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Abstract—As sensornets are increasingly being deployed in mission-critical applications, it becomes imperative that we consider

application QoS requirements in in-network processing (INP). Toward understanding the complexity of joint QoS and INP optimization,

we study the problem of jointly optimizing packet packing (i.e., aggregating shorter packets into longer ones) and the timeliness of data

delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily

depends on aggregation constraints (in particular, maximum packet size and reaggregation tolerance) instead of network and traffic

properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for

cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet

packing schemes. To understand the impact of joint QoS and INP optimization on sensornet performance, we design a distributed,

online protocol tPack that schedules packet transmissions to maximize the local utility of packet packing at each node. Using a testbed

of 130 TelosB motes, we experimentally evaluate the properties of tPack. We find that jointly optimizing data delivery timeliness and

packet packing and considering real-world aggregation constraints significantly improve network performance. Our findings shed light

on the challenges, benefits, and solutions of joint QoS and INP optimization, and they also suggest open problems for future research.

Index Terms—Wireless network, sensor network, real-time, packet packing, in-network processing.

Ç

1 INTRODUCTION

AFTER the past decade of active research and field trials,
wireless sensor networks (which we call sensornets

hereafter) have started penetrating into many areas of
science, engineering, and our daily life. They are also
envisioned to be an integral part of cyber-physical systems
(CPS) such as those for alternative energy, transportation,
and healthcare. In supporting mission-critical, real-time,
closed-loop sensing and control, CPS sensornets represent a
significant departure from traditional sensornets which
usually focus on open-loop sensing, and it is critical to
ensure messaging quality (e.g., timeliness of data delivery)
in CPS sensornets. The stringent application requirements
in CPS make it necessary to rethink about sensornet design,
and one such problem is in-network processing (INP).

For resource constrained sensornets, in-network proces-
sing improves energy efficiency and data delivery perfor-
mance by reducing network traffic load and thus channel
contention. Over the past years, many INP methods have
been proposed for query processing (e.g., TinyDB [1]) and

general data collection (e.g., DFuse [2]). Not focusing on
mission-critical sensornets, however, these works have
mostly ignored the timeliness of data delivery when
designing INP mechanisms. Recently, Becchetti et al. [3]
and Oswald et al. [4] examined the issue of data delivery
latency in in-network processing. Theoretical in nature,
these studies assumed total aggregation where any arbitrary
number of information elements (e.g., reports after an
event detection) can be aggregated into one single packet,
which may well be infeasible in many practical settings.
Thus, the interaction between specific, real-world INP
methods and data delivery timeliness remains a largely
unexplored issue in sensornet systems. This is an important
issue because 1) it affects the efficiency and quality of real-
time embedded sensing and control, and 2) as we will
show later in the paper, data aggregation constraints (e.g.,
aggregation capacity limit and reaggregation tolerance)
affect, to a greater extent than network and traffic proper-
ties, the complexity and the protocol design in jointly
optimizing INP and the timeliness of data delivery.

Toward understanding the interaction between INP and
data delivery latency in foreseeable real-world sensornet
deployments, we focus on a widely used, application-
independent INP method—packet packing where multiple
short packets are aggregated into a single long packet [5],
[6]. In sensornets (especially those for real-time sensing and
control), an information element from each sensor is usually
short, for instance, less than 10 bytes [1], [7]. Yet the header
overhead of each packet is relatively high in most sensornet
platforms, for instance, up to 31 bytes at the MAC layer
alone in IEEE 802.15.4-based networks. It is also expected
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that more header overhead will be introduced at other
layers (e.g., routing layer) as we standardize sensornet
protocols such as in the effort of the IETF working groups
6LowPAN [8] and ROLL [9]. Besides header overhead,
MAC coordination also introduces nonnegligible overhead
in wireless networks [6]. If we only transmit one short
information element in each packet transmission, the high
overhead in packet transmission will significantly reduce
the network throughput; this is especially the case for high-
speed wireless networks such as IEEE 802.15.4a ultrawide-
band (UWB) networks. Fortunately, the maximum size of
packet payload is usually much longer than that of each
information element, for instance, 128 bytes per MAC frame
in 802.15.4. Therefore, we can aggregate multiple informa-
tion elements into a single packet to reduce the amortized
overhead of transmitting each element. Packet packing also
reduces the number of packets contending for channel
access; hence, it reduces the probability of packet collision
and improves information delivery reliability, as we will
show in Section 5. The benefits of packet packing have also
been recognized by the IETF working groups 6LowPAN
and ROLL.

Unlike total aggregation assumed in [3] and [4], the
number of information elements that can be aggregated into
a single packet is constrained by the maximum packet size;
thus, we have to carefully schedule information element
transmissions so that the degree of packet packing (i.e., the
amount of sensing data contained in packets) can be
maximized without violating application requirement on
the timeliness of data delivery. As a first step toward
understanding the complexity of jointly optimizing INP and
QoS with aggregation constraints, we analyze the impact
that aggregation constraints have on the computational
complexity of the problem, and we prove the following:

. When a packet can aggregate three or more
information elements, the problem is strong NP-
hard, and there is no polynomial-time approxima-
tion scheme (PTAS).

