
Dedukti: A Universal Proof Checker

Mathieu Boespflug1 Quentin Carbonneaux2

Olivier Hermant3

1McGill University

2INRIA and ENPC

3INRIA and ISEP

PxTP 2012

Contents

Introduction

The λΠ-calculus modulo

The Dedukti proof checker

Better performance using JIT compilation

Conclusion

Dedukti as a universal backend

Dedukti

HOL Coq

FoCaLiZe

PVS

Isabelle

Introduction

The λΠ-calculus at the core

A calculus with dependent types: array : nat → Type.

In a Curry-de Bruijn-Howard style, the λΠ-calculus is a language
representing proofs of minimal predicate logic.

At least two choices to increase expressiveness:

1. enrich the λΠ-calculus by adding more deduction rules (e.g.
CIC);

2. liberalize the conversion rule (λΠ-calculus modulo).

The λΠ-calculus modulo

The λΠ-calculus modulo

Var 3 x , y , z

Term 3 t,A,B ::= x | λx :A. M | Πx :A. B | M N | Type | Kind

Figure: Grammar of the λΠ-calculus modulo

The λΠ-calculus modulo

Typing rules: Abstractions

Γ ` A : Type Γ, x :A ` B : s
(prod)

Γ ` Πx :A. B : s

Γ ` A : Type Γ, x :A ` B : s Γ, x :A ` M : B
(abs)

Γ ` λx :A. M : Πx :A. B

s ∈ {Type,Kind}

The λΠ-calculus modulo

Typing rules: Dependent application

Γ ` M : Πx :A. B Γ ` N : A(app)
Γ ` M N : {N/x}B

The λΠ-calculus modulo

Typing rules: Conversion modulo

Γ ` M : A Γ ` A : s Γ ` B : s(conv) A ≡βR B
Γ ` M : B

The λΠ-calculus modulo

A Dedukti signature

∀y , 0 + y = y

∀x , ∀y , S x + y = S (x + y).

nat : Type .
Z : nat .
S : nat → nat .
p l u s : nat → nat → nat .

[y : nat] p l u s Z y ↪→ y
[x : nat , y : nat] p l u s (S x) y ↪→ S (p l u s x y) .

The λΠ-calculus modulo

A sample derivation

In the following context:

Γ := nat : Type, vec : nat → Type,

cat : Πn:nat. Πm:nat. vec n→ vec m→ vec (n + m)

n : nat, v : vec n.

we have

Γ ` cat : ... Γ ` n : nat Γ ` v : vec n(apps)
Γ ` cat n n v v : vec (n + n)

(conv)
Γ ` cat n n v v : vec (2 ∗ n)

The λΠ-calculus modulo

Dedukti’s goals

I Fast type checking of an extensible λ-calculus.
I Use compilation techniques.

I Plenty of efficient compilers available;
I reuse them off the shelf (separate concerns).

I Lightest possible runtime system.

Two choices are possible:

I generate a specific type checker for each theory (LFSC);

I generate a specific type checker for a set of terms (Dedukti).

The Dedukti proof checker

Dedukti’s goals

I Fast type checking of an extensible λ-calculus.
I Use compilation techniques.

I Plenty of efficient compilers available;
I reuse them off the shelf (separate concerns).

I Lightest possible runtime system.

Two choices are possible:

I generate a specific type checker for each theory (LFSC);

I generate a specific type checker for a set of terms (Dedukti).

The Dedukti proof checker

Dedukti’s goals

I Fast type checking of an extensible λ-calculus.
I Use compilation techniques.

I Plenty of efficient compilers available;
I reuse them off the shelf (separate concerns).

I Lightest possible runtime system.

Two choices are possible:

I generate a specific type checker for each theory (LFSC);

I generate a specific type checker for a set of terms (Dedukti).

The Dedukti proof checker

The big picture

a.out.dk
Dedukti

.dko
Compiler

Runtime

The Dedukti proof checker

Two interpretations

We fully embed the type checking logic in the target language.

Generated data/code must fit two purposes:

1. Type checking (static representation).

2. Normalizing (dynamic representation).

The Dedukti proof checker

Two interpretations

The static version of terms in HOAS (p.q).

data Term =
Lam (Term → Term)

| App Term Term
| B Term

pxq = B x

pλx . tq = Lam (λx .ptq)

pa bq = App paq pbq

With this interpreter:

eval (B x) = x

eval (Lam f) = λx .eval (f x)

eval (App a b) = (eval a)(eval b)

How to peel the result of the evaluation?

The Dedukti proof checker

Two interpretations

The static version of terms in HOAS (p.q).

data Term =
Lam (Term → Term)

| App Term Term
| B Term

pxq = B x

pλx . tq = Lam (λx .ptq)

pa bq = App paq pbq

With this interpreter:

eval (B x) = x

eval (Lam f) = λx .eval (f x)

eval (App a b) = (eval a)(eval b)

How to peel the result of the evaluation?

