508, 2009.

[Lee et al.(2001)Lee, Jones, and Ben-Amram] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-

Amram. The size-change principle for program termination. In POPL, pages 81–92,

2001.

[Lewis(1980)] Harry R. Lewis. Complexity results for classes of quantificational formulas. J.

Comput. Syst. Sci., 21(3):317–353, 1980.

[Lugiez(2005)] D. Lugiez. Multitree automata that count. Theor. Comput. Sci., 333(1-2):225–

263, 2005. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2004.10.023.

166

http://dx.doi.org/10.1007/s10817-006-9042-1

Bibliography

[Lugiez and Zilio(2002)] Denis Lugiez and Silvano Dal Zilio. Multitrees Automata, Presburger’s

Constraints and Tree Logics. Research report 08-2002, LIF, Marseille, France, June 2002.

http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html.

[Luo(2008)] Zhaohui Luo. Coercions in a polymorphic type system. Mathematical Structures

in Computer Science, 18(4):729–751, 2008.

[Mandelin et al.(2005)Mandelin, Xu, Bodík, and Kimelman] David Mandelin, Lin Xu,

Rastislav Bodík, and Doug Kimelman. Jungloid mining: helping to navigate the api

jungle. In PLDI, 2005.

[Manna and Waldinger(1980)] Zohar Manna and Richard Waldinger. A deductive approach to

program synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980. ISSN 0164-0925.

doi: http://doi.acm.org/10.1145/357084.357090.

[Manna and Waldinger(1971)] Zohar Manna and Richard J. Waldinger. Toward automatic

program synthesis. Commun. ACM, 14(3):151–165, 1971.

[Martín-Mateos et al.(2005)Martín-Mateos, Ruiz-Reina, Alonso, and Hidalgo] Francisco-

Jesús Martín-Mateos, José-Luis Ruiz-Reina, José-Antonio Alonso, and María-José

Hidalgo. Proof Pearl: A Formal Proof of Higman’s Lemma in ACL2. In TPHOLs, pages

358–372, 2005.

[Matiyasevich(1970)] Yuri V. Matiyasevich. Enumerable sets are Diophantine. Soviet Math.

Doklady, 11(2):354–357, 1970.

[McLaughlin et al.(2006)McLaughlin, Barrett, and Ge] Sean McLaughlin, Clark Barrett, and

Yeting Ge. Cooperating theorem provers: A case study combining HOL-Light and CVC

Lite. In PDPAR, volume 144(2) of ENTCS, 2006.

[Monniaux(2009)] David P. Monniaux. Automatic modular abstractions for linear constraints.

In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 140–151, 2009.

[Moskal(2009)] Michał Moskal. Satisfiability Modulo Software. PhD thesis, University of

Wrocław, 2009.

[Narendran et al.(1998)Narendran, Rusinowitch, and Verma] Paliath Narendran, Michaël

Rusinowitch, and Rakesh M. Verma. RPO Constraint Solving is in NP. In CSL, pages

385–398, 1998.

[Nelson and Oppen(1979)] Greg Nelson and Derek C. Oppen. Simplification by cooperating

decision procedures. ACM TOPLAS, 1(2):245–257, 1979. ISSN 0164-0925. doi: http:

//doi.acm.org/10.1145/357073.357079.

[Nelson and Oppen(1980)] Greg Nelson and Derek C. Oppen. Fast decision procedures based

on congruence closure. Journal of the ACM (JACM), 27(2):356–364, 1980. ISSN 0004-5411.

doi: http://doi.acm.org/10.1145/322186.322198.

167

Bibliography

[Nguyen et al.(2007)Nguyen, David, Qin, and Chin] Huu Hai Nguyen, Cristina David,

Shengchao Qin, and Wei-Ngan Chin. Automated verification of shape, size and bag

properties via separation logic. In VMCAI, 2007.

[Nieuwenhuis(1993)] Robert Nieuwenhuis. Simple LPO constraint solving methods. Inf.

Process. Lett., 47(2):65–69, 1993. ISSN 0020-0190. doi: http://dx.doi.org/10.1016/

0020-0190(93)90226-Y.

[Nipkow(2008)] Tobias Nipkow. Linear quantifier elimination. In IJCAR, 2008.

[Nipkow et al.(2005)Nipkow, Wenzel, Paulson, and Voelker] Tobias Nipkow, Markus Wenzel,

Lawrence C Paulson, and Norbert Voelker. Multiset theory version 1.30 (Isabelle distri-

bution). http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html, 2005.