. When a packet can only aggregate two information
elements, the complexity depends on whether two
elements in a packet can be separated and repacked
with other elements on their way to the sink: if the
elements in a packet can be separated, the problem is
strong NP-hard and there is no PTAS for the
problem; otherwise, it can be solved in polynomial
time by modeling the problem as a maximum
weighted matching problem in an interval graph.

. The above conclusions hold whether or not the
routing structure is a tree or a linear chain, and
whether or not the information elements are of
equal length.

Besides shedding light on the complexity and protocol

design of jointly optimizing data delivery timeliness and

packet packing (as well as other INP methods), these findings

incidentally answer several open questions on the complex-

ity of batch-process scheduling in interval graphs [10].

To understand the impact of jointly optimizing packet

packing and data delivery timeliness, we design a dis-

tributed, online protocol tPack that schedules packet

transmissions to maximize the local utility of packet packing

at each node while taking into account the aggregation

constraint imposed by the maximum packet size. Using a

testbed of 130 TelosB motes, we experimentally evaluate the

properties of tPack. We find that jointly optimizing data

delivery timeliness and packet packing and considering

real-world aggregation constraints significantly improve

network performance (e.g., in terms of high reliability, high-

energy efficiency, and low-delay jitter).

The rest of the paper is organized as follows: We discuss

the system model and precisely define the joint optimiza-

tion problem in Section 2. Then, we analyze the complexity

of the problem in Section 3, and present the tPack protocol

in Section 4. We experimentally evaluate the performance of

tPack and study the impact of packet packing as well as

joint optimization in Section 5. We discuss related work in

Section 6, and conclude the paper in Section 7. For

convenience, we summarize in Table 1 the notations used

in Sections 2 and 3.

2 SYSTEM MODEL AND PROBLEM DEFINITION

2.1 System Model

We consider a directed collection tree T ¼ ðV ;EÞ, where V

and E are the set of nodes and edges in the tree. V ¼ fvi :

i ¼ 1; . . . ; Ng [ fRg where R is the root of the tree and
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represents the data sink of a sensornet, and fvi : i ¼
1; . . . ; Ng are the set of N sensor nodes in the network. An

edge hvi; vji 2 E if vj is the parent of vi in the collection tree.

The parent of a node vi in T is denoted as pi. We use

ETXvivjðlÞ to denote the expected number of transmissions

required for delivering a packet of length l from a node vi to

its ancestor vj, and we use tvivkðlÞ to denote the maximum

time taken to deliver a packet of length l from vi to vk in the

absence of packet packing and packing-oriented scheduling.

Each information element x generated in the tree is

identified by a 4-tuple ðvx; lx; rx; dxÞ where vx is the node

that generates x, lx is the length of x, rx is the time when x

is generated, and dx is the deadline by which x needs to be

delivered to the sink node R. We use sx¼dx�ðrx þ tvxRðlxÞÞ
to denote the spare time for x, and we define the lifetime of

x as ½rx; dx�.

2.2 Problem Definition

Given a collection tree T and a set of information elements

X ¼ fxg generated in the tree, we define the problem of

jointly optimizing packet packing and the timeliness of data

delivery as follows:
Problem IP. Given T and X, schedule the transmission of

each element in X to minimize the total number of packet
transmissions required for delivering X to the sink R while
ensuring that each element be delivered to R before its
deadline.

In an application-specific sensornet, the information

elements generated by different nodes depend on the

application but may well be of equal length [7]. Depending

on whether the sensornet is designed for event detection or

data collection, moreover, the information elements X may

follow certain arrival processes. Based on the specific arrival

process of X, the following special cases of problem IP tend

to be of practical relevance in particular:

Problem IP0. Same as IP except that 1) the elements of X

are of equal length, and 2) X includes at most one element

from each node; this problem can represent sensornets that

detect rare events.

Problem IP1. Same as IP except that 1) the elements of X

are of equal length, and 2) every two consecutive elements

generated by the same node vi are separated by a time

interval whose length is randomly distributed in ½a; b�; this

problem can represent periodic data collection sensornets

(with possible random perturbation to the period).

Problem IP2. Same as IP except that the elements of X are

of equal length; this problem represents general applica-

tion-specific sensornets.

3 COMPLEXITY OF JOINT OPTIMIZATION

The complexity of problem IP depends on aggregation

constraints such as maximum packet size and whether

information elements in a packet can be separated and

repacked with other elements. For convenience, we use K

to denote the maximum number of information elements

that can be packed into a single packet. (Note that K

depends on the maximum packet size and the lengths of

information elements in problem IP.) In what follows, we

first analyze the case when K � 3 and then the case when

K ¼ 2, and we discuss how aggregation constraints affect

the problem complexity.

3.1 Complexity when K � 3

We first analyze the complexity and the hardness of

approximation for problem IP0, then we derive the

complexity of IP1, IP2, and IP accordingly. The analysis is

based on reducing the Boolean-satisfiability problem (SAT)

[11] to IP0 as we show below.

Theorem 1. When K � 3, problem IP0 is strong NP-hard

whether or not the routing structure is a tree or a linear chain.

