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Maiden Flight of Ariane 5 Rocket

• Ariane 5 exploded on its first 
test flight in 1996

• Cause: failure of flight-control 
software due to overflow in 
floating point to integer 
conversion

• Financial loss: $500,000,000

(including indirect costs: $2,000,000,000)



Therac-25
• Radiation therapy 
machine

• Two modes: 
 X-ray 

 electron-beam

• Race condition in software caused use of 
electron-beam instead of X-ray

• six cases of radiation poisoning between 
1985 and 1987, three of them fatal



Economics of Software Errors
Estimated annual costs of software errors in the US 
(2002)

$60 billion (0.6% of GDP)

Estimated size of the US software industry (2002)

$240 billion (50% development)

Estimated 

50%

of each software project is spent on testing



Economics of Software Errors

Recent research at Cambridge University (2013, 
link) showed that the global cost of software bugs 
is 

around 312 billion of dollars 
annually

http://www.prweb.com/releases/2013/1/prweb10298185.htm


Software validation the “old-fashioned” way:

• Create a test suite (set of test cases)

• Run the test suite

• Fix the software if test suite fails

• Ship the software if test suite passes

Testing



“Program testing can be a very effective way to show the presence 
of bugs, but is hopelessly inadequate for showing their absence.”

Edsger W. Dijkstra

Very hard to test the portion inside the “if" statement!

input x

if (hash(x) == 10) {

...

}



Verification

• Verification: formally prove that a computing 
system satisfies its specifications
 Rigor: well established mathematical foundations

 Exhaustiveness: considers all possible behaviors of the 
system, i.e., finds all errors

 Automation: uses computers to build reliable 
computers



Success Stories of Formal Methods

• Astrée Static Analyzer
 Developed by Patrick Cousot’s

group and others 

 Verify absence of runtime errors in 
C code for Embedded Systems

 Industrial applications include 
verification of Airbus fly-by-wire 
software



• SLAM, Static Driver Verifier, 
HAVOC, and VCC 
 Developed at Microsoft Research

 Verification of OS code

 Applications:

 Windows Device Drivers

 Windows File System

 Windows Hypervisor

Resource
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#define FIRST_CHILD(x) x->NodeBQueue.Flink
#define NEXT_NODE(x) x->NodeAlinks.Flink

__type_invariant(PNODEA x){
ENCL_NODEA(FIRST_CHILD(x)) != x ==> 

ENCL_NODEB(FIRST_CHILD(x))->ParentA == x
}

__type_invariant(PNODEB y){
NEXT_NODE(y) != &(y->ParentA->NodeBQueue) ==>
y->ParentA == ENCL_NODEB(NEXT_NODE(y))->ParentA

}

Success Stories of Formal Methods



Compcert Compiler

• Formally verified C compiler

• A project led by Xavier Leroy

• An active project since 2005

• Commercial licenses since 2015

• http://compcert.inria.fr/

http://compcert.inria.fr/


Compcert Compiler
• Miscompilation happens

We created a tool that generates random C programs, and 
then spent two and a half years using it to find compiler 
bugs. So far, we have reported more than 325 previously 
unknown bugs to compiler developers. Moreover, every 
compiler that we tested has been found to crash and also to 
silently generate wrong code when presented with valid 
inputs.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011.



Compcert Compiler
The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are absent. As
of early 2011, the under-development version of CompCert is
the only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011.



This course: From Programs to 
Formulas

• Next few slides describe informally how to derive formulas 
from program

• In this course we will learn more details about it – you can 
even implement your own verification condition generator, see:

http://www.cs.yale.edu/homes/piskac/teaching/vtsa2016.html

http://www.cs.yale.edu/homes/piskac/teaching/vtsa2016.html


A Mathematical Proof of Program 
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Can you verify 

my program?

Which property 

are you 

interested in?



Example Questions in Verification

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?



A Mathematical Proof of Program 
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

I just want to be sure that 

no element is lost in the 

list – if I insert an element, 

it is really there



A Mathematical Proof of Program 
Correctness?

//: L = data[root.next*]

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Let L be a set (a 

multiset) of all elements 

stored in the list …



A Mathematical Proof of Program 
Correctness?

