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The λΠ-calculus at the core

A calculus with dependent types: array : nat → Type.

In a Curry-de Bruijn-Howard style, the λΠ-calculus is a language
representing proofs of minimal predicate logic.

At least two choices to increase expressiveness:

1. enrich the λΠ-calculus by adding more deduction rules (e.g.
CIC);

2. liberalize the conversion rule (λΠ-calculus modulo).

The λΠ-calculus modulo



The λΠ-calculus modulo

Var 3 x , y , z

Term 3 t,A,B ::= x | λx :A. M | Πx :A. B | M N | Type | Kind

Figure: Grammar of the λΠ-calculus modulo
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Typing rules: Abstractions

Γ ` A : Type Γ, x :A ` B : s
(prod)

Γ ` Πx :A. B : s

Γ ` A : Type Γ, x :A ` B : s Γ, x :A ` M : B
(abs)

Γ ` λx :A. M : Πx :A. B

s ∈ {Type,Kind}

The λΠ-calculus modulo



Typing rules: Dependent application

Γ ` M : Πx :A. B Γ ` N : A(app)
Γ ` M N : {N/x}B
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Typing rules: Conversion modulo

Γ ` M : A Γ ` A : s Γ ` B : s(conv) A ≡βR B
Γ ` M : B

The λΠ-calculus modulo



A Dedukti signature

∀y , 0 + y = y

∀x , ∀y , S x + y = S (x + y).

nat : Type .
Z : nat .
S : nat → nat .
p l u s : nat → nat → nat .

[ y : nat ] p l u s Z y ↪→ y
[ x : nat , y : nat ] p l u s ( S x ) y ↪→ S ( p l u s x y ) .

The λΠ-calculus modulo



A sample derivation

In the following context:

Γ := nat : Type, vec : nat → Type,

cat : Πn:nat. Πm:nat. vec n→ vec m→ vec (n + m)

n : nat, v : vec n.

we have

Γ ` cat : ... Γ ` n : nat Γ ` v : vec n(apps)
Γ ` cat n n v v : vec (n + n)

(conv)
Γ ` cat n n v v : vec (2 ∗ n)

The λΠ-calculus modulo



Dedukti’s goals

I Fast type checking of an extensible λ-calculus.
I Use compilation techniques.

I Plenty of efficient compilers available;
I reuse them off the shelf (separate concerns).

I Lightest possible runtime system.

Two choices are possible:

I generate a specific type checker for each theory (LFSC);

I generate a specific type checker for a set of terms (Dedukti).

The Dedukti proof checker
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The big picture

a.out.dk
Dedukti

.dko
Compiler

Runtime
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Two interpretations

We fully embed the type checking logic in the target language.

Generated data/code must fit two purposes:

1. Type checking (static representation).

2. Normalizing (dynamic representation).

The Dedukti proof checker



Two interpretations

The static version of terms in HOAS (p.q).

data Term =
Lam ( Term → Term )

| App Term Term
| B Term

pxq = B x

pλx . tq = Lam (λx .ptq)

pa bq = App paq pbq

With this interpreter:

eval (B x) = x

eval (Lam f ) = λx .eval (f x)

eval (App a b) = (eval a)(eval b)

How to peel the result of the evaluation?
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Two interpretations

eval’ (B x) = x

eval’ (Lam f ) = L (λx .eval’ (f x))

eval’ (App a b) = app (eval’ a) (eval’ b)

app (L f ) x = f x

app a b = A a b

JxK = x

Jλx . tK = L (λx .JtK)

Ja bK = app JaK JbK
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Context free type checking

de Bruijn’s criterion

We must have the simplest possible runtime.

As a solution, we rely on the host language’s features.

Judgements become closures: we move from Γ ` t:T to ` t:T ;
substitutions are performed using HOAS.

Term 3 t,A,B ::= x | [y : T ] | λx . M | Πx :A. B |M N | Type | Kind

The Dedukti proof checker



Context free type checking

C −→∗w Πx :A. B ` {[y : A]/x}M ⇐ {y/x}B
(absb)

` λx . M ⇐ C

Which maps trivially to this Haskell snippet:

check n (Lam f ) ( Pi a t ) =
check ( n + 1) ( f box ) ( t v a r )

where box = Box n a
v a r = Var n

The Dedukti proof checker
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Dedukti on a simple example

Module Dedukti Compilation and execution

Coq.Init.Logic 50 sec 1 min 13 sec + 0.261 sec

Module Chicken

Coq.Init.Logic 0.170 sec

Better performance using JIT compilation



Dedukti on a simple example

Module Dedukti Compilation and execution

Coq.Init.Logic 50 sec 1 min 13 sec + 0.261 sec

Module Chicken

Coq.Init.Logic 0.170 sec

Better performance using JIT compilation



A complete rewrite

Dedukti was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

1. the translator can be an online program (work in a stream
friendly way);

2. the internal state of the translator is tiny, hence no garbage
collection is needed.
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A complete rewrite

Dedukti now switches from Haskell to Lua.

I Lua is a minimal programming language.

I Lua enjoys a very fast cutting edge JIT (luajit).

I Lua is not statically typed, not scoped.

Better performance using JIT compilation



A huge performance gap

File Dedukti before Dedukti after

bool steps.dk > 5 min 6 sec
Coq Init Logic.dk 50 sec 0.08 sec

Figure: Speed of the first translation

Because memory management is handmade, several gigabytes are
saved during the processing of big files.

Better performance using JIT compilation



The JIT compromise

Figure: Compilation vs JIT
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Conclusion

I Dedukti is
I 1285 lines of C (+ 451 lines of comments);
I blazingly fast on resonably sized examples;
I not worse than a trivial implementation;
I generating Lua code.

I Using a JIT allows a a smoother behavior of type checking
times.

I Next steps: improve our control on generated code, cope with
luajit’s limits.

Conclusion
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