[Odersky et al.(2008)Odersky, Spoon, and Venners] Martin Odersky, Lex Spoon, and Bill Ven-

ners. Programming in Scala: a comprehensive step-by-step guide. Artima Press, 2008.

[Owre et al.(1992)Owre, Rushby, and Shankar] S. Owre, J. M. Rushby, and N. Shankar. PVS: A

prototype verification system. In Deepak Kapur, editor, 11th CADE, volume 607 of LNAI,

pages 748–752, jun 1992.

[Pacholski et al.(2000)Pacholski, Szwast, and Tendera] Leszek Pacholski, Wieslaw Szwast,

and Lidia Tendera. Complexity results for first-order two-variable logic with count-

ing. SIAM J. on Computing, 29(4):1083–1117, 2000.

[Papadimitriou(1981)] Christos H. Papadimitriou. On the complexity of integer programming.

J. ACM, 28(4):765–768, 1981. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/322276.

322287.

[Parikh(1966)] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. ISSN

0004-5411. doi: http://doi.acm.org/10.1145/321356.321364.

[Piskac and Kuncak(2008a)] Ruzica Piskac and Viktor Kuncak. Decision procedures for multi-

sets with cardinality constraints. In VMCAI, number 4905 in LNCS, 2008a.

[Piskac and Kuncak(2008b)] Ruzica Piskac and Viktor Kuncak. Fractional collections with

cardinality bounds. In Computer Science Logic (CSL), 2008b.

[Piskac and Kuncak(2008c)] Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars.

In CAV, 2008c.

[Piskac and Kuncak(2010)] Ruzica Piskac and Viktor Kuncak. MUNCH - automated reasoner

for sets and multisets. In IJCAR, number 6173 in LNCS, pages 149–155, 2010.

[Piskac and Wies(2011)] Ruzica Piskac and Thomas Wies. Decision procedures for automat-

ing termination proofs. In VMCAI, pages 371–386, 2011.

168

http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html

Bibliography

[Piterman et al.(2006)Piterman, Pnueli, and Sa’ar] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.

Synthesis of reactive(1) designs. In VMCAI, 2006.

[Pnueli and Rosner(1989)] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In

POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 179–190, New York, NY, USA, 1989. ACM. ISBN 0-89791-

294-2. doi: http://doi.acm.org/10.1145/75277.75293.

[Podelski and Rybalchenko(2004a)] Andreas Podelski and Andrey Rybalchenko. A complete

method for synthesis of linear ranking functions. In VMCAI’04, 2004a.

[Podelski and Rybalchenko(2004b)] Andreas Podelski and Andrey Rybalchenko. Transition

invariants. In LICS’04, 2004b.

[Podelski and Rybalchenko(2007a)] Andreas Podelski and Andrey Rybalchenko. Armc: The

logical choice for software model checking with abstraction refinement. In PADL, pages

245–259, 2007a.

[Podelski and Rybalchenko(2007b)] Andreas Podelski and Andrey Rybalchenko. Transition

predicate abstraction and fair termination. ACM TOPLAS, 29(3):15, 2007b.

[Podelski and Wies(2010)] Andreas Podelski and Thomas Wies. Counterexample-guided fo-

cus. In POPL, pages 249–260, 2010.

[Pottier(1991)] Loïc Pottier. Minimal solutions of linear diophantine systems: Bounds and

algorithms. In RTA, volume 488 of LNCS, 1991.

[Pratt-Hartmann(2005)] Ian Pratt-Hartmann. Complexity of the two-variable fragment with

counting quantifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.

[Pratt-Hartmann(2004)] Ian Pratt-Hartmann. Complexity of the two-variable fragment with

(binary-coded) counting quantifiers. CoRR, cs.LO/0411031, 2004.

[Presburger(1929)] Mojzesz Presburger. Über die vollständigkeit eines gewissen systems der

aritmethik ganzer zahlen, in welchem die addition als einzige operation hervortritt.

In Comptes Rendus du premier Congrès des Mathématiciens des Pays slaves, Warsawa,

pages 92–101, 1929.

[Pugh(1992)] William Pugh. A practical algorithm for exact array dependence analysis. Com-

mun. ACM, 35(8):102–114, 1992. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/

135226.135233.

[Ramsey(1930)] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., s2-30:

264–286, 1930. doi:10.1112/plms/s2-30.1.264.

[Rehof and Urzyczyn(2011)] Jakob Rehof and Pawel Urzyczyn. Finite combinatory logic with

intersection types. In TLCA, pages 169–183, 2011.