The Dedukti proof checker

Two interpretations

eval’ (B x) = x

eval’ (Lam f) = L (λx .eval’ (f x))

eval’ (App a b) = app (eval’ a) (eval’ b)

app (L f) x = f x

app a b = A a b

JxK = x

Jλx . tK = L (λx .JtK)

Ja bK = app JaK JbK

The Dedukti proof checker

Two interpretations

eval’ (B x) = x

eval’ (Lam f) = L (λx .eval’ (f x))

eval’ (App a b) = app (eval’ a) (eval’ b)

app (L f) x = f x

app a b = A a b

The dynamic version of terms (J.K).

J.K = eval’ ◦ p.q JxK = x

Jλx . tK = L (λx .JtK)

Ja bK = app JaK JbK

The Dedukti proof checker

Two interpretations

eval’ (B x) = x

eval’ (Lam f) = L (λx .eval’ (f x))

eval’ (App a b) = app (eval’ a) (eval’ b)

app (L f) x = f x

app a b = A a b

pxq = B x

pλx . tq = Lam (λx .ptq)

pa bq = App paq pbq

JxK = x

Jλx . tK = L (λx .JtK)

Ja bK = app JaK JbK

The Dedukti proof checker

Context free type checking

de Bruijn’s criterion

We must have the simplest possible runtime.

As a solution, we rely on the host language’s features.

Judgements become closures: we move from Γ ` t:T to ` t:T ;
substitutions are performed using HOAS.

Term 3 t,A,B ::= x | [y : T] | λx . M | Πx :A. B |M N | Type | Kind

The Dedukti proof checker

Context free type checking

C −→∗w Πx :A. B ` {[y : A]/x}M ⇐ {y/x}B
(absb)

` λx . M ⇐ C

Which maps trivially to this Haskell snippet:

check n (Lam f) (Pi a t) =
check (n + 1) (f box) (t v a r)

where box = Box n a
v a r = Var n

The Dedukti proof checker

Context free type checking

C −→∗w Πx :A. B ` {[y : A]/x}M ⇐ {y/x}B
(absb)

` λx . M ⇐ C

Which maps trivially to this Haskell snippet:

check n (Lam f) (Pi a t) =
check (n + 1) (f box) (t v a r)

where box = Box n a
v a r = Var n

The Dedukti proof checker

Dedukti on a simple example

Module Dedukti Compilation and execution

Coq.Init.Logic 50 sec 1 min 13 sec + 0.261 sec

Module Chicken

Coq.Init.Logic 0.170 sec

Better performance using JIT compilation

Dedukti on a simple example

Module Dedukti Compilation and execution

Coq.Init.Logic 50 sec 1 min 13 sec + 0.261 sec

Module Chicken

Coq.Init.Logic 0.170 sec

Better performance using JIT compilation

A complete rewrite

Dedukti was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

1. the translator can be an online program (work in a stream
friendly way);

2. the internal state of the translator is tiny, hence no garbage
collection is needed.

Better performance using JIT compilation

A complete rewrite

Dedukti was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

1. the translator can be an online program (work in a stream
friendly way);

2. the internal state of the translator is tiny, hence no garbage
collection is needed.

Better performance using JIT compilation

A complete rewrite

Dedukti was freshly (6 weeks ago) rewritten in C.

Simple observation: the translator is a syntactic map.

This allows a new design:

1. the translator can be an online program (work in a stream
friendly way);

2. the internal state of the translator is tiny, hence no garbage
collection is needed.

Better performance using JIT compilation

A complete rewrite

Dedukti now switches from Haskell to Lua.

I Lua is a minimal programming language.

I Lua enjoys a very fast cutting edge JIT (luajit).

I Lua is not statically typed, not scoped.

Better performance using JIT compilation

A huge performance gap

File Dedukti before Dedukti after

bool steps.dk > 5 min 6 sec
Coq Init Logic.dk 50 sec 0.08 sec

Figure: Speed of the first translation

Because memory management is handmade, several gigabytes are
saved during the processing of big files.

Better performance using JIT compilation

The JIT compromise

Figure: Compilation vs JIT

Better performance using JIT compilation

Conclusion

I Dedukti is
I 1285 lines of C (+ 451 lines of comments);
I blazingly fast on resonably sized examples;
I not worse than a trivial implementation;
I generating Lua code.

I Using a JIT allows a a smoother behavior of type checking
times.

I Next steps: improve our control on generated code, cope with
luajit’s limits.

Conclusion

	Introduction
	The -calculus modulo
	The Dedukti proof checker
	Better performance using JIT compilation
	Conclusion

