When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks

Qiao Xiang, *Student Member*, *IEEE*, Hongwei Zhang, *Member*, *IEEE*, Jinhong Xu, Xiaohui Liu, and Loren J. Rittle

Abstract—As sensornets are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). Toward understanding the complexity of joint QoS and INP optimization, we study the problem of jointly optimizing packet packing (i.e., aggregating shorter packets into longer ones) and the timeliness of data delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily depends on aggregation constraints (in particular, maximum packet size and reaggregation tolerance) instead of network and traffic properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet packing schemes. To understand the impact of joint QoS and INP optimization on sensornet performance, we design a distributed, online protocol *tPack* that schedules packet transmissions to maximize the local utility of packet packing at each node. Using a testbed of 130 TelosB motes, we experimentally evaluate the properties of tPack. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance. Our findings shed light on the challenges, benefits, and solutions of joint QoS and INP optimization, and they also suggest open problems for future research.

Index Terms—Wireless network, sensor network, real-time, packet packing, in-network processing.

1 INTRODUCTION

A FTER the past decade of active research and field trials, wireless sensor networks (which we call *sensornets* hereafter) have started penetrating into many areas of science, engineering, and our daily life. They are also envisioned to be an integral part of cyber-physical systems (CPS) such as those for alternative energy, transportation, and healthcare. In supporting mission-critical, real-time, closed-loop sensing and control, CPS sensornets represent a significant departure from traditional sensornets which usually focus on open-loop sensing, and it is critical to ensure messaging quality (e.g., timeliness of data delivery) in CPS sensornets. The stringent application requirements in CPS make it necessary to rethink about sensornet design, and one such problem is in-network processing (INP).

For resource constrained sensornets, in-network processing improves energy efficiency and data delivery performance by reducing network traffic load and thus channel contention. Over the past years, many INP methods have been proposed for query processing (e.g., TinyDB [1]) and

Manuscript received 25 Mar. 2010; revised 16 Nov. 2010; accepted 2 Dec. 2010; published online 20 Apr. 2011.

For information on obtaining reprints of this article, please send e-mail to: tmc@computer.org, and reference IEEECS Log Number TMC-2010-03-0140. Digital Object Identifier no. 10.1109/TMC.2011.81. general data collection (e.g., DFuse [2]). Not focusing on mission-critical sensornets, however, these works have mostly ignored the timeliness of data delivery when designing INP mechanisms. Recently, Becchetti et al. [3] and Oswald et al. [4] examined the issue of data delivery latency in in-network processing. Theoretical in nature, these studies assumed *total aggregation* where any arbitrary number of information elements (e.g., reports after an event detection) can be aggregated into one single packet, which may well be infeasible in many practical settings. Thus, the interaction between specific, real-world INP methods and data delivery timeliness remains a largely unexplored issue in sensornet systems. This is an important issue because 1) it affects the efficiency and quality of realtime embedded sensing and control, and 2) as we will show later in the paper, data aggregation constraints (e.g., aggregation capacity limit and reaggregation tolerance) affect, to a greater extent than network and traffic properties, the complexity and the protocol design in jointly optimizing INP and the timeliness of data delivery.

Toward understanding the interaction between INP and data delivery latency in foreseeable real-world sensornet deployments, we focus on a widely used, application-independent INP method—*packet packing* where multiple short packets are aggregated into a single long packet [5], [6]. In sensornets (especially those for real-time sensing and control), an information element from each sensor is usually short, for instance, less than 10 bytes [1], [7]. Yet the header overhead of each packet is relatively high in most sensornet platforms, for instance, up to 31 bytes at the MAC layer alone in IEEE 802.15.4-based networks. It is also expected

Q. Xiang, H. Zhang, and X. Liu are with the Department of Computer Science, Wayne State University, Detroit, MI 48202.
 E-mail: {xiangq27, hongwei, xiaohui}@wayne.edu.

J. Xu is with Financial Risk Management, Simon Fraser University, Vancouver, British Columbia V6C 1W6, Canada. E-mail: jinhxu@indiana.edu.

L.J. Rittle is with the Content and Context-Aware Solutions Group, Motorola Mobility, Schaumburg, IL 60196. E-mail: ljrittle@motorola.com.

that more header overhead will be introduced at other layers (e.g., routing layer) as we standardize sensornet protocols such as in the effort of the IETF working groups 6LowPAN [8] and ROLL [9]. Besides header overhead, MAC coordination also introduces nonnegligible overhead in wireless networks [6]. If we only transmit one short information element in each packet transmission, the high overhead in packet transmission will significantly reduce the network throughput; this is especially the case for highspeed wireless networks such as IEEE 802.15.4a ultrawideband (UWB) networks. Fortunately, the maximum size of packet payload is usually much longer than that of each information element, for instance, 128 bytes per MAC frame in 802.15.4. Therefore, we can aggregate multiple information elements into a single packet to reduce the amortized overhead of transmitting each element. Packet packing also reduces the number of packets contending for channel access; hence, it reduces the probability of packet collision and improves information delivery reliability, as we will show in Section 5. The benefits of packet packing have also been recognized by the IETF working groups 6LowPAN and ROLL.

Unlike total aggregation assumed in [3] and [4], the number of information elements that can be aggregated into a single packet is constrained by the maximum packet size; thus, we have to carefully schedule information element transmissions so that the degree of packet packing (i.e., the amount of sensing data contained in packets) can be maximized without violating application requirement on the timeliness of data delivery. As a first step toward understanding the complexity of jointly optimizing INP and QoS with aggregation constraints, we analyze the impact that aggregation constraints have on the computational complexity of the problem, and we prove the following:

- When a packet can aggregate three or more information elements, the problem is strong NPhard, and there is no polynomial-time approximation scheme (PTAS).
- When a packet can only aggregate two information elements, the complexity depends on whether two elements in a packet can be separated and repacked with other elements on their way to the sink: if the elements in a packet can be separated, the problem is strong NP-hard and there is no PTAS for the problem; otherwise, it can be solved in polynomial time by modeling the problem as a maximum weighted matching problem in an interval graph.
- The above conclusions hold whether or not the routing structure is a tree or a linear chain, and whether or not the information elements are of equal length.

Besides shedding light on the complexity and protocol design of jointly optimizing data delivery timeliness and packet packing (as well as other INP methods), these findings incidentally answer several open questions on the complexity of batch-process scheduling in interval graphs [10].

To understand the impact of jointly optimizing packet packing and data delivery timeliness, we design a distributed, online protocol *tPack* that schedules packet

TABLE 1 Notations Used in Sections 2 and 3

Common notations	
K	maximum number of information elements allowed
	in a packet
$ETX_{v_iv_j}(l)$	expected number of transmissions taken to success-
	fully deliver a packet of length l along link (v_i, v_j)
$t_{v_i v_k}(l)$	maximum time taken to deliver a packet of length l
	from v_i to v_k in the absence of packet packing and
	packing-oriented scheduling
Notations used in Section II only	
R	root of a directed collection tree
x	an information element
v_x	the node where x is generated
l_x	length of x
r_x	time when x is generated
d_x	deadline of delivering x to R
s_x	spare time in delivering x
$[r_x, d_x]$	lifetime of x
Notations used in Section III only	
n	number of variables in a SAT instance
m	number of clauses in a SAT instance
X_j	<i>j</i> th variable of a SAT instance
C_i	<i>i</i> th clause of a SAT instance
x_i^j	information element corresponding to the variable
	X_i in a clause C_i
$[r_i^j, d_i^j]$	lifetime of x_i^j
ax_k^j	kth auxiliary information element for variable X_j
$[r^j_{ax_k}, d^j_{ax_k}]$	lifetime of ax_k^j
z_i	information element generated by node v_i^c
$[r_i, d_i]$	lifetime of z_i
t_1	transmission time from any leaf node to its parent
t_2	transmission time from any node v_j to node v
t_3	transmission time from node v to node s
t_4	transmission time from any node v^c to node v

transmissions to maximize the local utility of packet packing at each node while taking into account the aggregation constraint imposed by the maximum packet size. Using a testbed of 130 TelosB motes, we experimentally evaluate the properties of tPack. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance (e.g., in terms of high reliability, highenergy efficiency, and low-delay jitter).

The rest of the paper is organized as follows: We discuss the system model and precisely define the joint optimization problem in Section 2. Then, we analyze the complexity of the problem in Section 3, and present the tPack protocol in Section 4. We experimentally evaluate the performance of tPack and study the impact of packet packing as well as joint optimization in Section 5. We discuss related work in Section 6, and conclude the paper in Section 7. For convenience, we summarize in Table 1 the notations used in Sections 2 and 3.