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Annotations



Annotations

• Written by a programmer or a software analyst

• Added to the original program code to express properties that allow 
reasoning about the programs

• Examples:

 Preconditions:  

 Describe  properties of an input 

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point



Decision Procedures for Collections

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

} Prove that the following formula always 

holds:

∀ X. ∀ L. |X| = 1  | L ⊎ X | = |L| + 1 

Verification condition



Verification Conditions

• Mathematical formulas derived based on:

 Code

 Annotations

• If a verification condition always holds (valid), then to code is correct w.r.t. 
the given property

• It does not depend on the input variables

• If a verification condition does not hold, we should be able to detect an error 
in the code



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

??

return y

}



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Preconditions



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Program



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Postconditions



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Formula does not hold for input x = 1



Automation of Verification

• Windows XP has approximately 45 millions 
lines of source code

 300.000 DIN A4 papers

 12m high paper stack

Verification should be 

automated!!!



Software Verification

program

formulas

correct

no

theorem prover

annotations

verifier

Prove formulas 

automatically!



How to prove 
program correctness?



Proving program correctness

• Does f terminate?

• What does f compute?

def f(x : Int, y : Int) : Int { 

if (y == 0) 

return 0 

} else { 

if  (y % 2 == 0) { 

val z = f(x, y / 2); 

return 2*z 

} else { 

return x + f(x, y - 1) 

} 
}



Proving program correctness

• Does f terminate?

• What does f compute?

Using mathematical notation:



Annotations

• To prove program correctness we need annotations

 Otherwise we do not know what we are supposed to prove

• Written by a programmer or a software analyst

• Added to the original program code to express properties that allow 
reasoning about the programs

• Examples:

 Preconditions:  

 Describe  properties of an input 

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point



How can we automate verification? 
Important algorithmic questions: 

• verification condition generation: compute formulas expressing program 
correctness

 Hoare logic, weakest precondition, strongest postcondition

• theorem proving: prove verification conditions 

 proof search, counterexample search 

 decision procedures 

• loop invariant inference 

 predicate abstraction

 abstract interpretation and data-flow analysis

 pointer analysis

• reasoning about numerical computation 

• pre-condition and post-condition inference 

• ranking error reports and warnings 

• finding error causes from counterexample traces



Language Semantics



Formal Semantics of Java Programs

• The Java Language Specification (JLS) [link] gives semantics to Java 
programs

 The document has 780 pages.

 148 pages to define semantics of expression.

 42 pages to define semantics of method invocation.

• Semantics is only defined in prose.

 How can we make the semantics formal?

 We need a mathematical model of computation.

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf


IMP: A Simple Imperative Language
Before we move on to Java, we look at a simple imperative programming 
language IMP.

An IMP program:

p := 0;

x := 1;

while x ≤ n do

x := x + 1;

p := p + m;



IMP: Syntactic Entities

• n 2 Z – integers

• true,false 2 B – Booleans

• x,y 2 L – locations (program variables)

• e 2 Aexp – arithmetic expressions

• b 2 Bexp – Boolean expressions

• c 2 Com – commands



Syntax of Arithmetic Expressions

• Arithmetic expressions (Aexp)
e ::= n for n ∈ Z

| e1 + e2

| e1 - e2

| e1 * e2

• Notes:
 Variables are not declared before use.

 All variables have integer type.

 Expressions have no side-effects.



Syntax of Boolean Expressions
• Boolean expressions (Bexp)

b ::= true
| false
| e1 = e2 for e1, e2 ∈ Aexp
| e1 ≤ e2 for e1, e2 ∈ Aexp
| ¬ b for b ∈ Bexp
| b1 ∧ b2 for b1, b2 ∈ Bexp
| b1 ∨ b2 for b1, b2 ∈ Bexp



Syntax of Commands
• Commands (Com)

c ::=  skip
| x := e
| c1 ; c2

| if b then c1 else c2

| while b do c

• Notes:

 The typing rules have been embedded in the syntax definition.

 Other parts are not context-free and need to be checked separately (e.g., all 
variables are declared).

 Commands contain all the side-effects in the language.

 Missing: references, function calls, …



Meaning of IMP Programs

Questions to answer:

• What is the “meaning” of a given IMP expression/command?