Proof. To prove that IP0 is strong NP-hard, we first present

a polynomial transformation f from the SAT problem to

IP0, then we prove that an instance � of SAT is

satisfiable if and only if the optimal solution of �0 ¼
fð�Þ has certain minimum number of transmissions.

Given an instance � of the SAT problem which has

n Boolean variables X1; . . . ; Xn and m clauses C1; . . . ; Cm,

we derive a polynomial time transformation from � to

an instance �0 of IP0 with K � 3 as follows. We first
construct a tree as shown in Fig. 1. In this tree, node vj,

j ¼ 1; . . . ; n corresponds to the variable Xj. Node v is an

intermediate node and node S is the sink node. ETXvjv is

D, with D� 1, and ETXvs is 1. If a variable Xj appears

kj times in total in the m clauses, then 2kj þ 3 children

nodes are attached to node vj, labeled as vj0; . . . ; vj2kjþ2.

m children are also attached to node v, labeled as

vc1; . . . ; vcm. Each of these edge has a ETX of 1. The
transmission time from each child of vj to itself is t1, and

the transmission time from vci to v is t4.

After constructing the tree, we define the information

elements and their lifetimes as follows. For each subtree

rooted at node vj, we first define 2kj þ 1 information

elements and then assign them one by one to the leaf nodes

vj1; . . . ; vj2kjþ1 of this subtree. If variable Xj occurs un-

negated in clause Ci, we create an information element xji
with lifetime ½rji ; d

j
i �¼½ð3iþ 1Þðnþ 1Þþ j; ð3iþ 2Þðnþ 1Þþ

jþ t1 þ t2 þ t3�. If Xj occurs negated in clause Ci, we

create an information element xji : ½rji ; d
j
i � ¼ ½3iðnþ 1Þ þ j;

ð3iþ 1Þðnþ 1Þ þ jþ t1 þ t2 þ t3�. Let ij1 < � � � < ijkj denote

the indices of the clauses in which variable Xj occurs. For
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every two messages xj
ijt

and xj
ij
tþ1

; t¼1; . . . ; kj�1, define an

information element

axj
ijt

:
�
rjat ; d

j
at

�
¼
�
dj
ijt
� t1 � t2 � t3; rjij

tþ1

þ t1 þ t2 þ t3
�
:

We also define axj0 : ½rja0
; dja0
� ¼ ½j; rj

ij
1

þ t1 þ t2 þ t3�, and

axjkj :
�
rjakj

; djakj

�
¼�

dj
ij
kj

� t1 � t2 � t3; 3ðmþ 1Þðnþ 1Þ þ jþ t1 þ t2 þ t3
�
:

In this way, every two consecutive information elements

in this sequence overlap in their lifetimes, and the

size of the overlap is t1 þ t2 þ t3. After defining these

2kj þ 1 information elements, we set the source of each

element one by one from node vj1 to node vj2kjþ1. For

each node vj0, we define an element zj0 : ½j; jþ t1þ t2þ t3�.
For each node vj2kjþ2, we define an element zj2kjþ2 :

½3ðmþ1Þðnþ1Þþ j; 3ðmþ1Þðnþ1Þþ jþ t1þ t2þ t3�. Fig. 2

demonstrates how the lifetimes of these 2kj þ 3 in-

formation elements are defined.

Similarly, we define m information elements gener-

ated by nodes vc1; . . . ; vcm, with element zi : ½ri; di� ¼
½ð3iþ 1Þðnþ 1Þ þ t1þ t2� t4; ð3iþ 2Þðnþ 1Þþ t1þ t2 þ t3�,
i ¼ 1; . . . ;m, being generated by node vci . Then, for

nodes v1 to vn, we define an information element

for each of them with lifetime ½4ðmþ 1Þðnþ 1Þ þ i;
4ðmþ1Þðnþ1Þþiþt2þt3�, i¼1; . . . ; n. For node v, define
an information element with lifetime ½4ðmþ1Þ2ðnþ1Þþ i;
4ðmþ1Þ2ðnþ1Þþ iþ t3�.

Given the above polynomial-time reduction from a

SAT problem � to an instance �0 of IP0 and the

lemma, we can prove that the minimum number of

transmissions required in �0 is tx0 ¼
Pn

j¼1ð2kj þ 1Þ þPn
j¼1½ðkjþ1ÞðDþ 1Þ� þ 2nðDþ 1Þþ 2nþmþ1 if and only

if � is satisfiable. That is, given a satisfiable assignment
for �, an optimal packing scheme can be found by

sending elements at leaf nodes immediately after they

were generated; additionally, if Xj is set to true in the

assignment, node vj will forward each element xji
(i ¼ 1 . . . kj) to node v as soon as the element is received

by vj, and, if Xj is set to false, vj will be spending

all of xji ’s spare time before forwarding it; this way, the

total number of transmissions taken is tx0. In the mean
time, if we find an optimal packing scheme of cost tx0

for problem �0, we can give a satisfiable assignment for

� by setting Xj to true if xji (i ¼ 1 . . . kj) is forwarded

immediately from vj to v, and setting Xj to false if all xjis

are held by vj until its spare time is used up. More
details on this reasoning can be found in [12].