169

Bibliography

[Reynolds(2002)] John C. Reynolds. Separation logic: a logic for shared mutable data struc-

tures. In 17th LICS, pages 55–74, 2002.

[Reynolds(1980)] John C. Reynolds. Using category theory to design implicit conversions and

generic operators. In Semantics-Directed Compiler Generation, pages 211–258, 1980.

[Riazanov and Voronkov(2002)] Alexandre Riazanov and Andrei Voronkov. The design and

implementation of vampire. AI Commun., 15(2-3):91–110, 2002.

[Robinson(1965)] J. A. Robinson. A machine-oriented logic based on the resolution principle.

J. ACM, 12, January 1965.

[Sahavechaphan and Claypool(2006)] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet:

mining for sample code. In OOPSLA, 2006. ISBN 1-59593-348-4.

[Schrijver(1998)] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley

& Sons, 1998.

[Schulz(2002)] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,

15(2/3):111–126, 2002.

[Schwartz(1973)] J. T. Schwartz. On programming: An interim report on the SETL project.

Technical report, Courant Institute, New York, 1973.

[Sekar et al.(1995)Sekar, Ramesh, and Ramakrishnan] R.C. Sekar, R. Ramesh, and I.V. Ramakr-

ishnan. Adaptive pattern matching. SIAM Journal on Computing, 24:1207–1234, De-

cember 1995.

[Sharir(1982)] Micha Sharir. Some observations concerning formal differentiation of set

theoretic expressions. Transactions on Programming Languages and Systems, 4(2), April

1982.

[Sofronie-Stokkermans(2005)] Viorica Sofronie-Stokkermans. Hierarchic reasoning in local

theory extensions. In CADE, pages 219–234, 2005.

[Sofronie-Stokkermans and Ihlemann(2007)] Viorica Sofronie-Stokkermans and Carsten Ih-

lemann. Automated reasoning in some local extensions of ordered structures. In ISMVL,

2007.

[Solar-Lezama et al.(2006)Solar-Lezama, Tancau, Bodík, Seshia, and Saraswat] Armando

Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat.

Combinatorial sketching for finite programs. In ASPLOS, 2006.

[Solar-Lezama et al.(2007)Solar-Lezama, Arnold, Tancau, Bodík, Saraswat, and Seshia]

Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodík, Vijay A. Saraswat,

and Sanjit A. Seshia. Sketching stencils. In PLDI, 2007.

170

Bibliography

[Solar-Lezama et al.(2008)Solar-Lezama, Jones, and Bodík] Armando Solar-Lezama, Christo-

pher Grant Jones, and Rastislav Bodík. Sketching concurrent data structures. In PLDI,

2008.

[Srivastava et al.(2010)Srivastava, Gulwani, and Foster] Saurabh Srivastava, Sumit Gulwani,

and Jeff Foster. From program verification to program synthesis. In POPL, 2010.

[Statman(1979)] Richard Statman. Intuitionistic propositional logic is polynomial-space

complete. Theoretical Computer Science, 9(1):67 – 72, 1979.

[Suter et al.(2010)Suter, Dotta, and Kuncak] Philippe Suter, Mirco Dotta, and Viktor Kuncak.

Decision procedures for algebraic data types with abstractions. In 37th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (POPL), 2010.

[Syme et al.(2007)Syme, Granicz, and Cisternino] Don Syme, Adam Granicz, and Antonio Cis-

ternino. Expert F#. Apress, 2007.

[Thatcher and Wright(1968)] J. W. Thatcher and J. B. Wright. Generalized finite automata

theory with an application to a decision problem of second-order logic. Mathematical

Systems Theory, 2(1):57–81, August 1968.

[Tinelli and Ringeissen(2003)] Cesare Tinelli and Christophe Ringeissen. Unions of non-

disjoint theories and combinations of satisfiability procedures. Theoretical Computer

Science, 290(1):291–353, January 2003. URL ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/

TinRin-TCS-03.ps.gz.

[Tinelli and Zarba(2003)] Cesare Tinelli and Calogero Zarba. Combining non-stably infinite

theories. In I. Dahn and L. Vigneron, editors, Proceedings of the 4th International

Workshop on First Order Theorem Proving, FTP’03 (Valencia, Spain), volume 86.1 of

Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2003.

[Tinelli and Zarba(2005)] Cesare Tinelli and Calogero Zarba. Combining nonstably infinite

theories. Journal of Automated Reasoning, 34(3), 2005.

[Turing(1949)] Alan M. Turing. Checking a large routine. In Report on a Conference on

High Speed Automatic Computation, June 1949, pages 67–69. University Mathematical

Laboratory, Cambridge University, 1949.