• How would we evaluate IMP expressions and commands?

• How are the evaluator and the meaning related?

• How can we reason about the effect of a command?



Semantics of IMP
• The meaning of IMP expressions depends on the values of variables, 

i.e. the current state.

• A state at a given moment is represented as a function from L to Zm

• The set of all states is Q = L ! Zm

• We use q to range over Q



Judgments
• We write <e, q> ⇓ n to mean that e evaluates to n in state q.

 The formula <e, q> ⇓ n is a judgment
(a statement about a relation between e, q and n)

 In this case, we can view ⇓ as a function of two arguments e and q

• This formulation is called natural operational semantics
 or big-step operational semantics

 the judgment relates the expression and its “meaning”

• How can we define <e1 + e2, q> ⇓ … ?



Inference Rules for Aexp
• In general, we have one rule per language 
construct:

• This is called structural operational semantics.
 rules are defined based on the structure of the 

expressions.

<n, q> ⇓ n <x, q> ⇓ q(x)

<e1 + e2, q> ⇓ (n1 + n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 - e2, q> ⇓ (n1 - n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 * e2, q> ⇓ (n1 ¢ n2)
<e1, q> ⇓ n1 <e2, q> ⇓ n2

Axiom



Inference Rules for Bexp
<true, q> ⇓ true <false, q> ⇓ false

<e1 = e2, q> ⇓ (n1 = n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 ≤ e2, q> ⇓ (n1 ≤ n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<b1 ^ b2, q> ⇓ (t1 ^ t2)
<b1, q> ⇓ t1 <e2, q> ⇓ t2



Semantics of Commands

• The evaluation of a command in Com has side-
effects, but no direct result.

• The “result” of a command c in a pre-state q is a 
transition from q to a post-state q’:

q ! q’

• We can formalize this in terms of transition 
systems.

c



Labeled Transition Systems

A labeled transition system (LTS) is a 
structure 
LTS = (Q, Act, !) where

Q is a set of states,

Act is a set of actions,
 ! µ Q £ Act £ Q is a transition relation.

We write  q ! q’ for  (q, a, q’) 2 !.a



q           q ++ {x  n}x := e

Inference Rules for Transitions
<e, q> ⇓ n

q           qskip

q           q’’
c1 ; c2 

q           q’
c1 q’          q’’

c2 

q                         q’
if b then c1 else c2

<b, q> ⇓ true q           q’
c1 

q                         q’
if b then c1 else c2

<b, q> ⇓ false q           q’
c2 

q                             q’’while b do c

<b, q> ⇓ true q           q’
c

q                             qwhile b do c

<b, q> ⇓ false

q’                             q’’while b do c



Axiomatic Semantics
• An axiomatic semantics consists of:

 a language for stating assertions about programs;

 rules for establishing the truth of assertions.

• Some typical kinds of assertions:

 This program terminates.

 If this program terminates, the variables x and y have the same value throughout 
the execution of the program.

 The array accesses are within the array bounds.

• Some typical languages of assertions

 First-order logic

 Other logics (temporal, linear)

 Special-purpose specification languages (Z, Larch, JML)



Assertions for IMP
• The assertions we make about IMP programs are of the 

form:
{A} c {B}

with the meaning that:
 If A holds in state q and q ! q’

 then B holds in q’

• A is the precondition and B is the postcondition

• For example:
{ y ≤ x } z := x; z := z + 1 { y < z }

is a valid assertion

• These are called Hoare triples or Hoare assertions

c



Assertions for IMP

• {A} c {B} is a partial correctness assertion. It does not 
imply termination of c.

• [A] c [B] is a total correctness assertion meaning that
 If A holds in state q
 then there exists q’ such that q ! q’

and B holds in state q’

• Now let’s be more formal
 Formalize the language of assertions, A and B

 Say when an assertion holds in a state

 Give rules for deriving valid Hoare triples

c



The Assertion Language
• We use first-order predicate logic with IMP 
expressions

A :: = true | false | e1 = e2 | e1 ≥ e2
| A1 ^ A2 | A1 _  A2 | A1 ) A2 | ∀x.A | ∃x.A

• Note that we are somewhat sloppy and mix the 
logical variables and the program variables.

