
The State Delta Verification

System (SDVS)
Steve Crocker, Shinkuro, Inc.

steve@shinkuro.com

Presented at VTSA16, Liège, 2 September 2016

1

mailto:steve@shinkuro.com

A Long Time Ago

Time period: 1975 – 1990. PhD thesis 1977.

Prove functional properties of real programs

“Real” = machine code in running systems

Designed new logic and verification system

Intended for assembly language programs. Mainly

used for microcode verification of instruction sets.

That’s where the $$ were

Found some subtle bugs

2

Summary of Principal Ideas

 A temporal logic syllogism

◦ A ↝ B and B ↝ C implies A ↝ C

 Characterize the action of each machine
language instruction.

◦ Particularly what changes

 Maintain a large set of statements about
the state

 Update the state based on changes

◦ Anything not touched isn’t changed

◦ Need a fairly rich model of memory

3

Example: IRS foo

 IRS is “increment

memory and skip if

zero.”

◦ Used primarily for loop

control on small, old

machines. (Honeywell

316, 516, etc.)

 Loop: IRS foo

4

Example: IRS foo

 IRS is “increment memory and skip if

zero.”

 Loop: IRS foo

5

0 0 1 1 0 0 foo533:

Loop = 533

Example: IRS foo

 IRS is “increment memory and skip if zero.”

◦ Used primarily for loop control on small, old
machines. (Honeywell 316, 516, etc.)

 Loop: IRS foo

 Approximately:

◦ .pc = loop ↝
 #foo = .foo + 1 and

 (if #foo != 0, #pc=.pc +1 else #pc=.pc+2)

 BUT…

6

BUT… Say what changed

 Almost right:

◦ .pc = loop ↝ {pc, foo}

 #foo = .foo + 1 and

 (if #foo != 0, then #pc=.pc +1 else #pc=.pc+2)

 The places – a slight generalization of

locations – pc and foo have changed.

Places that are known to be disjoint have

not changed.

7

Places

 Memory locations and registers are

places.

 Changing the contents of one of these

does not change another.

 More complex places can be created, e.g.

arrays and linked lists.

8

Motivation for the Places model

 In general, storage is allocated into

disjoint pieces.

 However when there are dynamic

structures, e.g. lists, stack, etc., it’s

necessary to be able to introduce a

decompositon of a portion of the space

without being specific about how it

relates to the underlying structure.

9

Places as “support” for formulas

 A formula like .x > .y depends on the

contents of places x and y. If the formula

is true at one point in time, it will remain

true as long as neither x nor y is changed.

 {x,y} is the support for .x>.y

10

Relationships among places

 *(x, y, z) means x, y and z all disjoint from

each other. Changing the contents of x

will not affect the contents of y, etc.

 x ◁ y means x is a subplace of y. If y is

not affected by a set of changes, x is also

not affected.

11

A Conservative Model of Places

12

A

A1 A2 A3bA3a

A place

Three disjoint

places

Two possibly

overlapping places

Changes…

 If A1 changes, so does A.

◦ A2 and A3 do not change.

 If A3a changes, A changes and A3b might

change too.

◦ A1 and A2 do not change.

13

A Solver for Support

14

A

A1 A2 A3bA3a

This graph is developed

during the proof process

with assertions and is

searched during application

of a state delta to

determine which formulas

to remove from the

database.

When changes are made

within a proof context,

they are removed when

the proof is closed.

State Deltas

 A State Delta is a temporal logic

statement of the form: E[P ↝ C Q] where

C and E are lists of places, P is a formula

over the contents of places at the present

time and Q is a formula over the contents

of places both at both the present time

and a future time.

15

State Deltas – Prose definition

 If the system is in a state where P is true,

it will reach a state in which Q is true,

and it will do so modifying no more than

places not known to be disjoint from the

list C.

 P and Q include the control as well as the

usual values of variables.

16

What is the role of “E”?

 State deltas are part the overall state of the
system. They are formulas about the state
and can be treated the same as any other
formula about the state of the system.

 E is the support for the state delta itself.
Hence, if a state delta is part of the state but
another state delta is applied which modifies
any place not known to be disjoint from E,
the state delta is removed from the state of
the system.

17

Reasoning with State Deltas

 Reasoning with state deltas is patterned

along the lines of symbolic execution.

 At any given time, there is:

◦ A set of places,

◦ A set of formulas over the contents of the

places,

◦ A set of relations among the places, and

◦ A set of state deltas that characterize the

behavior of the system.

18

Applying a state delta

 The primary inference rule is application of a
state delta to the current state.

 A state delta that is contained within the current
state is applicable iff its precondition is true in the
current state.

 The result of applying a state delta is a new state
that is the same as the old state except:
◦ All formulas whose support is not known to be

disjoint from the list of places that may have been
changed by application of the state delta are removed,
and

◦ The post-condition formula is instantiated and added
to the state.

19

Inference Rule: Sequencing*

E1[P1 ↝ C1 Q1], E2[P2 ↝C2 Q2], Q1 => P2

E1 u E2[P1 ↝ C1 u C2 Q2]

* Two caveats: E2 must be known to be

disjoint from C1 and there may be other

formulas hidden from view that also imply

P2.

20

Inference Rule: Disjunction

E1[P1 ↝ C1 Q], E2[P2 ↝C2 Q]

E1 u E2[P1 v P2 ↝ C1 u C2 Q]

21

A Small Example

BEFORE

 .pc = 972, .x=7, .y = 2, .x > .y, F(.p,.q, …)

 *(pc,e,x,w,p,q,), y ◁ w, z ◁ w

 {e}[.pc = 972 ↝{x,z,pc} #pc=.pc+1, #x = .x+1]

22

AFTER
• .pc = 973, .x=8, .y = 2, .x > .y, F(.p,.q, …)

• *(pc,e,x,w,p,q,), y ◁ w, z ◁ w

• {e}[.pc = 972 ↝{x,z,pc} #pc=.pc+1, #x = .x+1]

The State Delta Verification System

 Symbolic execution oriented verification

 Initialize with large set of state deltas and initial
conditions.

 New state deltas are proven by
◦ Application of state deltas

◦ Case analysis

◦ Induction

 SAT/SMT was added using Oppen-Nelson system.
◦ New SMT solvers for arrays and other theories were

added.

23

24