We have also proved that IP0 is NP-hard when the
routing structure is a linear chain. Due to the limitation
of space, we relegate the detailed proof to [12]. Therefore,
IP0 is strong NP-hard when K � 3, whether or not the
routing structure is a tree or a linear chain. tu
Having proved the strong NP-hardness of IP0 when

K � 3, we analyze the hardness of approximation for IP0

using a gap-preserving reduction from MAX-3SAT to IP0

[13], and we have:

Theorem 2. When K � 3, there exists � � 1 such that it is NP-

hard to achieve an approximation ratio of 1þ 1
200N ð1� 1

�Þ for

problem IP0, where N is the number of information elements

in IP0.

Proof. We first show that the reduction presented in Fig. 1 is

a gap-preserving reduction [13] from MAX-3SAT to

problem IP0. It is easy to verify that the proof of Theorem

1 holds if the discussion of the proof is based on 3SAT

instead of the general SAT problem, in which casePn
j¼1 kj ¼ 3m and we denote the reduction as f . There-

fore, if a 3SAT problem � is satisfiable, the minimum

cost of the IP0 problem �0 ¼ fð�Þ is

Ct1 ¼ Ct0 þm

¼
 Xn

j¼1

ð2kj þ 1Þ þ
Xn
j¼1

ðkj þ 1ÞðDþ 1Þ

þ 2nðDþ 1Þ þ 2nþ 1

!
þm

¼ mð3Dþ 10Þ þ nð3Dþ 6Þ þ 1:

ð1Þ

Since n < 4m, (1) implies that

Ct1 < mð3Dþ 10Þ þ nð3Dþ 10Þ
< 5mð3Dþ 10Þ:

ð2Þ

Note that the proof of Theorem 1 holds if D ¼ n þPn
j¼1ð2kj þ 3Þ ¼ 6mþ n, which is the number of infor-

mation elements generated by the descendants of node v.

Thus, (2) implies that

Ct1 < 5mð3ð6mþ nÞ þ 10Þ
¼ 5mð18mþ 3nþ 10Þ
< 5mð18mþ 3� 4mþ 10Þ
¼ 5mð30mþ 10Þ
< 5mð30mþ 10mÞ
¼ 200m2:

ð3Þ

If only m0 of the m clauses in � are satisfiable, then
the minimum cost in �0 ¼ fð�Þ (with K � 3 is
Ct1 þm�m0. This is because ðm�m0Þ number of zi’s
cannot be packed with any other packet and have to be
sent from node v to s alone, which incurs an extra cost
of one each. Accordingly, if less than m0 of the m
clauses in � are satisfiable, then the minimum cost C0 in
�0 ¼ fð�Þ is greater than Ct1 þm�m0. Letting � ¼ m

m0
,

(3) implies that
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C0

Ct1
>
Ct1 þm�m0

Ct1

¼ Ct1 þ �m0 �m0

Ct1

¼ 1þ ð�� 1Þm0

Ct1

> 1þ ð�� 1Þm0

200m2

¼ 1þ �� 1

200m

1

�

¼ 1þ 1

200m
1� 1

�

� �

� 1þ 1

200N
1� 1

�

� �
;

ð4Þ

where N is the number of nonsink nodes in the network
and N � m.

Let OPT ð�Þ and OPT ð�0Þ be the optima of a MAX-
3SAT problem � and the corresponding IP0 problem
�0 ¼ fð�Þ. Then, the polynomial-time reduction f from
MAX-3SAT to IP0 satisfy the following properties:

OPT ð�Þ ¼ 1 ¼) OPT ð�0Þ ¼ Ct1

OPT ð�Þ < 1

�
¼) OPT ð�0Þ > Ct1 1þ 1

200N
1� 1

�

� �� �
:
ð5Þ

From [13], we know that there exists a polynomial-time
reduction f1 from SAT to MAX-3SAT such that, for some
fixed � > 1, reduction f1 satisfies

I 2 SAT ¼) MAX-3SATðf1ðIÞÞ ¼ 1;

I 62 SAT ¼) MAX-3SATðf1ðIÞÞ <
1

�
:

ð6Þ

Then, (5) and (6) imply the following:

I 2 SAT ¼) OPT ðfðf1ðIÞÞÞ ¼ Ct1

I 62 SAT ¼) OPT ðfðf1ðIÞÞÞ > Ct1 1þ 1

200N
1� 1

�

� �� �
:
ð7Þ

Therefore, it is NP-hard to achieve an approximation
ratio of 1þ 1

200N ð1� 1
�Þ for problem IP0. tu

Based on the definition of polynomial-time approxima-
tion scheme and Theorem 2, we, then, have

Corollary 1. There is no polynomial-time approximation scheme
for problem IP0 when K � 3.

Based on the findings for IP0, we have

Theorem 3. When K � 3, problems IP1, IP2, and IP are strong
NP-hard whether or not the routing structure is a tree or a

linear chain, and there is no polynomial-time approximation
scheme for solving them.

