
Ruzica Piskac

Yale University

Why Software Verification?

 The reason for the explosion
was a software error

 Financial loss: $500,000,000
(including indirect costs:
$2,000,000,000)

Maiden flight of the
Ariane 5 rocket on the
4th of June 1996

Air Transport

software in modern cars

>100K LOC

2006: error in pump control

software

 128000 vehicles recalled

Radio Therapy Machine

software error

 6 people overdosed

Examples of Software Errors

Year 2010 Bug

30 million debit and credit cards have been

rendered unreadable by the software bug

link

http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/

Financial Impact of Software Errors

Recent research at Cambridge University (2013, link)
showed that the global cost of software bugs is

around 312 billion of dollars
annually

Goal: to increase software reliability

http://www.prweb.com/releases/2013/1/prweb10298185.htm

How to obtain Software Reliability?
 Testing, testing, testing, …

 Many software errors are detected this way

 Does not provide any correctness guarantee

 “Murphy’s Law”

 Verification
 Provides a formal mathematical proof that a program is

correct w.r.t. a certain property

 A formally verified program will work correctly for every
given input

 Verification is algorithmically very hard task (problem is
in general undecidable)

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Can you verify
my program?

Which property
are you
interested in?

Example Questions in Verification

 Will the program crash?

 Does it compute the correct result?

 Does it leak private information?

 How long does it take to run?

 How much power does it consume?

 Will it turn off automated cruise control?

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

I just want to be sure that
no element is lost in the list –
if I insert an element, it is
really there

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Let L be a set (a
multiset) of all elements
stored in the list …

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Annotations

Annotations

 Written by a programmer or a software analyst

 Added to the original program code to express
properties that allow reasoning about the programs

 Examples:

 Preconditions:

 Describe properties of an input

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point

Decision Procedures for Collections
//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

} Prove that the following formula always
holds:

∀ X. ∀ L. |X| = 1  | L ⊎ X | = |L| + 1

Verification condition

Verification Conditions

 Mathematical formulas derived based on:

 Code

 Annotations

 If a verification condition always holds (valid), then to
code is correct w.r.t. the given property

 It does not depend on the input variables

 If a verification condition does not hold, we should be
able to detect an error in the code

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

??

return y

}

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Preconditions

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Program

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Postconditions

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Formula does not hold for input x = 1

Automation of Verification
 Windows XP has approximately

45 millions lines of source code

 300.000 DIN A4 papers

 12m high paper stack

Verification should be
automated!!!

Software Verification

22

program

formulas

correct

no

theorem prover

annotations

verifier

Prove formulas automatically!

Decision Procedures

 A decision procedure is an algorithm which answers
whether the input formula is satisfiable or not

 formula is satisfiable for x=0, y=1

 formula is unsatisfiable

23

formula in

some logic
theorem prover

satisfiable(model)

unsatisfiable (proof)

11  yxyx

yx 

Combining Various Logics

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

24

Combining Various Logics

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

┐next0*(root0,n)  x  {data0(v) |next0*(root0,v)}
 next=next0 [n:=root0]  data=data0[n:=x] 
|{data(v) . next*(n,v)}| =

|{data0(v) . next0*(root0,v)}| + 1

Verification condition:

25

Another Application of Decision
Procedures: Software Synthesis

 Software synthesis = a technique for automatically
generating code given a specification

 Why?

 ease software development

 increase programmer productivity

 fewer bugs

 Challenges

 synthesis is often a computationally hard task

 new algorithms are needed

27

Software Synthesis

val bigSet =

val (setA, setB) = choose((a: Set, b: Set)) =>

(a.size == b.size && a union b == bigSet && a intersect b == empty))

Code
assert (bigSet.size % 2 == 0)
val n = bigSet.size/2
val setA = take(n, bigSet)
val setB = bigSet −− setA

Course Textbooks
Aaron R. Bradley, Zohar Manna: The calculus of
computation - decision procedures with
applications to verification. Springer 2007

Daniel Kroening, Ofer Strichman: Decision
Procedures: An Algorithmic Point of View.
Springer 2008