• Implicitly, all IMP variables range over integers.

• All IMP Boolean expressions are also assertions.



Semantics of Assertions
• We introduced a language of assertions, we need to assign 

meanings to assertions.

• Notation q ⊨ A says that assertion A holds in a given state q.
 This is well-defined when q is defined on all variables occurring in A.

• The ⊨ judgment is defined inductively on the structure of 
assertions.

• It relies on the semantics of arithmetic expressions from 
IMP.



Semantics of Assertions
• q ⊨ true always

• q ⊨ e1 = e2 iff <e1,q>⇓ = <e2,q>⇓

• q ⊨ e1 ≥ e2 iff <e1,q>⇓ ≥ <e2,q>⇓

• q ⊨ A1 ^ A2 iff q ⊨ A1 and q ⊨ A2

• q ⊨ A1 _ A2 iff q ⊨ A1 or q ⊨ A2

• q ⊨ A1 ) A2 iff q ⊨ A1 implies q ⊨ A2

• q ⊨ ∀x.A iff 8n2Z. q[x:=n] ⊨ A

• q ⊨ ∃x.A iff 9n2Z. q[x:=n] ⊨ A



Inferring Validity of Assertions

• Now we have the formal mechanism to decide when {A} c {B}
 But it is not satisfactory,

 because ⊨ {A} c {B} is defined in terms of the operational semantics.

 We practically have to run the program to verify an assertion.

 Also it is impossible to effectively verify the truth of a
∀x. A assertion (by using the definition of validity)

• So we define a symbolic technique for deriving valid assertions 
from others that are known to be valid
 We start with validity of first-order formulas



` A[e/x] 

Inference Rules

• We write ` A when A can be inferred from basic axioms.

• The inference rules for ` A are the usual ones from first-order 

logic with arithmetic.

• Natural deduction style rules:

` A ^ B

` A         ̀B

` A _ B

` A

` A _ B

` B

` 8 x. A

` A[a/x] 
where 

a is fresh

` 8 x. A

` A[e/x] 

` 9 x. A ` B

` 9 x. A   ` B

` A ) B

` B

` B

` A ) B    ` A

` A[a/x] 
...

where 

a is fresh

` A 
...



Tony Hoare

https://en.wikipedia.org/wiki/Tony_Hoare


Inference Rules for Hoare Logic

• One rule for each syntactic construct:                                                                                                                            

` {A} skip {A} ` {A[e/x]} x:=e {A}                                         

` {A} if b then c1 else c2 {B}

` {A ^ b} c1 {B}     ` {A ^ :b} c2 {B}

` {A} c1; c2 {C}

` {A} c1 {B}     ` {B} c2 {C}

` {I} while b do c {I ^ :b}

` {I ^ b} c {I} 



Loop Invariants
• I is a loop invariant if the following three conditions hold:

 I holds initially in all states satisfying Pre, when 
execution reaches loop entry, I holds 

 I is preserved: if we assume I and loop condition (e), 
we can prove that I will hold again after executing the 
loop body

 I is strong enough: if we assume I and the negation of 
loop condition e, we can prove that Post holds after the 
loop execution



Inference Rules for Hoare Triples
• Similarly we write ` {A} c {B} when we can derive 

the triple using inference rules

• There is one inference rule for each command in 
the language.

• Plus, the rule of consequence

` A’ ) A  ` {A} c {B} ` B ) B’
` {A’} c {B’}



Hoare Rules
• For some constructs, multiple rules are 
possible

alternative “forward axiom” for assignment:

alternative rule for while loops:

• These alternative rules are derivable from the 
previous rules, plus the rule of consequence.

` {A} x:=e {9x0. x0 = e ^ A[x0/x]}

` {I} while b do c {B}

` {C} c {I} ` I ^ b ) C ` I ^ :b ) B 



Exercise: Hoare Rules

• Is the following alternative rule for assignment 
still correct?