Proof. To prove the hardness results for IP1, let’s consider a
special case �1 of IP1 where 1) every node is generating
information elements using the same period p0 and the
same spare time s0 for information elements, 2) p0 is
significantly larger than s0, and 3) p0 is significantly
larger than the latest time r0 when a node generates its
first information element such that the following holds:
in the optimal packing scheme for �1, no two elements

from the same node can be aggregated into the same
packet, and the ith information element from one node
cannot be packed with the jth element from another
node unless i ¼ j. It is easy to see that the special case �1

does exist by properly choosing the parameters p0, s0,
and r0. Therefore, solving �1 becomes the same as
solving an instance �0 of IP0 where the information
elements consist of the first element from every node of
�1. Therefore, IP1 is at least as hard as IP0. Since IP0 is
strong NP-hard, IP1 is strong NP-hard, and there is no
PTAS for the problem.

Since IP1 is a special case of IP2, and IP2 is a special
case of IP, both IP2 and IP are strong NP-hard too, and
there is no PTAS for them. tu

Theorems 1 and 3 show that the joint optimization
problems are strong NP-hard and there is no PTAS,
whether or not the routing structure is a tree or a linear
chain and whether or not the information elements are of
equal length. In contrast, Becchetti et al. [3] showed that, for
total aggregation, the joint optimization problems are
solvable in polynomial time via dynamic programming on
chain networks. Therefore, we see that aggregation con-
straints make the difference on whether a problem is
tractable for certain networks, and thus it is important to
consider them in the joint optimization. Incidentally, we
note that Theorem 3 also answers the open question on the
complexity of Problem (P4) of batch-process scheduling in
interval graphs [10].

3.2 Complexity when K ¼ 2

We showed in Section 3.1 that the problems IPi; i ¼ 0; 1; 2
and IP are all strong NP-hard and there is no PTAS for these
problems when K � 3. We prove in this section that, when
K ¼ 2, the complexity of these problems depends on
whether information elements in a packet can be separated
and repacked with other elements (which we call reaggrega-
tion hereafter) on their way to the sink. When reaggregation
is disallowed, these problems are solvable in polynomial
time; otherwise, they are strong NP-hard. Note that, when
K � 3, these problems are all strong NP-hard even if
reaggregation is disallowed, which can be seen from the
proof of Theorem 1. Note also that, even though reaggrega-
tion may well be allowed in most sensornet systems when
the in-network processing method is packet packing,
reaggregation may not be possible or allowed when INP
is data fusion such as lossy data compression [14]. Via the
study on the impact of reaggregation, therefore, we hope to
shed light on the structure of the joint optimization
problems when general INP methods are considered.

When K ¼ 2 and reaggregation is allowed, the complex-
ity of the joint optimization problems is very much similar
to the case when K � 3; that is, these problems are all
strong NP-hard and there is no PTAS, whether or not the
routing structure is a tree or a linear chain and whether or
not the information elements are of equal length. Due to the
limitation of space, we relegate the detailed proofs to [12],
and we only discuss in detail the case when reaggregation is
prohibited as follows.

When K ¼ 2 and reaggregation is prohibited, we can
solve problem IP (and thus its special versions IP0, IP1, and
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IP2) in polynomial time by transforming it into a maximum

weighted matching problem in an interval graph. An

interval graph GI is a graph defined on a set I of intervals

on the real line such that 1) GI has one and only one vertex

for each interval in the set, and 2) there is an edge between

two vertices if the corresponding intervals intersect with

each other. Given an instance of problem IP, we solve it

using Algorithm 1 as follows:

Algorithm 1. Algorithm for solving IP when K ¼ 2 and

reaggregation is prohibited

1: Generate an interval graph GIðVI; EIÞ for problem IP as

follows:

. Select an arbitrary information element q generated
by node vq at time rq and with spare time sq, define

an interval ½rq; rq þ sq� for q on the real line.

. For each remaining information element p generated

by node vp at time rp and with spare time sp, let node

vpq be the common ancestor of vp and vq that is the

farthest away from R among all common ancestors

of vp and vq, then define an interval ½rq � tvqvpq þ tvpvpq ;
rq � tvqvpq þ tvpvpq þ sq� for information element p.

. Let VI ¼ ;. Then, for each information element s,

define a vertex s and add it to VI .

. Let EI ¼ ;. If the two intervals that represent any

two information elements u and h overlap with

each other, define an edge ðu; hÞ and add it to EI ;

then, assign edge ðu; hÞ with a weight comðu; hÞ ¼
ETXvuhRðluÞ þ ETXvuhRðlhÞ � ETXvuhRðlu þ lhÞ,
where lu and lh are the length of u and h,
respectively.

2: Solve the maximum weighted matching problem for GI

using Edmonds’ Algorithm [15].

3: For each edge ðu; hÞ in the matching, information

elements u and h are packed together at node vuv. For

all other vertices not in the matching, their

corresponding information elements are sent to the sink

alone without being packed with any other information
element.

For Algorithm 1, we have:

Theorem 4. When K ¼ 2 and reaggregation is prohibited,

Algorithm 1 solves problem IP in Oðn3Þ time, where n is the

number of information elements considered in the problem.

This holds whether or not the routing structure is a tree or a

linear chain, and whether or not the information elements are

of equal length.