2 SYSTEM MODEL AND PROBLEM DEFINITION

2.1 System Model

We consider a directed collection tree T = (V, E), where Vand E are the set of nodes and edges in the tree. $V = \{v_i : i = 1, ..., N\} \cup \{R\}$ where R is the root of the tree and represents the data sink of a sensornet, and $\{v_i : i = 1, ..., N\}$ are the set of N sensor nodes in the network. An edge $\langle v_i, v_j \rangle \in E$ if v_j is the parent of v_i in the collection tree. The parent of a node v_i in T is denoted as p_i . We use $ETX_{v_iv_j}(l)$ to denote the expected number of transmissions required for delivering a packet of length l from a node v_i to its ancestor v_j , and we use $t_{v_iv_k}(l)$ to denote the maximum time taken to deliver a packet of length l from v_i to v_k in the absence of packet packing and packing-oriented scheduling.

Each information element x generated in the tree is identified by a 4-tuple (v_x, l_x, r_x, d_x) where v_x is the node that generates x, l_x is the length of x, r_x is the time when x is generated, and d_x is the deadline by which x needs to be delivered to the sink node R. We use $s_x = d_x - (r_x + t_{v_x R}(l_x))$ to denote the *spare time* for x, and we define the *lifetime of* x as $[r_x, d_x]$.

2.2 Problem Definition

Given a collection tree *T* and a set of information elements $X = \{x\}$ generated in the tree, we define the problem of jointly optimizing packet packing and the timeliness of data delivery as follows:

Problem \mathbb{P} . Given *T* and *X*, schedule the transmission of each element in *X* to minimize the total number of packet transmissions required for delivering *X* to the sink *R* while ensuring that each element be delivered to *R* before its deadline.

In an application-specific sensornet, the information elements generated by different nodes depend on the application but may well be of equal length [7]. Depending on whether the sensornet is designed for event detection or data collection, moreover, the information elements X may follow certain arrival processes. Based on the specific arrival process of X, the following special cases of problem IP tend to be of practical relevance in particular:

Problem \mathbb{P}_0 . Same as \mathbb{P} except that 1) the elements of *X* are of equal length, and 2) *X* includes at most one element from each node; this problem can represent sensornets that detect rare events.

Problem \mathbb{P}_1 . Same as \mathbb{P} except that 1) the elements of X are of equal length, and 2) every two consecutive elements generated by the same node v_i are separated by a time interval whose length is randomly distributed in [a, b]; this problem can represent periodic data collection sensornets (with possible random perturbation to the period).

Problem \mathbb{P}_2 . Same as \mathbb{P} except that the elements of *X* are of equal length; this problem represents general application-specific sensornets.

3 COMPLEXITY OF JOINT OPTIMIZATION

The complexity of problem \mathbb{P} depends on aggregation constraints such as maximum packet size and whether information elements in a packet can be separated and repacked with other elements. For convenience, we use K to denote the maximum number of information elements that can be packed into a single packet. (Note that K depends on the maximum packet size and the lengths of information elements in problem \mathbb{P} .) In what follows, we

Fig. 1. Reduction from SAT to \mathbb{P}_0 when $K \geq 3$.

first analyze the case when $K \ge 3$ and then the case when K = 2, and we discuss how aggregation constraints affect the problem complexity.

3.1 Complexity when $K \ge 3$

We first analyze the complexity and the hardness of approximation for problem \mathbb{P}_0 , then we derive the complexity of \mathbb{P}_1 , \mathbb{P}_2 , and \mathbb{P} accordingly. The analysis is based on reducing the Boolean-satisfiability problem (SAT) [11] to \mathbb{P}_0 as we show below.

- **Theorem 1.** When $K \ge 3$, problem \mathbb{P}_0 is strong NP-hard whether or not the routing structure is a tree or a linear chain.
- **Proof.** To prove that \mathbb{P}_0 is strong NP-hard, we first present a polynomial transformation *f* from the SAT problem to \mathbb{P}_0 , then we prove that an instance Π of SAT is satisfiable if and only if the optimal solution of $\Pi' = f(\Pi)$ has certain minimum number of transmissions.

Given an instance Π of the SAT problem which has n Boolean variables X_1, \ldots, X_n and m clauses C_1, \ldots, C_m , we derive a polynomial time transformation from Π to an instance Π' of \mathbb{P}_0 with $K \ge 3$ as follows. We first construct a tree as shown in Fig. 1. In this tree, node v_j , $j = 1, \ldots, n$ corresponds to the variable X_j . Node v is an intermediate node and node S is the sink node. ETX_{v_jv} is D, with $D \gg 1$, and ETX_{vs} is 1. If a variable X_j appears k_j times in total in the m clauses, then $2k_j + 3$ children nodes are attached to node v_j , labeled as $v_0^j, \ldots, v_{2k_j+2}^j$. m children are also attached to node v, labeled as v_1^r, \ldots, v_m^c . Each of these edge has a ETX of 1. The transmission time from each child of v_j to itself is t_1 , and the transmission time from v_i^c to v is t_4 .

After constructing the tree, we define the information elements and their lifetimes as follows. For each subtree rooted at node v_j , we first define $2k_j + 1$ information elements and then assign them one by one to the leaf nodes $v_1^j, \ldots, v_{2k_j+1}^j$ of this subtree. If variable X_j occurs unnegated in clause C_i , we create an information element x_i^j with lifetime $[r_i^j, d_i^j] = [(3i+1)(n+1) + j, (3i+2)(n+1) + j + t_1 + t_2 + t_3]$. If X_j occurs negated in clause C_i , we create an information element $x_i^j : [r_i^j, d_i^j] = [3i(n+1) + j, (3i+1)(n+1) + j + t_1 + t_2 + t_3]$. Let $i_1^j < \cdots < i_{k_j}^j$ denote the indices of the clauses in which variable X_j occurs. For

Fig. 2. Lifetimes of information elements.

every two messages $x_{i_t^j}^j$ and $x_{i_{t+1}^j}^j$, $t = 1, ..., k_j - 1$, define an information element

$$ax_{i_{t}^{j}}^{j}:\left[r_{a_{t}}^{j}, d_{a_{t}}^{j}\right] = \left[d_{i_{t}^{j}}^{j} - t_{1} - t_{2} - t_{3}, r_{i_{t+1}}^{j} + t_{1} + t_{2} + t_{3}\right].$$

We also define $ax_0^j : [r_{a_0}^j, d_{a_0}^j] = [j, r_{i_1^j}^j + t_1 + t_2 + t_3]$, and

$$ax_{k_j}^j: \left[r_{a_{k_j}}^j, d_{a_{k_j}}^j\right] = \left[d_{i_{k_j}^j}^j - t_1 - t_2 - t_3, 3(m+1)(n+1) + j + t_1 + t_2 + t_3\right].$$

In this way, every two consecutive information elements in this sequence overlap in their lifetimes, and the size of the overlap is $t_1 + t_2 + t_3$. After defining these $2k_j + 1$ information elements, we set the source of each element one by one from node v_1^j to node $v_{2k_j+1}^j$. For each node v_0^j , we define an element $z_0^j:[j, j+t_1+t_2+t_3]$. For each node $v_{2k_j+2}^j$, we define an element $z_{2k_j+2}^j:$ $[3(m+1)(n+1)+j,3(m+1)(n+1)+j+t_1+t_2+t_3]$. Fig. 2 demonstrates how the lifetimes of these $2k_j+3$ information elements are defined.

Similarly, we define *m* information elements generated by nodes v_1^c, \ldots, v_m^c , with element $z_i : [r_i, d_i] = [(3i+1)(n+1) + t_1 + t_2 - t_4, (3i+2)(n+1) + t_1 + t_2 + t_3],$ $i = 1, \ldots, m$, being generated by node v_i^c . Then, for nodes v_1 to v_n , we define an information element for each of them with lifetime $[4(m+1)(n+1) + i, 4(m+1)(n+1) + i + t_2 + t_3], i = 1, \ldots, n$. For node *v*, define an information element with lifetime $[4(m+1)^2(n+1) + i, 4(m+1)^2(n+1) + i + t_3]$.

Given the above polynomial-time reduction from a SAT problem Π to an instance Π' of \mathbb{IP}_0 and the lemma, we can prove that the minimum number of transmissions required in Π' is $tx_0 = \sum_{j=1}^n (2k_j + 1) +$ $\sum_{i=1}^{n} [(k_i+1)(D+1)] + 2n(D+1) + 2n+m+1$ if and only if Π is satisfiable. That is, given a satisfiable assignment for Π , an optimal packing scheme can be found by sending elements at leaf nodes immediately after they were generated; additionally, if X_j is set to true in the assignment, node v_i will forward each element x_i^j $(i = 1 \dots k_i)$ to node v as soon as the element is received by v_i , and, if X_i is set to false, v_i will be spending all of $x_i^{j'}$'s spare time before forwarding it; this way, the total number of transmissions taken is tx_0 . In the mean time, if we find an optimal packing scheme of cost tx_0 for problem Π' , we can give a satisfiable assignment for Π by setting X_i to true if x_i^j $(i = 1 \dots k_j)$ is forwarded immediately from v_j to v, and setting X_j to false if all x_i^j s are held by v_j until its spare time is used up. More details on this reasoning can be found in [12].

We have also proved that \mathbb{P}_0 is NP-hard when the routing structure is a linear chain. Due to the limitation of space, we relegate the detailed proof to [12]. Therefore, \mathbb{P}_0 is strong NP-hard when $K \ge 3$, whether or not the routing structure is a tree or a linear chain.