` {true} x:=e {x = e}



Example: Conditional

D1 :: ` {true ^ y ≤ 0} x := 1 {x > 0}

D2 :: ` {true ^ y > 0} x := y {x > 0}

` {true} if y ≤ 0 then x := 1 else x := y {x > 0}

• D1 is obtained by consequence and assignment

` true ^ y ≤ 0 ) 1 ≥ 0 ` {1 ≥ 0} x := 1 {x ≥ 0}
` {true ^ y ≤ 0} x := 1 {x ≥ 0}

• D2 is also obtained by consequence and assignment

` true ^ y > 0 ) y > 0 ` {y > 0} x := y {x > 0}
` {true ^ y > 0} x := y {x > 0}



Example: a simple loop 

• We want to infer that
` {x ≤ 0} while x ≤ 5 do x := x + 1 {x = 6}

• Use the rule for while with invariant I ´ x ≤ 6

` x ≤ 6 ^ x ≤ 5 ) x + 1 ≤ 6      ` {x + 1 ≤ 6} x := x + 1 {x ≤ 6}
` {x ≤ 6 ^ x ≤ 5} x := x + 1 {x ≤ 6}

` {x ≤ 6} while x ≤ 5 do x := x + 1 { x ≤ 6 ^ x > 5}

• Then finish-off with the rule of consequence
` x ≤ 0 ) x ≤ 6 
` x ≤ 6 ^ x > 5 ) x = 6      ` {x ≤ 6} while ... {x ≤ 6 ^ x > 5}

` {x ≤ 0} while ... {x = 6}



Example: a more interesting program
• We want to derive that

{n ¸ 0}

p := 0; 

x := 0;

while x < n do 

x := x + 1; 

p := p + m

{p = n * m}



Inference Rules for Hoare Logic

• One rule for each syntactic construct:

` {A} skip {A} ` {A[e/x]} x:=e {A}

` {A} if b then c1 else c2 {B}

` {A ^ b} c1 {B}     ` {A ^ :b} c2 {B}

` {A} c1; c2 {C}

` {A} c1 {B}     ` {B} c2 {C}

` {I} while b do c {I ^ :b}

` {I ^ b} c {I} 



Inference Rules for Hoare Triples
• Similarly we write ` {A} c {B} when we can derive 

the triple using inference rules

• There is one inference rule for each command in 
the language.

• Plus, the rule of consequence

` A’ ) A  ` {A} c {B} ` B ) B’
` {A’} c {B’}



Example: a more interesting program
• We want to derive that

{n ¸ 0}

p := 0; 

x := 0;

while x < n do 

x := x + 1; 

p := p + m

{p = n * m}



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

Only applicable rule (except for rule of consequence):

` {A} c1; c2 {B} 

` {A} c1{C} ` {C} c2 {B} 

c1 c2 BA

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {C}



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

What is C?

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {I} while b do c {I ^ :b}

` {I ^ b} c {I}

We can match {I} with {C} but we cannot match {I ^ :b}

and {p = n * m} directly. Need to apply the rule of 

consequence first!

c1
c2 BA



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

What is C?

B’A’

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {I} while b do c {I ^ :b}

` {I ^ b} c {I}

` A’ ) A ` {A} c’ {B} ` B ) B’

` {A’} c’ {B’}

Rule of consequence:

c’

c’A B

I = A = A’ = C



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

What is I?

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {I}

Let’s keep it as a placeholder for now!

` I ^ x ¸ n ) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I ^ x ¸ n}

`{I ^ x<n} x := x+1; p:=p+m {I}

Next applicable rule:

` {A} c1; c2 {B} 

` {A} c1{C} ` {C} c2 {B} 

BA c1 c2



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {I}

` I ^ x ¸ n ) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I ^ x ¸ n}

`{I ^ x<n} x := x+1; p:=p+m {I}

BA c1 c2

`{I ^ x<n} x := x+1 {C} 

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{C} p:=p+m {I}



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {I}

` I ^ x ¸ n ) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I ^ x ¸ n}

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{I[p+m/p} p:=p+m {I}

`{I ^ x<n} x:=x+1; p:=p+m {I}

`{I ^ x<n} x:=x+1 {I[p+m/p]} 



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {I}

` I ^ x ¸ n ) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I ^ x ¸ n}

`{I ^ x<n} x:=x+1; p:=p+m {I}

`{I ^ x<n} x:=x+1 {I[p+m/p]} 

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{I[p+m/p} p:=p+m {I}

Need rule of consequence to match {I ^ x<n} and {I[x+1/x, p+m/p]}



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {I}

` I ^ x ¸ n ) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I ^ x ¸ n}

`{I ^ x<n} x:=x+1; p:=p+m {I}

`{I ^ x<n} x:=x+1 {I[p+m/p]} `{I[p+m/p} p:=p+m {I}

` I ^ x < n ) I[x+1/x, p+m/p]

`{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]} 

Let’s just remember the open proof obligations!