[Typesafe(2011)] Typesafe. The Scala programing language. http://www.scala-lang.org, 2011.

Last accessed August 2011.

[Vechev et al.(2007)Vechev, Yahav, Bacon, and Rinetzky] Martin T. Vechev, Eran Yahav,

David F. Bacon, and Noam Rinetzky. Cgcexplorer: a semi-automated search procedure

for provably correct concurrent collectors. In PLDI, pages 456–467, 2007. ISBN

978-1-59593-633-2. doi: http://doi.acm.org/10.1145/1250734.1250787.

[Vechev et al.(2009)Vechev, Yahav, and Yorsh] Martin T. Vechev, Eran Yahav, and Greta Yorsh.

Inferring synchronization under limited observability. In TACAS, 2009.

171

ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/TinRin-TCS-03.ps.gz
ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/TinRin-TCS-03.ps.gz
http://www.scala-lang.org

Bibliography

[Venkataraman(1987)] K. N. Venkataraman. Decidability of the purely existential fragment

of the theory of term algebras. Journal of the ACM (JACM), 34(2):492–510, 1987. ISSN

0004-5411. doi: http://doi.acm.org/10.1145/23005.24037.

[Weidenbach et al.(2009)Weidenbach, Dimova, Fietzke, Kumar, Suda, and Wischnewski]

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda,

and Patrick Wischnewski. Spass version 3.5. In Renate Schmidt, editor, Automated

Deduction – CADE-22, volume 5663 of Lecture Notes in Computer Science, pages 140–145.

Springer Berlin / Heidelberg, 2009.

[Weispfenning(1997)] Volker Weispfenning. Complexity and uniformity of elimination in

presburger arithmetic. In Proceedings of the 1997 international symposium on Symbolic

and algebraic computation, pages 48–53. ACM Press, 1997. ISBN 0-89791-875-4. doi:

http://doi.acm.org/10.1145/258726.258746.

[Wies(2009)] Thomas Wies. Symbolic Shape Analysis. PhD thesis, University of Freiburg, 2009.

[Wies et al.(2006)Wies, Kuncak, Lam, Podelski, and Rinard] Thomas Wies, Viktor Kuncak,

Patrick Lam, Andreas Podelski, and Martin Rinard. Field constraint analysis. In Proc.

Int. Conf. Verification, Model Checking, and Abstract Interpratation, 2006.

[Wies et al.(2009)Wies, Piskac, and Kuncak] Thomas Wies, Ruzica Piskac, and Viktor Kuncak.

Combining theories with shared set operations. In FroCoS: Frontiers in Combining

Systems, 2009.

[Yessenov et al.(2010)Yessenov, Piskac, and Kuncak] Kuat Yessenov, Ruzica Piskac, and Viktor

Kuncak. Collections, cardinalities, and relations. In Verification, Model Checking, and

Abstract Interpretation (VMCAI), 2010.

[Zadeh(1965)] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[Zarba(2002a)] Calogero G. Zarba. Combining multisets with integers. In CADE-18, 2002a.

[Zarba(2002b)] Calogero G. Zarba. A tableau calculus for combining non-disjoint theories.

In TABLEAUX ’02: Proc. Int. Conf. Automated Reasoning with Analytic Tableaux and

Related Methods, pages 315–329, 2002b.

[Zarba(2004)] Calogero G. Zarba. A quantifier elimination algorithm for a fragment of set

theory involving the cardinality operator. In 18th International Workshop on Unification,

2004.

[Zarba(2005)] Calogero G. Zarba. Combining sets with cardinals. J. of Automated Reasoning,

34(1), 2005.

[Zee et al.(2008)Zee, Kuncak, and Rinard] Karen Zee, Viktor Kuncak, and Martin Rinard. Full

functional verification of linked data structures. In ACM Conf. Programming Language

Design and Implementation (PLDI), 2008.

172

Bibliography

[Zhang et al.(2005)Zhang, Sipma, and Manna] Ting Zhang, Henny B. Sipma, and Zohar

Manna. The decidability of the first-order theory of knuth-bendix order. In CADE,

pages 131–148, 2005.

173

Curriculum Vitae
Ruzica Piskac

address: EPFL phone: +41 21 69 31221
School of Computer & Communications Sciences fax: +41 21 69 36660
Station 14 email: ruzica.piskac@epfl.ch

CH-1015 Lausanne web: http://icwww.epfl.ch/~piskac/

Switzerland

Research Interests

Formal methods, decision procedures for software verification and code synthesis, automated reasoning, theorem
proving, semantic web

Education

• [09/2007 – 12/2011] Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

– PhD student at EPFL, Laboratory for Automated Reasoning and Analysis (LARA) group.