Having proved the strong NP-hardness of \mathbb{P}_0 when $K \geq 3$, we analyze the hardness of approximation for \mathbb{P}_0 using a gap-preserving reduction from MAX-3SAT to \mathbb{P}_0 [13], and we have:

- **Theorem 2.** When $K \ge 3$, there exists $\epsilon \ge 1$ such that it is NPhard to achieve an approximation ratio of $1 + \frac{1}{200N}(1 - \frac{1}{\epsilon})$ for problem \mathbb{P}_0 , where N is the number of information elements in \mathbb{P}_0 .
- **Proof.** We first show that the reduction presented in Fig. 1 is a gap-preserving reduction [13] from MAX-3SAT to problem \mathbb{P}_0 . It is easy to verify that the proof of Theorem 1 holds if the discussion of the proof is based on 3SAT instead of the general SAT problem, in which case $\sum_{j=1}^{n} k_j = 3m$ and we denote the reduction as *f*. Therefore, if a 3SAT problem II is satisfiable, the minimum cost of the \mathbb{P}_0 problem $\Pi' = f(\Pi)$ is

$$C_{t1} = C_{t0} + m$$

$$= \left(\sum_{j=1}^{n} (2k_j + 1) + \sum_{j=1}^{n} (k_j + 1)(D + 1) + 2n(D + 1) + 2n(D + 1) + n(1) + m \right)$$

$$= m(3D + 10) + n(3D + 6) + 1.$$
(1)

Since n < 4m, (1) implies that

$$C_{t1} < m(3D+10) + n(3D+10) < 5m(3D+10).$$
(2)

Note that the proof of Theorem 1 holds if $D = n + \sum_{j=1}^{n} (2k_j + 3) = 6m + n$, which is the number of information elements generated by the descendants of node v. Thus, (2) implies that

$$C_{t1} < 5m(3(6m + n) + 10) = 5m(18m + 3n + 10) < 5m(18m + 3 \times 4m + 10) = 5m(30m + 10) < 5m(30m + 10m) = 200m^{2}.$$
(3)

If only m_0 of the m clauses in Π are satisfiable, then the minimum cost in $\Pi' = f(\Pi)$ (with $K \ge 3$ is $C_{t1} + m - m_0$. This is because $(m - m_0)$ number of z_i 's cannot be packed with any other packet and have to be sent from node v to s alone, which incurs an extra cost of one each. Accordingly, if less than m_0 of the mclauses in Π are satisfiable, then the minimum cost C' in $\Pi' = f(\Pi)$ is greater than $C_{t1} + m - m_0$. Letting $\epsilon = \frac{m}{m_0}$, (3) implies that

$$\frac{C'}{C_{t1}} > \frac{C_{t1} + m - m_0}{C_{t1}} \\
= \frac{C_{t1} + \epsilon m_0 - m_0}{C_{t1}} \\
= 1 + \frac{(\epsilon - 1)m_0}{C_{t1}} \\
> 1 + \frac{(\epsilon - 1)m_0}{200m^2} \qquad (4) \\
= 1 + \frac{\epsilon - 1}{200m} \frac{1}{\epsilon} \\
= 1 + \frac{1}{200m} \left(1 - \frac{1}{\epsilon}\right) \\
\ge 1 + \frac{1}{200N} \left(1 - \frac{1}{\epsilon}\right),$$

where *N* is the number of nonsink nodes in the network and $N \ge m$.

Let $OPT(\Pi)$ and $OPT(\Pi')$ be the optima of a MAX-3SAT problem Π and the corresponding \mathbb{P}_0 problem $\Pi' = f(\Pi)$. Then, the polynomial-time reduction f from MAX-3SAT to \mathbb{P}_0 satisfy the following properties:

$$OPT(\Pi) = 1 \Longrightarrow OPT(\Pi') = C_{t1}$$
$$OPT(\Pi) < \frac{1}{\epsilon} \Longrightarrow OPT(\Pi') > C_{t1} \left(1 + \frac{1}{200N} \left(1 - \frac{1}{\epsilon} \right) \right).$$
⁽⁵⁾

From [13], we know that there exists a polynomial-time reduction f_1 from SAT to MAX-3SAT such that, for some fixed $\epsilon > 1$, reduction f_1 satisfies

$$I \in SAT \Longrightarrow \text{MAX-3SAT}(f_1(I)) = 1,$$

$$I \notin SAT \Longrightarrow \text{MAX-3SAT}(f_1(I)) < \frac{1}{\epsilon}.$$
 (6)

Then, (5) and (6) imply the following:

$$I \in SAT \Longrightarrow OPT(f(f_1(I))) = C_{t1}$$

$$I \notin SAT \Longrightarrow OPT(f(f_1(I))) > C_{t1}\left(1 + \frac{1}{200N}\left(1 - \frac{1}{\epsilon}\right)\right).$$
 (7)

Therefore, it is NP-hard to achieve an approximation ratio of $1 + \frac{1}{200N}(1 - \frac{1}{\epsilon})$ for problem \mathbb{P}_0 .

Based on the definition of polynomial-time approximation scheme and Theorem 2, we, then, have

Corollary 1. There is no polynomial-time approximation scheme for problem \mathbb{P}_0 when $K \geq 3$.

Based on the findings for \mathbb{P}_0 , we have

- **Theorem 3.** When $K \ge 3$, problems \mathbb{P}_1 , \mathbb{P}_2 , and \mathbb{P} are strong NP-hard whether or not the routing structure is a tree or a linear chain, and there is no polynomial-time approximation scheme for solving them.
- **Proof.** To prove the hardness results for \mathbb{P}_1 , let's consider a special case Π_1 of \mathbb{P}_1 where 1) every node is generating information elements using the same period p_0 and the same spare time s_0 for information elements, 2) p_0 is significantly larger than s_0 , and 3) p_0 is significantly larger than the latest time r_0 when a node generates its first information element such that the following holds: in the optimal packing scheme for Π_1 , no two elements

from the same node can be aggregated into the same packet, and the *i*th information element from one node cannot be packed with the *j*th element from another node unless i = j. It is easy to see that the special case Π_1 does exist by properly choosing the parameters p_0 , s_0 , and r_0 . Therefore, solving Π_1 becomes the same as solving an instance Π_0 of \mathbb{P}_0 where the information elements consist of the first element from every node of Π_1 . Therefore, \mathbb{P}_1 is at least as hard as \mathbb{P}_0 . Since \mathbb{P}_0 is strong NP-hard, \mathbb{P}_1 is strong NP-hard, and there is no PTAS for the problem.

Since \mathbb{P}_1 is a special case of \mathbb{P}_2 , and \mathbb{P}_2 is a special case of \mathbb{P} , both \mathbb{P}_2 and \mathbb{P} are strong NP-hard too, and there is no PTAS for them.

Theorems 1 and 3 show that the joint optimization problems are strong NP-hard and there is no PTAS, whether or not the routing structure is a tree or a linear chain and whether or not the information elements are of equal length. In contrast, Becchetti et al. [3] showed that, for total aggregation, the joint optimization problems are solvable in polynomial time via dynamic programming on chain networks. Therefore, we see that aggregation constraints make the difference on whether a problem is tractable for certain networks, and thus it is important to consider them in the joint optimization. Incidentally, we note that Theorem 3 also answers the open question on the complexity of Problem (P4) of batch-process scheduling in interval graphs [10].

3.2 Complexity when K = 2

We showed in Section 3.1 that the problems \mathbb{P}_i , i = 0, 1, 2and IP are all strong NP-hard and there is no PTAS for these problems when $K \ge 3$. We prove in this section that, when K = 2, the complexity of these problems depends on whether information elements in a packet can be separated and repacked with other elements (which we call reaggrega*tion* hereafter) on their way to the sink. When reaggregation is disallowed, these problems are solvable in polynomial time; otherwise, they are strong NP-hard. Note that, when $K \geq 3$, these problems are all strong NP-hard even if reaggregation is disallowed, which can be seen from the proof of Theorem 1. Note also that, even though reaggregation may well be allowed in most sensornet systems when the in-network processing method is packet packing, reaggregation may not be possible or allowed when INP is data fusion such as lossy data compression [14]. Via the study on the impact of reaggregation, therefore, we hope to shed light on the structure of the joint optimization problems when general INP methods are considered.

When K = 2 and reaggregation is allowed, the complexity of the joint optimization problems is very much similar to the case when $K \ge 3$; that is, these problems are all strong NP-hard and there is no PTAS, whether or not the routing structure is a tree or a linear chain and whether or not the information elements are of equal length. Due to the limitation of space, we relegate the detailed proofs to [12], and we only discuss in detail the case when reaggregation is prohibited as follows.