...



Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}` {n ¸ 0} p:=0; x:=0 {I}

` I ^ x ¸ n ) p = n * m

` I ^ x < n ) I[x+1/x, p+m/p]
Let’s just remember the open proof obligations!

...

Continue with the remaining part of the proof tree, as before.

` {I[0/x]} x:=0 {I}

` {n ¸ 0} p:=0 {I[0/x]}

` {I[0/p, 0/x]} p:=0 {I[0/x]}

` n ¸ 0 ) I[0/p, 0/x] Now we only need to solve the 

remaining constraints!



Example: a more interesting program

` I ^ x ¸ n ) p = n * m

` I ^ x < n ) I[x+1/x, p+m/p]

Find I such that all constraints are simultaneously valid:

` n ¸ 0 ) I[0/p, 0/x]

I ´ p = x * m ^ x ≤ n

` p = x * m ^ x ≤ n ^ x ¸ n ) p = n * m

` p = p * m ^ x ≤ n ^ x < n ) p+m = (x+1) * m ^ x+1 ≤ n

` n ¸ 0 ) 0 = 0 * m ^ 0 ≤ n

All constraints are valid!



Exercise:
{true}

x := n; y := m;

(if 0 ≤ n then z := -1 else z := 1);

{ I }

while x ≠ 0 do 

y := y + z; 

x := x + z;

{y = m - n}



Using Hoare Rules
• Hoare rules are mostly syntax directed

• There are three obstacles to automation of Hoare logic 
proofs:
 When to apply the rule of consequence?

 What invariant to use for while?

 How do you prove the implications involved in the rule of 
consequence?

• The last one is how theorem proving gets in the picture
 This turns out to be doable!

 The loop invariants turn out to be the hardest problem!

 Should the programmer give them?



Software Verification

program

formulas

correct

no

theorem prover

annotations

verifier



Hoare Logic: Summary
• We have a language for asserting properties of programs.

• We know when such an assertion is true.

• We also have a symbolic method for deriving assertions.

A

{A} P {B}
⊨ A

⊨ {A} P {B}

` A

` {A} P {B}

semantics

soundness

completenesstheorem proving



Computing VC



Verification Condition Generation

• Idea for VC generation: propagate the post-
condition backwards through the program:
 From {A} P {B}  
 generate A ) F(P, B)

• This backwards propagation F(P, B) can be formalized in 
terms of weakest preconditions.



Weakest Preconditions
• The weakest precondition WP(c,B) holds for 
any state q whose c-successor states all satisfy 
B:

q ⊨ WP(c,B)   iff 8q’2Q. q ! q’ ) q’ ⊨ B

• Compute WP(P,B) recursively according to the 
structure of the program P.

BWP(c,B)

q q’ q’’

c
c

c

c



Loop-Free Guarded Commands

• Introduce loop-free guarded commands as an 
intermediate representation of the verification 
condition

• c ::=  assume b
| assert b
| havoc x
| c1 ; c2

| c1  c2



From Programs to Guarded 
Commands

• GC(skip) = 

assume true

• GC(x := e) = 

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) = 
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = ?
(assume b; GC(c1))  (assume :b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh



From Programs to Guarded 
Commands

• GC(skip) = 

assume true

• GC(x := e) = 

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) = 
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = 
(assume b; GC(c1))  (assume :b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh



Guarded Commands for Loops

• GC({I} while b do c) =
assert I;

havoc x1; ...; havoc xn;
assume I;
(assume b; GC(c); assert I; assume false) 
assume :b

where x1, ..., xn are the variables modified in c



Example: VC Generation
{n ¸ 0}

p := 0; 

x := 0;

{p = x * m ^ x ≤ n}

while x < n do 

x := x + 1; 

p := p + m

{p = n * m}



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

{ n ≥ 0 }

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n;

(assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n; assume false) 

 assume x ≥ n;

{ p = n * m }

• Computing the guarded command

Example: VC Generation



Computing Weakest Preconditions
• WP(assume b, B) = b ) B

• WP(assert b, B) = b ^ B

• WP(havoc x, B) = B[a/x] (a fresh in B)

• WP(c1;c2, B) = WP(c1, WP(c2, B))

• WP(c1  c2,B) = WP(c1, B) ^ WP(c2, B)



Putting Everything Together
• Given a Hoare triple H ´ {A} P {B}

• Compute cH = assume A; GC(P); assert B

• Compute VCH = WP(cH, true)

• Infer ` VCH using a theorem prover.



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n;

(assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n; assume false) 

 assume x ≥ n;

assert p = n * m, true)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n;

(assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n; assume false) 

 assume x ≥ n,  p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,       
WP ((assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n; assume false) 

 assume x ≥ n,  p = n * m))

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n; assume false, p = n * m)

⋀ WP (assume x ≥ n,  p = n * m))

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n; assume false, p = n * m)

⋀ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n, WP ( assume false, p = n * m)

⋀ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n, false ⇒ p = n * m)

⋀ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ⋀ x ≤ n, true)

⋀ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ⋀ x ≤ n;

havoc x; havoc p; assume p = x * m ⋀ x ≤ n,
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• The resulting VC is equivalent to the conjunction of the 
following implications

Example: VC Generation

n ≥ 0 ⋀ p0 = p ⋀ pa3 = 0 ⋀ x0 = x ⋀ xa3 = 0 ⇒
pa3 = xa3 * m ⋀ xa3 ≤ n 

n ≥ 0 ⋀p0 = p ⋀ pa3 = 0 ⋀ x0 = x ⋀ xa3 = 0 ⋀ pa2 = xa2 * m ⋀

xa2 ≤ n ⇒

xa2 ≥ n ⇒ pa2 = n * m

n ≥ 0 ⋀p0 = p ⋀ pa3 = 0 ⋀x0 = x ⋀ xa3 = 0 ⋀pa2 = xa2 * m ⋀ xa2 < n

⋀ x1 = xa2 ⋀ xa1 = x1 + 1 ⋀ p1 = pa2 ⋀ pa1 = p1 + m ⇒

pa1 = xa1 * m ⋀ xa1 ≤ n



• simplifying the constraints yields

• all of these implications are valid, which proves that 
the original Hoare triple was valid, too.

Example: VC Generation

n ¸ 0 ) 0 = 0 * m ^ 0 ≤ n

xa2 ≤ n ^ xa2 ¸ n ) xa2 * m = n * m

xa2 < n ) xa2 * m + m = (xa2 + 1) * m ^ xa2 + 1 ≤ n



Software Verification

program

formulas

correct

no

theorem prover

annotations

VCG



SMT Solvers

• Used as a core engine in many tools in
 Program analysis

 Software engineering

 Program  model checking

 Hardware verification, …

• Combine propositional satisfiability search 
techniques with specialized theory solvers
 Linear arithmetic 

 Bit vectors 

 Uninterpreted functions with equality





Theory of Arrays TA

•ΣA =  { read, write, = }

• read (a, i) is a binary function:
reads an array a at the index i

•write (a, i, v) is a ternary function:
writes a value v to the index i of array a



Axioms of TA

1. a , i, j . i = j  read (a, i)  = read (a, j)
(array congruence)

2. a , v, i, j. i =  j  read (write (a, i, v), j) = v
(read – write 1)

3. a , v, i, j. i ≠ j  read (write (a, i, v), j) = read (a, j)
(read – write 2)



How to deal with arrays?
• Very easily: use the following observation:

a[i] := v is actually a := write(a, i, v)

• Everything else is the same

• SMT solvers supports arrays



Dealing with Arrays - An Example
• Given command: a[i] := v

• In array theory a := write(a, i, v)

• GC: assume tmp = a; havoc a; assume (a = write(tmp, i, v))

WP(GC, F) = WP(assume tmp = a; havoc a; assume (a = write(tmp, i, v)), F)

= WP(assume tmp = a; havoc a; a = write(tmp, i, v) ) F)

= WP(assume tmp = a; af = write(tmp, i, v) ) F[af/a])

= tmp = a ) af = write(tmp, i, v) ) F[af/a]

= tmp = a ^ af = write(tmp, i, v) ) F[af/a]

= af = write(a, i, v) ) F[af/a]



Separation Logic
Reasoning about Pointers



What is Separation Logic?