Proof. It is easy to see that if information elements u and h

are packed together, the total number of transmissions

taken to deliver u and h is

ETXvuRðluÞ þ ETXvhRðlhÞ � ETXvuhRðluÞ � ETXvuhRðlhÞ
þ ETXvuhRðlu þ lhÞ ¼ ETXvuRðluÞ
þ ETXvhRðlhÞ � comðu; hÞ:

Let VI be the set of vertices in the interval graph GI , M be

a matching in GI , V1 be the set of nodes in M, and

V2 ¼ VI=V1. Then, the weight of M, denoted by WM , is as

follows:

WM ¼
X
ðu;hÞ2M

comðu; hÞ

¼
X
ðu;hÞ2M

½ETXvuRðluÞ þ ETXvhRðlhÞ

� ðETXvuRðluÞ þ ETXvhRðlhÞ � comðu; hÞÞ�
¼

X
ðu;hÞ2M

ðETXvuRðluÞ þ ETXvhRðlhÞÞ

�
X
ðu;hÞ2M

½ETXvuRðluÞ þETXvhRðlhÞ � comðu; hÞ�

¼
X
s2V1

ETXsRðlsÞ þ
X
v2V2

ETXvRðlvÞ

�
( X
ðu;hÞ2M

½ETXvuRðluÞ þ ETXvhRðlhÞ � comðu; hÞ�

þ
X
v2V2

ETXvRðlvÞ
)

¼
X
v2VI

ETXvRðlvÞ

�
( X
ðu;hÞ2M

½ETXvuRðluÞ þ ETXvhRðlhÞ

� comðu; hÞ� þ
X
v2V2

ETXvRðlvÞ
)
:

ð8Þ

Note that
P

v2VI ETXvRðlvÞ is a fixed value, andX
ðu;hÞ2M

½ETXvuRðluÞ þ ETXvhRðlhÞ � comðu; hÞ�

þ
X
v2V2

ETXvRðlvÞ

is the total number of transmissions, denoted by
ETXtotal, incurred in the packing scheme generated by
Algorithm 1. Therefore, ETXtotal is minimized if and
only if WM is maximized, which means that solving the
maximum weighted matching problem can give us an
optimal solution to the original packet packing problem.

Let n denote the total number of information elements
in this problem. The whole algorithm consists of three
parts. The first one is to define an interval graph and
assign weights to each node and edge in the graph,
whose time complexity is Oðn2Þ. The second part is to
solve the maximum weighted matching problem, whose
time complexity is Oðn3Þ by Edmonds’ Algorithm [15].
And the third part is to convert the optimal matching
problem to the optimal packing scheme, whose time
complexity is OðnÞ. Therefore, the time complexity of the
whole algorithm is Oðn2Þ þOðn3Þ þOðnÞ ¼ Oðn3Þ. tu

By the definition of the weight comðu; hÞ for elements u
and h in Algorithm 1, the solution generated by the
maximum weighted matching tends to greedily pack
elements as soon as possible after they are generated. This
observation motivates us to design a local, greedy online
algorithm tPack in Section 4 for the general joint optimiza-
tion problems, and the effectiveness of this approach will be
demonstrated through competitive analysis and testbed-
based measurement study in Sections 4 and 5. Note that,
incidentally, Theorem 4 also answers the open question on
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the complexity of scheduling batch processes with release
times in interval graphs [10].

4 A UTILITY-BASED ONLINE ALGORITHM

We see from Section 3 that problem IP and its special cases
in sensornets are strong NP-hard in most system settings,
and there is no polynomial-time approximation scheme for
these problems. Instead of trying to find global optimal
solution, therefore, we focus on designing a distributed,
approximation algorithm tPack that optimizes the local
utility of packet packing at each node. Given that packet
arrival processes are usually unknown a priori, we consider
the online version of the optimization problem.

Based on the definition of IP, its optimization objective is
to minimize

AC ¼ TXnetP
x2X lx

; ð9Þ

where TXnet is the total number of transmissions taken to
deliver each information element x 2 X to the sink before
its deadline. For convenience, we call AC the amortized cost
of delivering

P
x2X lx amount of data. In what follows, we

design an online algorithm tPack based on this concept of
amortized cost of data transmission.

When node j has a packet pkt in its data buffer, j can
decide to transmit pkt immediately or to hold it. If j

transmits pkt immediately, information elements carried in
pkt may be packed with packets at j’s ancestors to reduce
the amortized cost of data transmissions from those nodes;
if j holds pkt, more information elements may be packed
with pkt so that the amortized cost of transmission from j

can be reduced. Therefore, we can define the utility of
transmitting or holding pkt as the expected reduction in
amortized data transmission cost as a result of the
corresponding action, and then the decision on whether to
transmit or to hold pkt depends on the utilities of the two
actions. For simplicity and for low control overhead, we
only consider the immediate parent of node j when
computing the utility of transmitting pkt. We will show
the goodness of this local approach through competitive
analysis later in this section and through testbed-based
measurement in Section 5.

In what follows, we first derive the utilities of holding
and transmitting a packet, then we present a scheduling
rule that improves the overall utility.