When K = 2 and reaggregation is prohibited, we can solve problem \mathbb{P} (and thus its special versions \mathbb{P}_0 , \mathbb{P}_1 , and

 $\overline{}$

1)

 \mathbb{P}_2) in polynomial time by transforming it into a maximum weighted matching problem in an interval graph. An interval graph G_I is a graph defined on a set I of intervals on the real line such that 1) G_I has one and only one vertex for each interval in the set, and 2) there is an edge between two vertices if the corresponding intervals intersect with each other. Given an instance of problem \mathbb{P} , we solve it using Algorithm 1 as follows:

Algorithm 1. Algorithm for solving \mathbb{P} when K = 2 and reaggregation is prohibited

- 1: Generate an interval graph $G_I(V_I, E_I)$ for problem \mathbb{P} as follows:
 - Select an arbitrary information element *q* generated by node *v_q* at time *r_q* and with spare time *s_q*, define an interval [*r_q*, *r_q* + *s_q*] for *q* on the real line.
 - For each remaining information element p generated by node v_p at time r_p and with spare time s_p, let node v_{pq} be the common ancestor of v_p and v_q that is the farthest away from R among all common ancestors of v_p and v_q, then define an interval [r_q - t_{vqvpq} + t_{vpvpq}, r_q - t_{vqvpq} + t_{vpvpq} + s_q] for information element p.
 - Let V_I = Ø. Then, for each information element s, define a vertex s and add it to V_I.
 - Let $E_I = \emptyset$. If the two intervals that represent any two information elements u and h overlap with each other, define an edge (u, h) and add it to E_I ; then, assign edge (u, h) with a weight $com(u, h) = ETX_{vuh}R(l_u) + ETX_{vuh}R(l_h) ETX_{vuh}R(l_u + l_h)$, where l_u and l_h are the length of u and h, respectively.
- 2: Solve the maximum weighted matching problem for *G_I* using Edmonds' Algorithm [15].
- 3: For each edge (*u*, *h*) in the matching, information elements *u* and *h* are packed together at node *v*_{uv}. For all other vertices not in the matching, their corresponding information elements are sent to the sink alone without being packed with any other information element.

For Algorithm 1, we have:

- **Theorem 4.** When K = 2 and reaggregation is prohibited, Algorithm 1 solves problem \mathbb{P} in $O(n^3)$ time, where n is the number of information elements considered in the problem. This holds whether or not the routing structure is a tree or a linear chain, and whether or not the information elements are of equal length.
- **Proof.** It is easy to see that if information elements u and h are packed together, the total number of transmissions taken to deliver u and h is

$$\begin{split} ETX_{v_u R}(l_u) + ETX_{v_h R}(l_h) - ETX_{v_{uh} R}(l_u) - ETX_{v_{uh} R}(l_h) \\ + ETX_{v_{uh} R}(l_u + l_h) = ETX_{v_u R}(l_u) \\ + ETX_{v_h R}(l_h) - com(u, h). \end{split}$$

Let V_I be the set of vertices in the interval graph G_I , M be a matching in G_I , V_1 be the set of nodes in M, and $V_2 = V_I/V_1$. Then, the weight of M, denoted by W_M , is as follows:

$$\begin{split} W_{M} &= \sum_{(u,h)\in M} com(u,h) \\ &= \sum_{(u,h)\in M} [ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h}) \\ &- (ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h}) - com(u,h))] \\ &= \sum_{(u,h)\in M} (ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h})) \\ &- \sum_{(u,h)\in M} [ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h}) - com(u,h)] \\ &= \sum_{s\in V_{1}} ETX_{sR}(l_{s}) + \sum_{v\in V_{2}} ETX_{vR}(l_{v}) \\ &- \left\{ \sum_{(u,h)\in M} [ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h}) - com(u,h)] \right. \end{split}$$
(8)
$$&+ \sum_{v\in V_{2}} ETX_{vR}(l_{v}) \\ &+ \sum_{v\in V_{2}} ETX_{vR}(l_{v}) \\ &- \left\{ \sum_{(u,h)\in M} [ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h}) - com(u,h)] \right. \\ &- com(u,h)] + \sum_{v\in V_{2}} ETX_{vR}(l_{v}) \\ &- com(u,h)] + \sum_{v\in V_{2}} ETX_{vR}(l_{v}) \\ &- \left\{ \sum_{(u,h)\in M} [ETX_{v_{u}R}(l_{u}) + ETX_{v_{h}R}(l_{h}) - com(u,h)] \right\} . \end{split}$$

Note that $\sum_{v \in V_I} ETX_{vR}(l_v)$ is a fixed value, and

$$\sum_{(u,h)\in M} [ETX_{v_uR}(l_u) + ETX_{v_hR}(l_h) - com(u,h)]$$
$$+ \sum_{v\in V_2} ETX_{vR}(l_v)$$

is the total number of transmissions, denoted by ETX_{total} , incurred in the packing scheme generated by Algorithm 1. Therefore, ETX_{total} is minimized if and only if W_M is maximized, which means that solving the maximum weighted matching problem can give us an optimal solution to the original packet packing problem.

Let *n* denote the total number of information elements in this problem. The whole algorithm consists of three parts. The first one is to define an interval graph and assign weights to each node and edge in the graph, whose time complexity is $O(n^2)$. The second part is to solve the maximum weighted matching problem, whose time complexity is $O(n^3)$ by Edmonds' Algorithm [15]. And the third part is to convert the optimal matching problem to the optimal packing scheme, whose time complexity is O(n). Therefore, the time complexity of the whole algorithm is $O(n^2) + O(n^3) + O(n) = O(n^3)$.

By the definition of the weight com(u, h) for elements uand h in Algorithm 1, the solution generated by the maximum weighted matching tends to greedily pack elements as soon as possible after they are generated. This observation motivates us to design a local, greedy online algorithm *tPack* in Section 4 for the general joint optimization problems, and the effectiveness of this approach will be demonstrated through competitive analysis and testbedbased measurement study in Sections 4 and 5. Note that, incidentally, Theorem 4 also answers the open question on the complexity of scheduling batch processes with release times in interval graphs [10].

4 A UTILITY-BASED ONLINE ALGORITHM

We see from Section 3 that problem IP and its special cases in sensornets are strong NP-hard in most system settings, and there is no polynomial-time approximation scheme for these problems. Instead of trying to find global optimal solution, therefore, we focus on designing a distributed, approximation algorithm tPack that optimizes the local utility of packet packing at each node. Given that packet arrival processes are usually unknown a priori, we consider the online version of the optimization problem.

Based on the definition of \mathbb{P} , its optimization objective is to minimize

$$AC = \frac{TX_{net}}{\sum_{x \in X} l_x},\tag{9}$$

where TX_{net} is the total number of transmissions taken to deliver each information element $x \in X$ to the sink before its deadline. For convenience, we call *AC* the *amortized cost* of delivering $\sum_{x \in X} l_x$ amount of data. In what follows, we design an online algorithm tPack based on this concept of amortized cost of data transmission.

When node j has a packet pkt in its data buffer, j can decide to transmit pkt immediately or to hold it. If jtransmits *pkt* immediately, information elements carried in *pkt* may be packed with packets at *j*'s ancestors to reduce the amortized cost of data transmissions from those nodes; if *j* holds *pkt*, more information elements may be packed with pkt so that the amortized cost of transmission from jcan be reduced. Therefore, we can define the *utility* of transmitting or holding *pkt* as the expected reduction in amortized data transmission cost as a result of the corresponding action, and then the decision on whether to transmit or to hold *pkt* depends on the utilities of the two actions. For simplicity and for low control overhead, we only consider the immediate parent of node j when computing the utility of transmitting *pkt*. We will show the goodness of this local approach through competitive analysis later in this section and through testbed-based measurement in Section 5.

In what follows, we first derive the utilities of holding and transmitting a packet, then we present a scheduling rule that improves the overall utility.

4.1 Utility Calculation

For convenience, we define the following notations:

- L : maximum payload length per packet;
- *ETX*_{*jp*}(*l*) : expected number of transmissions taken to transport a packet of length *l* from node *j* to its ancestor *p*;
- *p_j* : the parent of node *v_j* in the routing tree.

The utilities of holding and transmitting a packet pkt at a node v_j depend on the following parameters related to traffic pattern:

• With respect to v_j itself and its children:

- r_l : expected rate in receiving another packet pkt' from a child or locally from an upper layer;
- s_l : expected payload size of pkt'.
- With respect to the parent of v_j :
 - r_p : expected rate for the parent to transmit another packet pkt'' that does not contain information elements generated or forwarded by v_j itself;
 - *s_p* : expected payload size of *pkt*".

The utilities of holding and transmitting a packet *pkt* also depend on the following constraints posed by timeliness requirement for data delivery as well as limited packet size:

Grace period t'_f for delivering *pkt*: the maximum allowable latency in delivering *pkt* minus the maximum time taken to transport *pkt* from v_j to the sink without being held at any intermediate node along the route.

If $t'_f \leq 0$, *pkt* should be transmitted immediately to minimize the extra delivery latency.

 Spare packet space s'_f of pkt: the maximum allowable payload length per packet minus the current payload length of pkt.

Parameter s'_{f} and the size of the packets coming next from an upper layer at v_{j} or from v_{j} 's children determine how much pkt will be packed and thus the potential utility of locally holding pkt.