– thesis title: “Decision Procedures for Program Synthesis and Verification”

– thesis advisor: Viktor Kuncak

• [10/2002 – 08/2006] Max-Planck-Institut für Informatik, Saarbrücken, Germany

– first a master student and afterwards a PhD student at MPII, Programming Logics Group, advisors: Harald
Ganzinger†, Andreas Podelski, Hans de Nivelle

– Master’s thesis: “Formal Correctness of Result Checking for Priority Queues”

– finished Master program with the best grades (1.0/1.0)

• [09/1995 – 12/2000] University of Zagreb, Croatia

– student of mathematics at the University of Zagreb, Croatia, advisor: Robert Manger.

– Diploma thesis: “Parallel Algorithms for Sorting and Merging” (in Croatian).

– Dipl.Ing. degree with Honors, graduated as the first in the class of 81 students

Work Experience

• [June – September 2008] Microsoft Research, Redmond, WA, USA

– summer internship, mentor: Nikolaj Bjørner

• [08/2006 – 08/2007] Digital Enterprise Research Institute (DERI), Innsbruck, Austria

– junior researcher at DERI, Intelligent Reasoning for Integrated Systems (IRIS) cluster

– research topic: developing a reasoner for a language that uniformly supports ontologies and rules.

– working in the following EU- or Austrian-funded projects: SEKT (EU IST IP 2003-506826), RW2 and Knowl-
edge Web FP6-507482

• [12/2000 – 09/2002] University of Zagreb, Croatia

– junior researcher and teaching assistant at the University of Zagreb

– collaboration with CERN: participating in ALICE project (A Large Ion Collider Experiment)

– managing a cluster for scientific computing

• [06/2000 – 09/2000] Tourist Office Dubrovnik, Croatia

– certified tourist guide

Curriculum Vitae of Ruzica Piskac, page 1 of 0

175

Honors and Awards

• The Google Anita Borg Memorial Scholarship 2010 winner

• Grace Hopper Conference attendance full scholarship recipient 2008 and 2007

• [2002 – 2006] IMPRS Fellowship for both Master and Ph.D. studies in Computer Science. Max-Planck Institut für
Informatik, Saarbrücken, Germany

• Won the most prestigious student’s award of Croatia: Chancellor’s Award (“Rektorova nagrada”), 2000. for the
work in the area of decision making theory.

Publications

1. T. Gvero, V. Kuncak, R. Piskac. Interactive Synthesis of Code Snippets. Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV 2011), Springer, LNCS Volume 6806, p. 418-423.

2. R. Piskac, T. Wies. Decision Procedures for Automating Termination Proofs. Proceedings of the 12th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2011), Springer,
LNCS Volume 6538, p. 371-386.

3. V. Kuncak, R. Piskac, P. Suter. Ordered Sets in the Calculus of Data Structures. Proceedings of the 19th
Annual Computer Science Logic (CSL 2010), Springer, LNCS Volume 6247, p. 34-48.

4. R. Piskac, V.Kuncak. MUNCH - Automated Reasoner for Sets and Multisets. Proceedings of the 5th
International Joint Conference on Automated Reasoning (IJCAR 2010), Springer, LNAI 6173, p. 149-155.

5. V. Kuncak, M. Mayer, R. Piskac, P. Suter. Comfusy: A Tool for Complete Functional Synthesis. Proceedings
of the 22nd International Conference on Computer Aided Verification (CAV 2010), Springer, LNCS Volume 6174,
p. 430-433.

6. V. Kuncak, M. Mayer, R. Piskac, P. Suter. Complete Functional Synthesis. Proceedings of the ACM SIGPLAN
2010 Conference on Programming Language Design and Implementation (PLDI), p. 316-329.

7. R. Piskac, L. de Moura, N. Bjørner. Deciding Effectively Propositional Logic Using DPLL and Substitu-
tion Sets , Journal of Automated Reasoning, DOI: 10.1007/s10817-009-9161-6, Volume 44, Number 4, p. 401-424,
April 2010.

8. V. Kuncak, R. Piskac, P. Suter, T. Wies: Building a Calculus of Data Structures. Proceedings of the 11th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2010), Springer,
LNCS Volume 5944, p. 26-44.

9. K. Yessenov, R. Piskac, V. Kuncak. Collections, Cardinalities, and Relations. Proceedings of the 11th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2010), Springer,
LNCS Volume 5944, p. 380-395.

