Jniversity



/X/

| Why Software Verification?

Maiden flight of the
Ariane 5 rocket on the
4th of June 1996

* The reason for the explosion
was a software error

* Financial loss: $500,000,000
(including indirect costs:
$2,000,000,000)




Boeing could not assemble and integrate the fly-by-wire system until it
solved problems with the databus and the flight management software.
Solving these problems took more than a year longer than Boeing
anticipated. In April, 1995, the FAA certified the 777 as safe.

Total development cost: . $ 3 billion
Software integration and validation cost. = one third of total

— -
gt (\' “
e

— - S

Air Transport



~~~~~~~~~

Radio Therapy Machine
software error
- 6 people overdosed

Year 2010 Bug
30 million debit and credit cards have been
rendered unreadable by the software bug

software in modern cars
>100K LOC
2006: error in pump control
software

- 128000 vehicles recalled


http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/

// e e oA
Financial Impact of Software Errors

Recent research at Cambridge University (2013, )
showed that the global cost of software bugs is

around 312 billion of dollars
annually

Goal: to increase software reliability


http://www.prweb.com/releases/2013/1/prweb10298185.htm

/

How to obtain Software Reliability?

Testing, testing, testing, ...
e Many software errors are detected this way
e Does not provide any correctness guarantee
e “Murphy’s Law”

Verification

e Provides a formal mathematical proof that a program is
correct w.r.t. a certain property

e A formally verified program will work correctly for every
given input

e Verification is algorithmically very hard task (problem is
in general undecidable)



Correctness?

athematical Proof o

rogram

{
Node e

e.data

Can you verify
my program?

e.next
root =

Sl Zc=

public void add (Object x)

= new Node () ; <:

= root;

size + 1;

Which property
are you
interested in?




Example Questions in Verification

Will the program crash?

Does it compute the correct result?

Does it leak private information?

How long does it take to run?

How much power does it consume?

Will it turn off automated cruise control?



Correctness?

athematical Proof o

rogram

[ just want to be sure that
no element is lost in the list -
if I insert an element, it is

ic volid add

(Object x)

" s




/ athematical Proof of Program

Correctness?

//: L = data[root.next*]

public void add (Object x)

{ Let L be a set (a
multiset) of all elements

Node e = new Node () ; stored in the list ...

e.data = x;
e.next = root;

root = e;

v
\\<L e size = size + 1;
) L
D —
R




athematical Proof o
Correctness?

Annotations 4

Node e
e.data

e.next

L. = data[root.next*]
invariant:
public void add

ensures L

S

rogram

card L
(Object x)
old L + {x}

new Node () ;

root;

size + 1;

¥y

N
D —
e,




/ R

‘Annotations

Written by a programmer or a software analyst
Added to the original program code to express
properties that allow reasoning about the programs
Examples:
e Preconditions:
» Describe properties of an input
e Postconditions:

» Describe what the program is supposed to do

e Invariants:

 Describe properties that have to hold in every program point



Decision Procedures for Collections

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)
//: ensures L = old L + {x}
{

Node e = new Node() ;
e.data = x;

Sl — OO0

igeloie. — <

Prove that the following formula always
holds:

VX VL |[X|=1>|LyuX|=|L| +1
Verification condition




et mm——
/

Verification Conditions

Mathematical formulas derived based on:

e Code
e Annotations

If a verification condition always holds (valid), then to
code is correct w.r.t. the given property

It does not depend on the input variables

[f a verification condition does not hold, we should be
able to detect an error in the code



N

~ Verification Condition: Example

//: assume (x > 0)
def simple (Int x)

//: enstEcEEEEEN(




- Verification Condition: Example

//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
val y = x - 2
return y

}

Verification condition:

Wx.gy.x>o AY=X-2>Y>0 '




~ Verification Condition: Example

//: assume (x > 0)

def simple (Int x)
//: ensures y > 0
{
val y = x - 2
return y

}

Verification condition:
VX.VYy.X>0 AYy=X-2—>Y>0

Preconditions




- Veritication Condition: Example

//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
val y = x - 2
return y

}

Verification condition:

l‘v’x.‘v’y.x>o AY=X-2—>Y>0 |

Program




~ Verification Condition: Example

//: assume (x > 0)

def simple (Int x)
//: ensures y > 0
{
val y = x - 2
return y

}

Verification condition:
VX.VYy.X>0 AYy=X-2—>YV>0

Postconditions




~ Verification Condition: Example

//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
val y = x - 2
return y

}

Verification condition:
VX.VYy.X>0 AYy=X-2—>Y>0

Formula does not hold for input x =1




Automation of Verification

* Windows XP has approximately
45 millions lines of source code

=~ 300.000 DIN A4 papers
~ 12m high paper stack

Verification should be
automated!!!




P R

Software Verification

correct
—
@ @ theorem prover
program - )\
no

Prove formulas automatically!

22



Decision Procedures
@ D satisfiable(model)

formulain ——

: heorem prover
some logic B

\_ J unsatisfiable (proof)

A decision procedure is an algorithm which answers
whether the input formula is satisfiable or not

= formula x <y is satisfiable for x=0, y=1
= formula X < y AXx+1> y+1is unsatisfiable



/X/

Combining Various Logics

//: L = data[root.next*]
//: invariant: size = card L
public void add (Object x)
//: ensures L = old L + {x}
{
Node e = new Node() ;
e.data = x;
e.next = root;

root = e;

size = size + 1;

24



Combining Various Logics

//
[
public void add
//
{

L:

invariant:

ensures L =

data[root.next*]

card L
(Object x)
old L + {x}

size =

Verification condition:

Node e = new Node() ;
e.data = x;

e.next = root;

igeloie. — © -

size

size + 1;

[{data(v) . next*(n,v)}| =

-1 next,*(root,,n) A x ¢ {data,(v) |next,*(root,,v)}
A next=next, [n:=root ] A data=data [n:i=x| —>

|{data (v) . next *(root,,v)}| +1




~ Another Application o
Procedures: Software Synthesis

Software synthesis = a technique for automatically
generating code given a specification
Why?

e ease software development

e increase programmer productivity

 fewer bugs

Challenges

* synthesis is often a computationally hard task

e new algorithms are needed



Software Synthesis

val bigSet = ....

val (setA, setB) = choose((a: Set, b: Set) ) =>
(a.size == b.size && a union b == bigSet && a intersect b == empty))

Code

assert (bigSet.size % 2 == o)
val n = bigSet.size/2

val setA = take(n, bigSet)
val setB = bigSet —— setA

27



Aaron R. Bradley, Zohar Manna: The calculus of
b - computation - decision procedures with
The Calculus applications to verification. Springer 2007

of Computation

Decision

Procedures

Daniel Kroening, Ofer Strichman: Decision
Procedures: An Algorithmic Point of View.
Springer 2008