In the design and analysis of this section, we assume that packet arrival process (i.e., r_l , r_p), packet payload size and spare space (i.e., s_l , s_p , s'_f), and grace period (i.e., t'_f) are independent of one another. Then, the utilities of holding and transmitting a packet are calculated as follows:

Utility of holding a packet. When a node v_j holds a packet pkt, pkt can be packed with incoming packets from v_j 's children or from an upper layer at v_j . Therefore, the utility of holding pkt at v_j is the expected reduction in the amortized cost of transmitting pkt after packing pkt. The utility depends on 1) the expected number of packets that v_j will receive within t'_j time (either from a child or locally from an upper layer), and 2) the expected payload size s_l of these packets. Given that the expected packet arrival rate is r_l , the expected number of packets to be received at v_j within t'_f time is $t'_f r_l$. Thus, the expected overall size S'_l of the payload to be received within t'_f time is $t'_f r_l s_l$. Given the spare space s'_f in the packet pkt, the expected size S_l of the payload that can be packed into pkt can be approximated¹ as

$$\min\{\mathcal{S}'_l, s'_f\} = \min\{t'_f r_l s_l, s'_f\}.$$
(10)

Therefore, the expected amortized cost AC_l of transporting the packet to the sink R after the anticipated packing can be approximated as¹

$$AC_l = \frac{1}{L - s'_f + \mathcal{S}_l} ETX_{jR}(L - s'_f + \mathcal{S}_l),$$

where $(L - s'_f)$ is the payload length of *pkt* before packing.

^{1.} We use this approximation because it is usually difficult to estimate and store the complete distributions of random variables in resourceconstrained sensor nodes.

Since the amortized cost AC'_{l} of transporting *pkt* without the anticipated packing is

$$AC'_l = \frac{1}{L - s'_f} ETX_{jR}(L - s'_f),$$

the utility U_l of holding *pkt* is

$$U_l = AC_l' - AC_l. \tag{11}$$

Utility of immediately transmitting a packet. If node v_i transmits the packet pkt immediately to its parent p_i , the utility comes from the expected reduction in the amortized cost of packet transmissions at p_j as a result of receiving the payload carried by *pkt*. When v_i transmits *pkt* to p_i , the grace period of *pkt* at p_j is still t'_f , thus the expected number of packets that do not contain information elements from v_j and can be packed with pkt at p_j is $t'_f r_p$, and we use P_{pkt} to denote this set of packets. Given the limited payload that *pkt* carries, it may happen that not every packet in P_{pkt} gets packed (to full) via the payload from *pkt*. Accordingly, the utility U_p of immediately transmitting pkt is calculated as follows:

If every packet in P_{pkt} gets packed to full with payload from *pkt*, i.e., $t'_{f}r_{p}(L - s_{p}) \leq L - s'_{f}$:

Then, the overall utility U'_p can be approximated as

$$U'_{p} = \frac{\frac{t'_{f}}{t_{p}} ETX_{p_{j}R}(s_{p})}{\frac{t'_{f}}{t_{p}} s_{p}} - \frac{\frac{t'_{f}}{t_{p}} ETX_{p_{j}R}(L)}{\frac{t'_{f}}{t_{p}} L}$$
(12)
$$= \frac{ETX_{p_{j}R}(s_{p})}{s_{p}} - \frac{ETX_{p_{j}R}(L)}{L}.$$

If not every packet in P_{pkt} gets packed to full with

payload from pkt, i.e., $t'_f r_p(L - s_p) > L - s'_f$: In this case, $\lfloor \frac{L - s'_f}{L - s_p} \rfloor$ number of packets are packed to full; if $mod(L - s'_f, L - s_p) > 0$, there is also a packet that gets partially packed with $mod(L - s'_f, L - s_p)$ length of payload from *pkt*. Thus, the total number of packets that benefit from the packet transmission is $\lceil \frac{L-s_f}{L-s_p} \rceil$. Denoting $mod(L-s_f', L-s_p)$ by l_{mod} and letting I_{mod} be 1, if $l_{mod} > 0$ and 0 otherwise, then the overall utility U_p'' can be approximated as¹

$$U_p'' = \frac{\left[\frac{L-s_j'}{L-s_p}\right]ETX_{p_jR}(s_p)}{\left[\frac{L-s_j'}{L-s_p}\right]s_p} - \frac{\left\lfloor\frac{L-s_j'}{L-s_p}\right]ETX_{p_jR}(L) + I_{mod}ETX_{p_jR}(s_p+l_{mod})}{\left[\frac{L-s_j'}{L-s_p}\right]s_p + L - s_f'}.$$
(13)

Therefore, the utility U_p of immediately transmitting pktto p_i can be computed as

$$U_p = \begin{cases} U'_p & \text{if } t'_f r_p (L - s_p) \le L - s'_f \\ U''_p & \text{otherwise,} \end{cases}$$
(14)

where U'_p and U''_p are defined in (12) and (13), respectively.

4.2 Scheduling Rule

Given a packet to be scheduled for transmission, if the probability that the packet is immediately transmitted is P_t $(0 \le P_t \le 1)$, then the expected utility $U_t(P_t)$ is

$$U_t(P_t) = P_t \times U_p + (1 - P_t)U_l = U_l + P_t(U_p - U_l), \quad (15)$$

where U_p and U_l are the utilities of immediately transmitting and locally holding the packet, respectively. To maximize U_t , P_t should be set according to the following rule:

$$P_t = \begin{cases} 1 & \text{if } U_p > U_l \\ 0 & \text{otherwise.} \end{cases}$$

That is, the packet should be immediately transmitted if the utility of immediate transmission is greater than that of locally holding the packet. For convenience, we call this local, distributed decision rule tPack (for time-sensitive packing). Interested readers can find the discussion on how to implement tPack in TinyOS in [12].

Competitive analysis. To understand the performance of tPack as compared with an optimal online algorithm, we analyze the competitive ratio of tPack. Since it is difficult to analyze the competitive ratio of nonoblivious online algorithms for arbitrary network and traffic pattern in the joint optimization and tPack is a nonoblivious algorithm, we only study the competitive ratio of tPack for complete binary trees where all the leaf nodes generate information elements according to a common data generation process, and we do not consider the impact of packet length on link ETX. We denote these special cases of problem \mathbb{P} as problem \mathbb{P}' . The theoretical analysis here is to get an intuitive understanding of the performance of tPack; we experimentally analyze the behaviors of tPack with different networks, traffic patterns, and application requirements through testbed-based measurement in Section 5. We relegate the study on the competitive ratio of tPack as well as the lower bound on the competitive ratio of nonoblivious online algorithms for the general problem \mathbb{P} as a part of our future work. (Note that the best results so far on the lower bound of the competitive ratio of joint INP and latency optimization also only considered the cases where only leaf nodes generate information elements [4], and these results are for oblivious algorithms and for cases where no aggregation constraint is considered [4].)

Then, we have

Theorem 5. For problem \mathbb{P}' , tPack is

$$\min\left\{K, \max_{v_j \in V_{>1}} \frac{2ETX_{v_jR}}{2ETX_{v_jR} - ETX_{p_jR}}\right\} \text{-competitive},$$

where K is the maximum number of information elements that can be packed into a single packet; $V_{>1}$ is the set of nodes that are at least two hops away from the sink R.

Proof. For convenience, we denote the optimal packing scheme as OPT. By definition, tPack is at least K-competitive since, considering the packets transmitted by a given node v_i in the routing tree, the length of the packet containing an information element x in OPT is no more than K times the length of the packet containing xin tPack.

To get a tighter performance bound for tPack, we first analyze the packet length for the packets transmitted by a leaf node v_j . Suppose that v_j transmits a packet pkt with length l_{pkt} when the latency requirement could have allowed packing another l' amount of data with the packet. In this case, the utility of holding pkt is

$$U_{l} = \frac{ETX_{v_{j}R}}{l_{pkt}} - \frac{ETX_{v_{j}R}}{l_{pkt} + l'} = ETX_{v_{j}R} \frac{l'}{l_{pkt}(l_{pkt} + l')}.$$
 (16)

By definition, the utility of immediately transmitting pkt is no more than the transmission utility that would be generated if the information elements of pkt are all packed into another packet pkt^* at p_j , the parent of v_j , that was transmitted to p_j from its the child other than v_j . Given that the routing tree is a complete binary tree and that the leaf nodes generate information elements according to a common data generation process, the lengths of packets that are transmitted along links at the same tree level are expected to be the same. Thus, we can assume that the payload length of pkt^* is also l_{pkt} . Therefore, the utility of immediately forwarding pkt at v_j satisfy the following inequality:

$$U_{p} \leq \frac{ETX_{p_{j}R}}{l_{pkt}} - \frac{ETX_{p_{j}R}}{l_{pkt} + l_{pkt}} = \frac{ETX_{p_{j}R}}{2l_{pkt}}.$$
 (17)

By the design of tPack, we know that $U_l < U_p$. From (16) and (17), thus, we have

$$ETX_{v_jR}\frac{l'}{l_{pkt}(l_{pkt}+l')} < \frac{ETX_{p_jR}}{2l_{pkt}}.$$

Thus,

$$l' < \frac{a}{2-a} l_{pkt},\tag{18}$$

where $a = \frac{ETX_{p_jR}}{ETX_{v_jR}}$.