10. T.Hillenbrandt, R.Piskac, U. Waldmann, C. Weidenbach. From Search to Computation: Redundancy Cri-
teria and Simplification at Work. Accepted for Harald Ganzinger Memorial volume. To appear in 2010.

11. T. Wies, R. Piskac, V. Kuncak. Combining Theories with Shared Set Operations. Proceedings of the 7th
International Symposium on Frontiers of Combining Systems (FroCoS 2009), Springer, LNCS Volume 5749, p.
366-382.

12. R. Piskac, L. de Moura, N. Bjørner. Deciding Effectively Propositional Logic with Equality, Technical
Report, MSR-TR-2008-181, December 2008.

13. R. Piskac, V. Kuncak. Fractional Collections with Cardinality Bounds. Proceedings of the 17th Annual
Computer Science Logic (CSL 2008), Springer, LNCS Volume 5213, p. 124-138.

14. R. Piskac, V. Kuncak. Linear Arithmetic with Stars. Proceedings of the 20th International Conference on
Computer Aided Verification (CAV 2008), Springer, LNCS 5123, p. 268-280.

15. R. Piskac, V. Kuncak. Decision Procedures for Multisets with Cardinality Constraints. Proceedings of
he Ninth International Conference on Verification, Model Checking and Abstract Interpretation - VMCAI 2008,
Springer, LNCS Volume 4905, p. 218-232.

16. H. de Nivelle, R. Piskac. Verification of an Off-Line Checker for Priority Queues.Proceedings of the Third
IEEE International Conference on Software Engineering and Formal Methods (SEFM), Koblenz, IEEE computer
society press, Washington, 2005, 210-219.

17. P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J.-E. Revsbech, V. Sego. 2003. AliEn-ALICE environment on
the GRID.Nuclear Instruments and Methods in Physics Research Section A, Volume 502, Issue 2-3, p. 437-440.

18. L. Caklovic, R. Piskac, V. Sego. 2001. Improvement of AHP method. Mathematical Communications -
Supplement No.1 (2001), 13-21.

Curriculum Vitae of Ruzica Piskac, page 2 of 0

176

Proceedings Editor

1. R. Piskac, F. van Harmelen, N. Zhong. Proceedings of the 6th International Semantic Web Conference and the 2nd
Asian Semantic Web Conference Workshop on New forms of reasoning for the Semantic Web: scalable, tolerant
and dynamic, Busan, Korea, November 2007.

2. F. van Harmelen, A. Herzig, P. Hitzler, Z. Lin, R. Piskac, G. Qi. Proceedings of the 5th European Semantic Web
Conference Workshop on Advancing Reasoning on the Web: Scalability and Commonsense (ARea-2008), Tenerife,
Spain, June, 2008.

3. R. Piskac, E. Simperl. Proceedings of the Doctoral Consortium of the 3rd Future Internet Symposium 2010, Berlin,
Germany, September 23-24, 2010.

Professional Activities

• Organizer and PC co-Chair

1. New forms of reasoning for the Semantic Web: scalable, tolerant and dynamic, workshop co-located with
the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, Busan, Korea,
November 2007. Co-organizer with F. van Harmelen and N. Zhong

2. Advancing Reasoning on the Web: Scalability and Commonsense, workshop co-located with the 5th European
Semantic Web Conference, Tenerife, Spain, June 2008. Co-organizer with F. van Harmelen, A. Herzig, P.
Hitzler, Z. Lin and G. Qi

3. Doctoral Consortium of the 3rd Future Internet Symposium 2010, Berlin, Germany, September 2010. Educa-
tion co-Chair together with E. Simperl

• Program Committees

1. The 18th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR-18)
- Program Committee Member

2. STI International Symposium 2010 - Organizing Committee Member

3. The 4th Asian Semantic Web Conference (ASWC 2009) - Program Committee Member

4. The 3rd Asian Semantic Web Conference (ASWC 2008) - Program Committee Member

5. The Second International Workshop on New forms of reasoning for the Semantic Web: scalable, tolerant and
dynamic (NeForS08) - Program Committee Member

• Reviewer for

– Journal of Symbolic Computation, STTT Journal, International Conference on Automated Deduction (CADE
2011), European Symposium on Programming (ESOP2011), Symposium on Principles of Programming Lan-
guages (POPL 2011), International Conference on Computer Aided Verification (CAV 2010, CAV 2011),
Computer Science Symposium in Russia (CSR 2010), Static Analysis Symposium (SAS 2009, SAS 2011),
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2009), Asian Semantic
Web Conference (ASWC 2009, ASWC 2008), Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR-08, LPAR-07), International Joint Conference on Automated Reasoning (IJCAR-08), Work-
shop on Web Semantics (WebS2007), International World Wide Web Conference (WWW2007), Conference
on Information Integration and Web-based Applications & Services (iiWAS2006)