• Extension of Hoare logic  
 low-level imperative programs

 shared mutable data structures



Problems with Aliasing
#include <stdio.h> 

int main()

{ 

int arr[2] = { 1, 2 }; 

int i=10; 

/* alias i to arr[2]. */

arr[2] = 20; 

printf("element 0: %d \t", arr[0]); // outputs 1 

printf("element 1: %d \t", arr[1]); // outputs 2 

printf("element 2: %d \t", arr[2]); // outputs 20 

printf("i: %d \t\t", i); // will also output 20, not 10, because of aliasing 

/* arr size is still 2. */ 

printf("arr size: %d \n", (sizeof(arr) / sizeof(int))); 

}



Motivating Example

assume( *x == 3 )

assert( *x == 3 )

assume( y != z )

*y = 4;

*z = 5;

assert( *y != *z )

assume( *x == 3 ∧ x != y ∧ x != z )

assume( y != z )



Framing Problem

{ y != z }   C   { *y != *z }

{ *x == 3 ∧ y != z }   C   {*y != *z ∧ *x == 3 }

• What are the conditions on aliasing btwn x, y, z ?



Framing Problem

• What are the conditions on C and R?

 in presence of aliasing and heap

• Separation logic introduces new connective ∗

{ P }   C   {Q}

{  R ∧ P  }  C   { Q ∧ R }

{ P }   C   {Q}

{  R ∗ P  }   C   { Q ∗ R }

• Implicit Dynamic Frames



Permission-based Logics

• Separation Logic
– O'Hearn, Reynolds, Yang 2001
– Reynolds 2002
– …

• Implicit Dynamic Frames
– Smans, Jacobs, Piessens 2008
– Parkinson, Summers 2011

• Linear maps
– Lahiri, Qadeer, Walker 2011

• …



Tools using Permission-based Logics

• CompCert (Inria)
• L4.Verified (NICTA)
• Bedrock (MIT) 
• …
• Smallfoot (UCL, Imperial)
• Chalice (Microsoft Research)
• VeriFast (KU Leuven)
• HIP (Singapore)
• Viper (ETH)
• GRASShopper (NYU, Yale, MIT)
• …
• Space Invader (UCL, Imperial)
• SLAyer (Microsoft Research)
• Infer (Facebook)
• Xisa (Boulder, Paris, Berkeley)
• …

automated deductive verifiers

interactive deductive verifiers

static program analysis tools



A Simple Permission-based Logic

• Pure assertions

x y
next

Stack

x 10

y 42

…

Heap

10 42

…

42 ?

x.next == y

struct Node {
var next: Node;

}



• Permission predicates

Expresses permission to access (i.e. read/write/deallocate) 
heap location x.
Assertions describe the program state and a set of 
locations that are allowed to be accessed.

A Simple Permission-based Logic

x

acc(x)



• Separating conjunction

Yields union of permission sets of subformulas.
Permission sets of subformulas must be disjoint.

A Simple Permission-based Logic

x y

acc(x) * acc(y)



• Separating conjunction

Pure assertions yield no permissions.

A Simple Permission-based Logic

x y
next

acc(x) * x.next == y



• Separating conjunction

A Simple Permission-based Logic

x y
next

acc(x) * acc(y) * x.next == y



• Separating conjunction

A Simple Permission-based Logic

acc(x) * acc(x) * x.next == y

unsatisfiable?



• Classical conjunction

A Simple Permission-based Logic

acc(x) ^ x.next == y

unsatisfiable?



• Classical conjunction

Convention: ^ has higher precedence than *

A Simple Permission-based Logic

acc(x) ^ acc(y) * x.next == y

x,y

next

?



Syntactic Short-hands

• Empty heap:

emp´ (x == x)

• Points-to predicates:

x.next  y ´ acc(x) * x.next == y