Due to the constraint imposed by application's requirement on the timeliness of data delivery, we know that the length of the packet, denoted by l_{opt} , that contains the information elements of pkt in OPT is no more than $l_{pkt} + l'$. Then, from (18), we know that

$$l_{opt} \le l_{pkt} + l' < \frac{2}{2-a} l_{pkt} = \frac{2ETX_{v_jR}}{2ETX_{v_jR} - ETX_{p_jR}} l_{pkt}.$$

That is,

$$\frac{l_{opt}}{l_{pkt}} < \frac{2ETX_{v_jR}}{2ETX_{v_jR} - ETX_{p_jR}}.$$
(19)

For a node v_i that is not a leaf node, the same analysis applies. Given a packet pkt' of length $l_{pkt'}$ that is transmitted by v_i when the latency requirement could have allowed packing another l'' amount of data with pkt', we have

$$l'' < \frac{a'}{2-a'} l_{pkt'},$$
 (20)

where $a' = \frac{ETX_{p_iR}}{ETX_{v_iR}}$. Moreover, the length of the packet, denoted by $l_{opt'}$, that contains the information elements of pkt' in OPT is no more than $l_{pkt'} + l''$; this is due to the following reasons:

Fig. 3. NetEye wireless sensor network testbed.

- If a packet *pkt_{max}* contains *l_{pkt'} + l''* amount of data payload without constrained by packet size limit, then the spare time of *pkt_{max}* is 0.
- Consider a packet *pkt*" transmitted by *v_i* in OPT whose length is *l_{opt'}*. If *v_i* holds *pkt*" until its spare time is 0 (instead of transmitting *pkt*") in OPT, the resulting length of the new packet *pkt*₀" is no more than *l_{pkt'} + l*". This is because data flow faster toward the sink in tPack as compared with OPT, and *pkt'* reaches *v_i* earlier than *pkt*" does.
- Therefore, $l_{opt'}$ is no more than the length of pkt''_0 , which is no more than $l_{pkt'} + l''$. Thus, $l_{opt'} \leq l_{pkt'} + l''$.

Therefore, we have

$$\frac{l_{opt'}}{l_{pkt'}} < \frac{2ETX_{v_iR}}{2ETX_{v_iR} - ETX_{p_iR}}.$$
(21)

From (19) and (21), we know that tPack is at least

$$O\left(\max_{v_j \in V_{>1}} \frac{2ETX_{v_jR}}{2ETX_{v_jR} - ETX_{p_jR}}\right) \text{-competitive.}$$

Therefore, tPack is $\min\{K, \max_{v_j \in V_{>1}} \frac{2ETX_{v_jR}}{2ETX_{v_jR} - ETX_{p_jR}}\}$ -competitive for problem \mathbb{P}' .

From Theorem 5, we see that tPack is 2-competitive if every link in the network is of equal ETX value.

5 PERFORMANCE EVALUATION

To characterize the impact of packet packing and its joint optimization with data delivery timeliness, we experimentally evaluate the performance of tPack.

5.1 Methodology

Testbed. We use the *NetEye* wireless sensor network testbed at Wayne State University [16]. NetEye is deployed in an indoor office as shown in Fig. 3. We use a 10×13 grid of TelosB motes in NetEye, where every two closest neighboring motes are separated by 2 feet. Out of the 130 motes in NetEye, we randomly select 120 motes (with each mote being selected with equal probability) to form a random network for our experimentation. Each of these TelosB motes is equipped with a 3 dB signal attenuator and a 2.45 GHz monopole antenna.

In our measurement study, we set the radio transmission power to be -25 dBm (i.e., power level 3 in TinyOS) such that multihop networks can be created. We also use channel 26 of the CC2420 radio to avoid external interference from sources such as the campus WLANs. We use the TinyOS collection tree protocol (CTP) [17] as the routing protocol to form the routing structure, and we use the Iowa's Timesync protocol [18] for network wide time synchronization.

Protocols studied. To understand the impact of packet packing and its joint optimization with data delivery timeliness, we comparatively study the following protocols:

- *noPack*: information elements are delivered without being packed in the network.
- *simplePack*: information elements are packed if they happen to be buffered in the same queue, but there is not packing-oriented scheduling.
- *SL*: the *spread latency* algorithm proposed in [3], where the spare time of an information element is evenly spent at each hop from its source to the sink without considering specific network conditions (e.g., network-wide traffic pattern). SL was proposed with total aggregation in mind without considering aggregation constraints such as maximum packet size.
- *CC*: the *common clock* algorithm proposed in [3], where the spare time of an information element is only partly spent at the node where it is generated. Same as SL, CC was proposed with total aggregation in mind.
- *tPack*: the packing- and timeliness-oriented scheduling algorithm that maximizes the local utility at each node, as we discussed in Section 4. (We have also evaluated another version of tPack, denoted by *tPack-2hop*, where the forwarding utility *U_p* considers both the parent node and the parent's parent; we find that tPack-2hop does not bring significant improvement over tPack while introducing higher overhead and complexity, thus our discussion here only focuses on tPack.)

We have implemented, in TinyOS [19], a system library which includes all the above protocols. The implementation takes 40 bytes of RAM (plus the memory required for regular packet buffers) and 4,814 bytes of ROM.

Performance metrics. For each protocol we study, we evaluate their behavior based on the following metrics:

- *Packing ratio*: number of information elements carried in a packet.
- *Delivery reliability*: percentage of information elements correctly received by the sink.
- *Delivery cost*: number of transmissions required for delivering an information element from its source to the sink.
- *Deadline catching ratio*: out of all the information elements received by the sink, the percentage of them that are received before their deadlines.
- *Latency jitter*: variability of the time taken to deliver information elements from the same source node, measured by the coefficient of variation (COV) [20] of information delivery latency.

Traffic pattern. To experiment with different sensornet scenarios, we use both periodic data collection traffic and event detection traffic trace as follows:

- D3: each source node periodically generates 50 information elements with an interelement interval, denoted by Δ_r, uniformly distributed between 500 ms and 3 s; this is to represent high traffic load scenarios.
- *D*6: same as *D*3 except that Δ_r is uniformly distributed between 500 ms and 6 s; this is to represent relatively low traffic load scenarios.
- D9: same as D3 except that Δ_r is uniformly distributed between 500 ms and 9 s.
- *E*_{lites}: an event traffic where a source node generates one packet based on the Lites [21] sensornet event traffic trace.

To understand the impact of the timeliness requirement of data delivery, we experiment with different latency requirements. For periodic traffic, we consider maximum allowable latency in delivering information elements that are one, three, and five times the average element generation period, and we denote them by L1, L3, and L5, respectively; for event traffic, we consider maximum allowable latency that is 2, 4, or 6 s, and we denote them by *L*2′, *L*4′, and *L*6′, respectively. Out of the 120 motes selected for experimentation, we let the mote closest to a corner of NetEye be the sink node, and the other mote serves as a traffic source if its node ID is even. For convenience, we regard a specific combination of source traffic model and latency requirement a traffic pattern. Thus, we have eight traffic patterns in total. To gain statistical insight, we repeat each traffic pattern 20 times. Note that, in each traffic pattern, all the information elements have the same maximum allowable latency. In our implementation, each information element is 16-byte long, and the TelosB motes allow for aggregating up to seven information elements into a single packet (i.e., K = 7).

5.2 Measurement Results

In what follows, we first present the measurement results for periodic traffic patterns D3, D6, and D9, then we discuss the case of event traffic pattern E_{lites} ; for conciseness, we relegate the detailed discussion on D9 and E_{lites} to [12]. In most figures of this section, we present the means/medians and their 95 percent confidence intervals for the corresponding metrics such as the packing ratio, delivery reliability, delivery cost, deadline catching ratio, and the latency jitter.

For the periodic traffic pattern D3, Figs. 4, 5, 6, 7, and 8 show the packing ratio, delivery reliability, delivery cost, deadline catching ratio, and latency jitter in different protocols. tPack tends to enable higher degree of packet packing (i.e., larger packing ratio) than other protocols except the CC protocol. The increased packing in tPackreduces channel contention and thus reduces the probability of packet transmission collision, which improves data delivery reliability. The reduced probability of transmission collision and the increased number of information elements carried per packet in tPack in turn reduces delivery cost, since there are fewer number of packet retransmissions as well as fewer number of packets generated. Note that the low delivery reliability in simplePack is due to intense channel contention.

Fig. 4. Packing ratio: D3.

Fig. 5. Delivery reliability: D3.

Fig. 6. Delivery cost: D3.