• [September 2008 - present] Managing editor of the CEUR-WS.org proceedings series (http://CEUR-WS.org/)

– over 800 published conference and workshop proceedings

Presentations

• Conference Presentations

– CAV 2011, SMT 2011, POPL 2011 (student session), IJCAR 2010, CSL 2008, CAV 2008, VMCAI 2008

• Invited Talks

– gave talks about research results at the Rich models toolkit meeting, Turin (2011), Workshop on Synthesis,
Verification, and Analysis of Rich Models - SVARM, Saarbrücken (2011), New York University (2011), Caltech
(2011), Microsoft Research Cambridge (2011), Max-Planck Institute for Software Systems (2011), Seminar
on ”Deduction at Scale 2011” at the Ringberg Castle (2011), RiSE Seminar, TU Vienna (2011), Student

Curriculum Vitae of Ruzica Piskac, page 3 of 0

177

Seminar, University of Freiburg (2011), LogicBlox, Atlanta (2011), Alpine Verification Meeting, Lugano (2010),
Dagstuhl seminar 10161 (2010), Université Libre de Bruxelles (2010), Research seminar of the STI International
Symposium (2010), Workshop on Formal and Automated Theorem Proving and Applications, Belgrade (2010),
The IMDEA Software Institute, Madrid (2010), Meeting of the Action IC0701, Eindhoven (2009), Colorado
University, Boulder (2008), Microsoft Research, Redmond (2008), SRI International (2008), Dagstuhl seminar
07401 (2007), University of Zagreb (2007), University of Freiburg (2006), University of Innsbruck (2006),
Deduktionstreffen, Koblenz (2005), Dagstuhl seminar 05431 (2005), Deduktionstreffen, Saarbrücken (2004),
Logic Seminar at Schloss Ringberg (2003)

• Poster Presentations

– presented posters at EPFL Research Day (2010 and 2008), Microsoft Research Summer School, Cambridge
(2010), The Technical Poster Competition of The Grace Hopper Celebration (2008) - one of four posters that
was qualified in the finals, all together more than 100 submissions; “Femmes de Sciences” at EPFL (2008)

Teaching and Supervising Experience

• Teaching

– lecturer at the First International SAT/SMT Solver Summer School 2011, MIT, June 2011.

– Vertiefungsseminar, on the topic of Linked Open Data, University of Innsbruck, Spring 2011 - scientific
organizer 3)

– Seminar on Automated Reasoning, EPFL, Fall 2010 - head teaching assistant 1)

Additional duties included preparing course materials, teaching and student supervision

– Synthesis, Analysis, and Verification, EPFL, Spring 2010, 2009, 2008 - head teaching assistant 1)

(Spring 2008: the course received the highest grade among master courses, student evaluation: 5.4/6.0)

– Vertiefungsseminar, University of Innsbruck, Spring 2010 - scientific organizer 3)

– Compiler Construction, EPFL, Fall 2008/09 - head teaching assistant 1)

– Seminar “Master Seminar”, University of Innsbruck, Fall 2007/08 - scientific organizer 3)

– Seminar “Semantic Systems”, University of Innsbruck, Spring 2007 - scientific organizer 3)

– Seminar “The Role of Computer Science in Science”, University of Innsbruck, Fall 2006/07 - scientific orga-
nizer 3)

– Introduction to Proof Theory, University of Saarbrücken, Fall 2005/06 - head teaching assistant 1)

– Verification, University of Saarbrücken, Fall 2004/05 - head teaching assistant 1)

– Automated Reasoning, University of Saarbrücken, Spring 2004 - teaching assistant 2)

The course was awarded the Teaching Award of the Computer Science Students Association for the summer
semester 2004. Duties included grading and leading weekly exercises

– Explanations:
1) duties of a head teaching assistant include designing and leading weekly exercise sessions, grading
2) duties of a teaching assistant include leading weekly exercise sessions, grading
3) duties of a scientific organizer include topic assignment, student supervision, grading written reports, event
organization

• Supervised Students

– Mikaël Mayer: “Complete Program Synthesis for Linear Arithmetics”, Master Thesis, EPFL, 2010