4.1 Utility Calculation

For convenience, we define the following notations:

. L : maximum payload length per packet;

. ETXjpðlÞ : expected number of transmissions taken
to transport a packet of length l from node j to its
ancestor p;

. pj : the parent of node vj in the routing tree.

The utilities of holding and transmitting a packet pkt at a
node vj depend on the following parameters related to
traffic pattern:

. With respect to vj itself and its children:

- rl : expected rate in receiving another packet pkt0

from a child or locally from an upper layer;
- sl : expected payload size of pkt0.

. With respect to the parent of vj:

- rp : expected rate for the parent to transmit
another packet pkt00 that does not contain
information elements generated or forwarded
by vj itself;

- sp : expected payload size of pkt00.

The utilities of holding and transmitting a packet pkt also

depend on the following constraints posed by timeliness

requirement for data delivery as well as limited packet size:

. Grace period t0f for delivering pkt: the maximum
allowable latency in delivering pkt minus the
maximum time taken to transport pkt from vj to
the sink without being held at any intermediate node
along the route.

If t0f � 0, pkt should be transmitted immediately

to minimize the extra delivery latency.
. Spare packet space s0f of pkt: the maximum allowable

payload length per packet minus the current pay-
load length of pkt.

Parameter s0f and the size of the packets coming

next from an upper layer at vj or from vj’s children

determine how much pkt will be packed and thus

the potential utility of locally holding pkt.

In the design and analysis of this section, we assume that

packet arrival process (i.e., rl, rp), packet payload size and

spare space (i.e., sl, sp, s
0
f ), and grace period (i.e., t0f ) are

independent of one another. Then, the utilities of holding

and transmitting a packet are calculated as follows:
Utility of holding a packet. When a node vj holds a

packet pkt, pkt can be packed with incoming packets from

vj’s children or from an upper layer at vj. Therefore, the

utility of holding pkt at vj is the expected reduction in

the amortized cost of transmitting pkt after packing pkt. The

utility depends on 1) the expected number of packets that vj
will receive within t0f time (either from a child or locally from

an upper layer), and 2) the expected payload size sl of these

packets. Given that the expected packet arrival rate is rl, the

expected number of packets to be received at vj within t0f
time is t0frl. Thus, the expected overall size S0l of the payload

to be received within t0f time is t0frlsl. Given the spare space s0f
in the packet pkt, the expected size Sl of the payload that can

be packed into pkt can be approximated1 as

minfS0l; s0fg ¼ minft0frlsl; s0fg: ð10Þ

Therefore, the expected amortized cost ACl of transport-

ing the packet to the sink R after the anticipated packing

can be approximated as1

ACl ¼
1

L� s0f þ Sl
ETXjRðL� s0f þ SlÞ;

where ðL� s0fÞ is the payload length of pkt before packing.
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Since the amortized cost AC0l of transporting pkt without
the anticipated packing is

AC0l ¼
1

L� s0f
ETXjRðL� s0fÞ;

the utility Ul of holding pkt is

Ul ¼ AC0l �ACl: ð11Þ

Utility of immediately transmitting a packet. If node vj
transmits the packet pkt immediately to its parent pj, the
utility comes from the expected reduction in the amortized
cost of packet transmissions at pj as a result of receiving the
payload carried by pkt. When vj transmits pkt to pj, the
grace period of pkt at pj is still t0f , thus the expected number
of packets that do not contain information elements from vj
and can be packed with pkt at pj is t0frp, and we use Ppkt to
denote this set of packets. Given the limited payload that
pkt carries, it may happen that not every packet in Ppkt gets
packed (to full) via the payload from pkt. Accordingly, the
utility Up of immediately transmitting pkt is calculated as
follows:

. If every packet in Ppkt gets packed to full with payload
from pkt, i.e., t0frpðL� spÞ � L� s0f :

Then, the overall utility U 0p can be approximated as

U 0p ¼
t0
f

tp
ETXpjRðspÞ

t0
f

tp
sp

�
t0
f

tp
ETXpjRðLÞ

t0
f

tp
L

¼
ETXpjRðspÞ

sp
�
ETXpjRðLÞ

L
:

ð12Þ

. If not every packet in Ppkt gets packed to full with

payload from pkt, i.e., t0frpðL� spÞ > L� s0f :

In this case, bL�s
0
f

L�spc number of packets are packed to

full; if modðL� s0f ; L� spÞ > 0, there is also a packet

that gets partially packed with modðL� s0f ; L� spÞ
length of payload from pkt. Thus, the total number of

packets that benefit from the packet transmission is

dL�s
0
f

L�spe. Denoting modðL� s0f ; L� spÞ by lmod and

letting Imod be 1, if lmod > 0 and 0 otherwise, then

the overall utility U 00p can be approximated as1

U 00p ¼
� L�s0

f

L�sp
	
ETXpjRðspÞ� L�s0

f

L�sp

	
sp

�

 L�s0

f

L�sp

�
ETXpjRðLÞ þ ImodETXpjRðsp þ lmodÞ� L�s0

f

L�sp

	
sp þ L� s0f

:

ð13Þ

Therefore, the utility Up of immediately transmitting pkt
to pj can be computed as

Up ¼
U 0p if t0frpðL� spÞ � L� s0f
U 00p otherwise;

�
ð14Þ

where U 0p and U 00p are defined in (12) and (13), respectively.