Exceptions to the above general observation happen in the case of maximum allowable latency L1 or when comparing tPack with CC. In the first case, the packing ratio in tPack is lower than that in SL, but tPack still achieves much higher delivery reliability (i.e., by more than 40 percent) and much lower delivery cost (i.e., by a factor of more than 3). This is because the packing ratio in SL is too high such that, in the presence of high wireless channel contention due to the high traffic load of D3 and the stringent real-time requirement of L1, the resulting long packet length leads to higher packet error rate and lower packet delivery reliability (as shown in Fig. 5). The routing protocol CTP adapts to the higher packet error rate in SL, and this leads to longer routes and larger routing hops in SL. This can be seen from Fig. 9 which shows the histogram of routing hop counts in different protocols. The maximum hop count in tPack is 4, whereas the hop count can be up to

Fig. 7. Deadline catching ratio: D3.

Fig. 8. Latency jitter: D3.

Fig. 9. Histogram of routing hop count: D3 with maximum allowable latency L1.

9 in SL. Together, the higher packet error rate and the longer routes in SL lead to larger delivery cost in SL as compared with tPack. Similar arguments apply to the case when comparing tPack with CC. From these data on the benefits of tPack in comparison with SL and CC, we can see the importance of adapting to network conditions and data aggregation constraints in in-network processing. Note that similar arguments also explain the phenomenon where SL has higher packing ratio than simplePack but lower delivery reliability and higher delivery cost under all latency settings of *D*3 traffic.

Fig. 5 also shows that tPack improves data delivery reliability even when the allowable latency in data delivery is small (e.g., in the case of L1) where the inherent probability for packets to be packed tends to be small. Therefore, tPack can be used for real-time applications

Fig. 10. Packing ratio: D6.

Fig. 11. Delivery reliability: D6.

where high data delivery reliability is desirable. Fig. 4 shows that the packing ratio in tPack is close to 4 except for the case of L1 where 1) too much packing is undesirable as discussed earlier and 2) the packing probability is significantly reduced by the limited probability for a node to wait due to stringent timeliness requirement. Our offline analysis shows that the optimal packing ratio is ~5 for the traffic patterns D3-L3 and D3-L5; thus, tPack achieves a packing ratio very close to the optimal, which corroborates our analytical result in Theorem 5.

Fig. 7 shows the deadline catching ratio in deadlineaware data aggregation schemes tPack, SL, and CC. Though the deadline catching ratio of all the three protocols are close to 1, the catching ratio of tPack is the highest and is greater than 0.99 in all cases. The slightly higher deadline catching ratio in tPack is a result of its online adaptation of packet holding time at each hop according to in-situ channel and traffic conditions along the path. As a result of the properly controlled packet packing, the reduced channel contention and improved packet delivery reliability in tPack also help enable lower performance variability. For instance, Fig. 8 shows the latency jitter in different protocols, and we see that the jitter tends to be the lowest in tPack, especially when the real-time requirement is stringent (e.g., in L1 and L3). These properties are desirable in cyber-physical-system sensornets where realtime sensing and control require predictable data delivery performance (e.g., in terms of low latency jitter), especially in the presence of potentially unpredictable, transient perturbations.

Fig. 12. Delivery cost: D6.

Fig. 13. Deadline catching ratio: D6.

Fig. 14. Latency jitter: D6.

Figs. 10, 11, 12, 13, and 14 show the measurement results for periodic traffic patterns D6 and D9, respectively. We see that, in terms of relative protocol performance, the overall trends in D6 and D9 are similar to those in D3. For instance, with stringent real-time requirement in L1, SL achieves a lower delivery reliability and a higher delivery cost than tPack even though the packing ratio tends to be higher in SL. Due to the reduced traffic load and thus the reduced wireless channel contention and collision, however, the delivery reliability of noPack, simplePack, and SL is also relatively high compared with their delivery reliability in D3.

Note that, in [3], CC is shown to have a much higher competitive ratio than SL through theoretical analysis. From our measurement study, however, we see that the performance of *CC* is not always better than SL. For instance, CC has a lower delivery reliability and a higher delivery cost

Fig. 15. Link reliability: D6.

than SL in *D*6-*L*5. This seemingly discrepancy is due to the fact that the theoretical analysis of [3] does not consider the limit of data aggregation capacity, nor does it consider wireless link unreliability and interference in scheduling.

Surprisingly, Figs. 10, 11, and 12 show that, for the traffic pattern D6, simplePack introduces higher delivery cost than noPack does even though the packing ratio and the end-toend delivery reliability are higher in simplePack. One reason for this is that, partially due to the increased packet length in simplePack, the link reliability in simplePack is lower than that in noPack as shown in Fig. 15.² The routing protocol CTP adapts to the lower link reliability in simplePack and introduces longer routing hop length, which can be seen from Fig. 16 which shows the histogram of routing hop counts for noPack and simplePack in traffic pattern D6-L1. Together, the lower link reliability and the longer routes in simplePack introduce larger information delivery cost when compared with noPack in D6. This observation is also corroborated by the detailed analysis of the cost (e.g., mean number of transmissions) taken to deliver an information element. For instance, Fig. 17 shows the mean cost of delivering an information element from a node at different geographic distances (in terms of the number of grid hops) from the base station for the traffic pattern D6-L1. (Similar phenomena are observed for other traffic patterns.) We see that, for most of the cases, the perelement delivery cost is higher in simplePack. Note that similar arguments explain why simplePack has higher delivery cost than noPack in traffic pattern D9 and why SL also has higher delivery cost than noPack in several cases (e.g., for traffic pattern D6-L1). In view with the consistently better performance in tPack, these observations demonstrate again the importance of considering network conditions and data aggregation constraints in in-network processing.

6 RELATED WORK

In-network processing has been well studied in sensornets, and many INP methods have been proposed for query processing (e.g., TinyDB [1]) and general data collection

Fig. 16. Histogram of routing hop count: D6 with maximum allowable latency L1.

(e.g., DFuse [2]). When controlling spatial and temporal data flow to enhance INP, however, these methods did not consider application requirements on the timeliness of data delivery. As a first step toward understanding the interaction between INP and application QoS requirements, our study has shown the benefits as well as the challenges of jointly optimizing INP and QoS from the perspective of packet packing. As sensornets are increasingly being deployed for mission-critical tasks, it becomes important to address the impact of QoS requirements on general INP methods other than packet packing, which opens interesting avenues for further research.

As a special INP method, packet packing has also been studied for sensornets as well as general wireless and wired networks, where mechanisms have been proposed to adjust the degree of packet packing according to network congestion level [5], [22], to address MAC/link issues related to packet packing [23], [6], [24], to enable IP level packet packing [25], and to pack periodic data frames in automotive applications [26]. These works have focused on issues in local, one-hop networks without considering requirements on maximum end-to-end packet delivery latency in multihop networks. With the exception of [26], these works did not focus on scheduling packet transmissions to improve the degree of packet packing, and they have not studied the impact of finite packet size

Fig. 17. Per-element delivery cost versus geographic distance: D6 with maximum allowable latency L1.

^{2.} The reason why simplePack still has higher end-to-end information element delivery reliability despite its lower link reliability is because each packet delivered in simplePack carries more information elements due to the higher packing ratio.

either. Saket and Navet [26] studied packet packing in single-hop controller-area networks (CAN) with finite packet size. Our work addresses the open questions on the complexity and protocol design issues for jointly optimizing packet packing and data delivery timeliness in multihop wireless sensornets.

Most closely related to our work are [3], [27], [28] where the authors studied the issue of optimizing INP under the constraint of end-to-end data delivery latency. But these studies did not consider aggregation constraints and instead assumed total aggregation where any arbitrary number of information elements can be aggregated into one single packet. These studies did not evaluate the impact of joint optimization on data delivery performance either. Our work focuses on settings where packet size is finite, and we show that aggregation constraints (in particular, maximum packet size and reaggregation tolerance) significantly affect the problem complexity and protocol design. Using a high-fidelity sensornet testbed, we also systematically examine the impact of joint optimization on packet delivery performance in multihop wireless networks. By showing that tPack performs better than the algorithm SL and CC [3], [28], our testbed-based measurement results also demonstrate the benefits of considering realistic aggregation constraints in the joint optimization.

Solis and Obraczka [29] also considered the impact that the timing of packet transmission has on data aggregation, and the problem of minimizing the sum of data transmission cost and delay cost has been considered in [4] and [30]. These studies also assumed total aggregation, and they did not consider hard real-time requirements on maximum end-to-end data delivery latency. Ye et al. [31] considered the local optimal stopping rule for data sampling and transmission in distributed data aggregation. It did not consider hard real-time requirement either, and it did not study network-wide coordination and the limit of data aggregation. Yu et al. [32] studied the latency-energy tradeoff in sensornet data gathering by adapting radio transmission rate; it did not study the issue of scheduling data transmission to improve the degree of data aggregation.

7 CONCLUDING REMARKS

Through both theoretical and experimental analysis, we examine the complexity and impact of jointly optimizing packet packing and the timeliness of data delivery. We find that aggregation constraints (in particular, maximum packet size and reaggregation tolerance) affect the problem complexity more than network and traffic properties do, which suggest the importance of considering aggregation constraints in the joint optimization. We identify conditions for the joint optimization to be strong NP-hard and conditions for it to be solvable in polynomial time. For cases when it is polynomial-time solvable, we solve the problem by transforming it to the maximum weighted matching problem in interval graphs; for cases when it is strong NP-hard, we prove that there is no polynomial-time approximation scheme for the problem. We also develop a local, distributed online protocol tPack for maximizing the local utility of each node, and we prove the competitiveness of the protocol with respect to optimal solutions. Our

testbed-based measurement study also corroborates the importance of QoS- and aggregation-constraint aware optimization of packet packing.