Language Skills

• Croatian, English, German, Russian

References

• References available upon request

Curriculum Vitae of Ruzica Piskac, page 4 of 0

178

	Acknowledgments
	Preface
	Abstract (English/Deutsch/Français)
	List of figures
	Introduction
	Introduction
	Contributions
	Reasoning about Collections
	Combining Non-disjoint Theories
	Software Synthesis

	Outline of the Dissertation

	Decision Procedures for Multisets with Cardinality Constraints
	Motivation
	Definition and Applications of Multisets
	Introduction to Logic through an Example
	Multiset Constraints
	Reducing Multiset Operations to Sums

	Linear Integer Arithmetic with Stars
	From Multisets to LIA* Constraints

	Deciding Linear Arithmetic with Sum Constraints
	Formula Solutions as Semilinear Sets
	Computing Semilinear Sets and their Bounds
	LIA Formulas Representing LIA* Formulas

	Complexity of Linear Arithmetic with Stars
	Estimating Coefficient Bounds of Disjunctive Form
	Size of the Solution Set Generators
	Selecting Polynomially Many Generators
	Grouping Generators into Solutions
	Multiplication by Bounded Bit Vectors
	Estimating the Solution Size Bounds
	An NP-Algorithm for LIA* Satisfiability

	Complexity of Multiset Constraints
	Undecidability of Quantified Constraints

	Implementation: Automated Reasoner for Sets and Multisets
	Motivation
	MUNCH Implementation
	System Overview
	Efficient Computation of Semilinear Sets

	Examples and Benchmarks

	Decision Procedures for Fractional Collections and Collection Images
	Motivation for Fractional Collections
	Examples
	From Collections to Stars
	Separating Mixed Constraints
	Example

	Eliminating the Star Operator from Formulas
	Satisfiability Checking for Collection Formulas
	Satisfiability Checking for Generalized Multisets Formulas

	Decision Procedures for Collection Images
	Motivating Examples for Collection Images
	Logic of Multiset Images of Functions

	Decision Procedures for Automating Termination Proofs
	Motivation
	Examples
	Decision Procedure through an Example
	Basic Definitions
	POSSUM : Multiset Constraints over Preordered Sets
	Finite Multisets over Preordered Sets
	Syntax and Semantics of POSSUM Formulas

	Decidability of POSSUM
	Complexity of POSSUM
	Further Related Work

	Combining Theories with Shared Set Operations
	Motivation
	Example: Verifying a Code Fragment
	Boolean Algebra with Presburger Arithmetic

	Combination by Reduction to BAPA
	BAPA Reductions
	Monadic Second-Order Logic of Finite Trees
	BAPA Reduction for Monadic Second-Order Logic of Finite Trees
	Two-Variable Logic with Counting
	BAPA Reduction for Two-Variable Logic with Counting
	Bernays-Schönfinkel-Ramsey Fragment of First-Order Logic
	BAPA Reduction for Bernays-Schönfinkel-Ramsey Fragment
	Quantifier-free Mutlisets with Cardinality Constraints
	BAPA Reduction for Quantifier-free Multiset Constraints

	Further Related Work
	Conclusions

	Complete Functional Synthesis
	Motivation
	Example
	From Decision to Synthesis Procedures
	Selected Generic Techniques
	Synthesis for Multiple Variables
	One-Point Rule Synthesis
	Output-Independent Preconditions
	Propositional Connectives in First-Order Theories
	Synthesis for Propositional Logic

	Synthesis for Linear Rational Arithmetic
	Solving Conjunctions of Literals
	Disjunctions for Linear Rational Arithmetic

	Synthesis for Linear Integer Arithmetic
	Solving Equality Constraints for Synthesis
	Solving Inequality Constraints for Synthesis
	Disjunctions in Presburger Arithmetic
	Optimizations used in the Implementation

	Synthesis Algorithm for Parametrized Presburger Arithmetic
	Synthesis for Sets with Size Constraints
	Implementation and Experience
	Further Related Work

	Interactive Synthesis of Code Snippets
	Motivation
	Examples
	From Scala to Types
	Type Inhabitation in the Ground Applicative Calculus
	Type Inhabitation in the Ground Applicative Calculus

	Quantitative Applicative Ground Inhabitation
	Finding the Best Type Inhabitant

	Quantitative Inhabitation for Generics
	Subtyping using Coercions
	InSynth Implementation and Evaluation

	Conclusions
	Future Work
	Complete Reasoner for Sets and Multisets
	Software Synthesis by Combining Subroutines
	Additional Theories for Complete Synthesis

	Appendix A
	Bibliography
	Curriculum Vitae

