
Ruzica Piskac

Yale University

Why Software Verification?

 The reason for the explosion
was a software error

 Financial loss: $500,000,000
(including indirect costs:
$2,000,000,000)

Maiden flight of the
Ariane 5 rocket on the
4th of June 1996

Air Transport

software in modern cars

>100K LOC

2006: error in pump control

software

 128000 vehicles recalled

Radio Therapy Machine

software error

 6 people overdosed

Examples of Software Errors

Year 2010 Bug

30 million debit and credit cards have been

rendered unreadable by the software bug

link

http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/

Financial Impact of Software Errors

Recent research at Cambridge University (2013, link)
showed that the global cost of software bugs is

around 312 billion of dollars
annually

Goal: to increase software reliability

http://www.prweb.com/releases/2013/1/prweb10298185.htm

How to obtain Software Reliability?
 Testing, testing, testing, …

 Many software errors are detected this way

 Does not provide any correctness guarantee

 “Murphy’s Law”

 Verification
 Provides a formal mathematical proof that a program is

correct w.r.t. a certain property

 A formally verified program will work correctly for every
given input

 Verification is algorithmically very hard task (problem is
in general undecidable)

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Can you verify
my program?

Which property
are you
interested in?

Example Questions in Verification

 Will the program crash?

 Does it compute the correct result?

 Does it leak private information?

 How long does it take to run?

 How much power does it consume?

 Will it turn off automated cruise control?

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

I just want to be sure that
no element is lost in the list –
if I insert an element, it is
really there

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Let L be a set (a
multiset) of all elements
stored in the list …

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Annotations

Annotations

 Written by a programmer or a software analyst

 Added to the original program code to express
properties that allow reasoning about the programs

 Examples:

 Preconditions:

 Describe properties of an input

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point

Decision Procedures for Collections
//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

} Prove that the following formula always
holds:

∀ X. ∀ L. |X| = 1 | L ⊎ X | = |L| + 1

Verification condition

Verification Conditions

 Mathematical formulas derived based on:

 Code

 Annotations

 If a verification condition always holds (valid), then to
code is correct w.r.t. the given property

 It does not depend on the input variables

 If a verification condition does not hold, we should be
able to detect an error in the code

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

??

return y

}

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Preconditions

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Program

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Postconditions

Verification Condition: Example
//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Formula does not hold for input x = 1

Automation of Verification
 Windows XP has approximately

45 millions lines of source code

 300.000 DIN A4 papers

 12m high paper stack

Verification should be
automated!!!

Software Verification

22

program

formulas

correct

no

theorem prover

annotations

verifier

Prove formulas automatically!

Decision Procedures

 A decision procedure is an algorithm which answers
whether the input formula is satisfiable or not

 formula is satisfiable for x=0, y=1

 formula is unsatisfiable

23

formula in

some logic
theorem prover

satisfiable(model)

unsatisfiable (proof)

11 yxyx

yx

Combining Various Logics

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

24

Combining Various Logics

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

┐next0*(root0,n) x {data0(v) |next0*(root0,v)}
 next=next0 [n:=root0] data=data0[n:=x]
|{data(v) . next*(n,v)}| =

|{data0(v) . next0*(root0,v)}| + 1

Verification condition:

25

Another Application of Decision
Procedures: Software Synthesis

 Software synthesis = a technique for automatically
generating code given a specification

 Why?

 ease software development

 increase programmer productivity

 fewer bugs

 Challenges

 synthesis is often a computationally hard task

 new algorithms are needed

27

Software Synthesis

val bigSet =

val (setA, setB) = choose((a: Set, b: Set)) =>

(a.size == b.size && a union b == bigSet && a intersect b == empty))

Code
assert (bigSet.size % 2 == 0)
val n = bigSet.size/2
val setA = take(n, bigSet)
val setB = bigSet −− setA

Course Textbooks
Aaron R. Bradley, Zohar Manna: The calculus of
computation - decision procedures with
applications to verification. Springer 2007

Daniel Kroening, Ofer Strichman: Decision
Procedures: An Algorithmic Point of View.
Springer 2008