While this paper has extensively studied the complexity, algorithm design, and impact of jointly optimizing packet packing and data delivery timeliness, there are still a rich set of open problems. Even though we have analyzed the competitiveness of tPack for nontrivial scenarios and this has given us insight into the behavior of tPack, it remains an open question on how to characterize in a closed form the competitiveness of tPack and nonoblivious online algorithms in broader contexts. The analytical and algorithmic design mechanisms developed for packet packing may well be extensible to address other in-network processing methods such as data fusion, and a detailed study of this will help us better understand the structure of the joint optimization problem and will be interesting future work to pursue. We have focused on the scheduling aspect of the joint optimization, and we are able to use mathematical tools such as interval graphs to model the problem; on the other hand, how to mathematically model and analyze the impact of the joint optimization on spatial data flow is still an open question and is beyond the scope of most existing network flow theory; thus, it will be interesting to explore new approaches to modeling and solving the joint optimization problem.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science Foundation GENI Project #1633. An extended abstract containing some preliminary results of this paper appeared in IEEE RTSS 2009.

REFERENCES

- S. Madden, M. Franklin, and J. Hellerstein, "TinyDB: An Acquisitional Query Processing System for Sensor Networks," *ACM Trans. Database Systems*, vol. 30, pp. 122-173, 2005.
- [2] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ramachandran, "DFuse: A Framework for Distributed Data Fusion," Proc. ACM Int'l Conf. Embedded Networked Sensor Systems (SenSys '03), 2003.
- [3] L. Becchetti, P. Korteweg, A. Marchetti-Spaccamela, M. Skuttella, L. Stougie, and A. Vitaletti, "Latency Constrained Aggregation in Sensor Networks," *Proc. European Symp. Algorithms (ESA '06)*, 2006.
- [4] Y.A. Oswald, S. Schmid, and R. Wattenhofer, "Tight Bounds for Delay-Sensitive Aggregation," Proc. ACM Symp. Principles of Distributed Computing (PODC '08), 2008.
- [5] T. He, B.M. Blum, J.A. Stankovic, and T. Abdelzaher, "AIDA: Adaptive Application Independent Data Aggregation in Wireless Sensor Networks," ACM Trans. Embedded Computing System, vol. 3, pp. 426-457, May 2004.
- [6] K. Lu, D. Wu, Y. Qian, Y. Fang, and R.C. Qiu, "Performance of an Aggregation-Based MAC Protocol for High-Data-Rate Ultrawideband Ad Hoc Networks," *IEEE Trans. Vehicular Technology*, vol. 56, no. 1, pp. 312-321, 2007.
- [7] A. Arora et al., "A Line in the Sand: A Wireless Sensor Network for Target Detection, Classification, and Tracking," *Computer Networks*, vol. 46, no. 5, pp. 605-634, 2004.
 [8] "IPv6 over Low power WPAN (6LoWPAN)," IETF working
- [8] "IPv6 over Low power WPAN (6LoWPAN)," IETF working group, http://www.ietf.org/html.charters/6lowpan-charter. html, 2011.
- [9] "Routing Over Low Power and Lossy Networks (ROLL)," IETF working group, http://www.ietf.org/html.charters/roll-charter. html, 2011.

- [10] G. Finke, V. Jost, M. Queyranne, and A. Sebo, "Batch Processing with Interval Graph Compatibilities between Tasks," *Discrete Applied Math.*, vol. 156, pp. 556-568, 2008.
- [11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, 1979.
- [12] Q. Xiang, J. Xu, X. Liu, H. Zhang, and L.J. Rittle, "When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks," technical report, Wayne State Univ., http://www.cs.wayne.edu/~hzhang/group/ TR/DNC-TR-09-01.pdf, 2009.
- [13] D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems. PWS, 1997.
- [14] P. Wang, J. Zheng, and C. Li, "Data Aggregation Using Distributed Lossy Source Coding in Wireless Sensor Networks," *Proc. IEEE Global Telecomm. Conf. (GlobeCom)*, 2007.
- [15] H. Gabow, "An Efficient Implementation of Edmonds' Algorithm for Maximum Matchings on Graphs," J. ACM, vol. 23, pp. 221-234, 1975.
- [16] "NetEye Testbed," http://neteye.cs.wayne.edu/neteye/home. php, 2011.
- [17] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, "Collection Tree Protocol," Proc. ACM Conf. Embedded Networked Sensor Systems, 2009.
- [18] "Iowa's TimeSync Component," http://tinyos.cvs.sourceforge. net/viewvc/tinyos/tinyos-2.x-contrib/iowa/T2.tsync, 2011.
- [19] "TinyOS," http://www.tinyos.net/, 2011.
- [20] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.
- [21] "An Event Traffic Trace for Sensor Networks," http://www.cs. wayne.edu/~hzhang/group/publications/Lites-trace.txt, 2010.
- [22] A. Jain, M. Gruteser, M. Neufeld, and D. Grunwald, "Benefits of Packet Aggregation in Ad-Hoc Wireless Network," Technical Report CU-CS-960-03, Univ. of Colorado at Boulder, 2003.
- [23] T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, and T. Turletti, "Aggregation with Fragment Retransmission for Very High-Speed WLANs," *IEEE/ACM Trans. Networking*, vol. 17, no. 2, pp. 591-604, Apr. 2009.
- [24] M. Li, H. Zhu, Y. Xiao, I. Chlamtac, and B. Prabhakaran, "Adaptive Frame Concatenation Mechanisms for QoS in Multi-Rate Wireless Ad Hoc Networks," *Proc. IEEE INFOCOM*, 2008.
- [25] D. Kliazovich and F. Granelli, "Packet Concatenation at the IP Level for Performance Enhancement in Wireless Local Area Networks," Wireless Networks, vol. 14, pp. 519-529, 2008.
- [26] R. Saket and N. Navet, "Frame Packing Algorithms for Automotive Applications," J. Embedded Computing, vol. 2, pp. 93-102, 2006.
- [27] T. Nonner and A. Souza, "Latency Constrained Data Aggregation in Chain Networks Admits a PTAS," Proc. Int'l Conf. Algorithmic Aspects in Information and Management (AAIM '09), 2009.
- [28] P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, and A. Vitaletti, "Data Aggregation in Sensor Networks: Balancing Communication and Delay Costs," *Theoretical Computer Science*, vol. 410, no. 14, pp. 1346-1354, 2009.
- [29] I. Solis and K. Obraczka, "The Impact of Timing in Data Aggregation for Sensor Networks," Proc. IEEE Int'l Conf. Comm., 2004.
- [30] A.R. Karlin, C. Kenyon, and D. Randall, "Dynamic TCP Acknowledgement and Other Stories about ^e/_{e-1}," *Proc. ACM Symp. Theory of Computing (STOC '01)*, 2001.
- [31] Z. Ye, A.A. Abouzeid, and J. Ai, "Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks," Proc. IEEE INFOCOM, 2007.
- [32] Y. Yu, V. Prasanna, and B. Krishnamachari, "Energy Minimization for Real-Time Data Gathering in Wireless Sensor Networks," *IEEE Trans. Wireless Comm.*, vol. 5, no. 11, pp. 3087-3096, Nov. 2006.

Qiao Xiang received the bachelor's degrees in engineering and economics from Nankai University, China. He is currently working toward the PhD degree in the Department of Computer Science at Wayne State University. His research interests lie in wireless cyber-physical systems. He is a student member of the IEEE.

Hongwei Zhang received the BS and MS degrees in computer engineering from Chongqing University, China, and the PhD degree from The Ohio State University. He is currently an assistant professor of computer science at Wayne State University. His primary research interests lie in the modeling, algorithmic, and systems issues in wireless, vehicular, embedded, and sensor networks. His research has been an integral part of several US National Science

Foundation and US Defense Advanced Research Projects Agency projects such as the KanseiGenie and ExScal projects. He is a member of the IEEE. More information is at http://www.cs.wayne.edu/~hzhang.

Jinhong Xu is currently working toward the master's degree in financial risk management at Simon Fraser University. His research interests in computer science include pervasive and mobile computing as well as wireless sensor networks.

Xiaohui Liu received the BS degree in computer science from Wuhan University, China. He is currently working toward the PhD degree in the Department of Computer Science at Wayne State University. His primary research interests lie in real-time, QoS routing in wireless and sensor networks. He is a student member of the ACM.

Loren J. Rittle received the BS degree in computer engineering from Iowa State University in 1990. He is currently a principal staff member of the Content and Context-Aware Solutions Group, Applied Research, Motorola Mobility. He is named an inventor on eight issued US patents. He is a member of the ACM.

 For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.