4.2 Scheduling Rule

Given a packet to be scheduled for transmission, if the
probability that the packet is immediately transmitted is Pt
(0 � Pt � 1), then the expected utility UtðPtÞ is

UtðPtÞ ¼ Pt � Up þ ð1� PtÞUl ¼ Ul þ PtðUp � UlÞ; ð15Þ

where Up and Ul are the utilities of immediately transmitting
and locally holding the packet, respectively. To maximize
Ut, Pt should be set according to the following rule:

Pt ¼
1 if Up > Ul
0 otherwise:

�

That is, the packet should be immediately transmitted if the
utility of immediate transmission is greater than that of
locally holding the packet. For convenience, we call this
local, distributed decision rule tPack (for time-sensitive
packing). Interested readers can find the discussion on
how to implement tPack in TinyOS in [12].

Competitive analysis. To understand the performance of
tPack as compared with an optimal online algorithm, we
analyze the competitive ratio of tPack. Since it is difficult to
analyze the competitive ratio of nonoblivious online
algorithms for arbitrary network and traffic pattern in the
joint optimization and tPack is a nonoblivious algorithm,
we only study the competitive ratio of tPack for complete
binary trees where all the leaf nodes generate information
elements according to a common data generation process,
and we do not consider the impact of packet length on link
ETX. We denote these special cases of problem IP as
problem IP0. The theoretical analysis here is to get an
intuitive understanding of the performance of tPack; we
experimentally analyze the behaviors of tPack with differ-
ent networks, traffic patterns, and application requirements
through testbed-based measurement in Section 5. We
relegate the study on the competitive ratio of tPack as well
as the lower bound on the competitive ratio of nonoblivious
online algorithms for the general problem IP as a part of our
future work. (Note that the best results so far on the lower
bound of the competitive ratio of joint INP and latency
optimization also only considered the cases where only leaf
nodes generate information elements [4], and these results
are for oblivious algorithms and for cases where no
aggregation constraint is considered [4].)

Then, we have

Theorem 5. For problem IP0, tPack is

min K;maxvj2V>1

2ETXvjR

2ETXvjR �ETXpjR

� 
-competitive;

where K is the maximum number of information elements that
can be packed into a single packet; V>1 is the set of nodes that
are at least two hops away from the sink R.

Proof. For convenience, we denote the optimal packing
scheme as OPT . By definition, tPack is at least K-comp-
etitive since, considering the packets transmitted by a
given node vi in the routing tree, the length of the
packet containing an information element x in OPT is no
more than K times the length of the packet containing x
in tPack.

To get a tighter performance bound for tPack, we first
analyze the packet length for the packets transmitted by
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a leaf node vj. Suppose that vj transmits a packet pkt with
length lpkt when the latency requirement could have

allowed packing another l0 amount of data with the

packet. In this case, the utility of holding pkt is

Ul ¼
ETXvjR

lpkt
�
ETXvjR

lpkt þ l0
¼ ETXvjR

l0

lpktðlpkt þ l0Þ
: ð16Þ

By definition, the utility of immediately transmitting

pkt is no more than the transmission utility that would be

generated if the information elements of pkt are all

packed into another packet pkt	 at pj, the parent of vj,

that was transmitted to pj from its the child other than vj.
Given that the routing tree is a complete binary tree and

that the leaf nodes generate information elements

according to a common data generation process, the

lengths of packets that are transmitted along links at the

same tree level are expected to be the same. Thus, we can

assume that the payload length of pkt	 is also lpkt.

Therefore, the utility of immediately forwarding pkt at vj
satisfy the following inequality:

Up �
ETXpjR

lpkt
�
ETXpjR

lpkt þ lpkt
¼
ETXpjR

2lpkt
: ð17Þ

By the design of tPack, we know that Ul < Up. From
(16) and (17), thus, we have

ETXvjR
l0

lpktðlpkt þ l0Þ
<
ETXpjR

2lpkt
:

Thus,

l0 <
a

2� a lpkt; ð18Þ

where a ¼ ETXpjR

ETXvjR
.

Due to the constraint imposed by application’s
requirement on the timeliness of data delivery, we know
that the length of the packet, denoted by lopt, that
contains the information elements of pkt in OPT is no
more than lpkt þ l0. Then, from (18), we know that

lopt � lpkt þ l0 <
2

2� a lpkt ¼
2ETXvjR

2ETXvjR �ETXpjR
lpkt:

That is,

lopt
lpkt

<
2ETXvjR

2ETXvjR � ETXpjR
: ð19Þ

For a node vi that is not a leaf node, the same analysis

applies. Given a packet pkt0 of length lpkt0 that is

transmitted by vi when the latency requirement could

have allowed packing another l00 amount of data with
pkt0, we have

l00 <
a0

2� a0 lpkt
0 ; ð20Þ

where a0 ¼ ETXpiR

ETXviR
. Moreover, the length of the packet,

denoted by lopt0 , that contains the information elements of

pkt0 in OPT is no more than lpkt0 þ l00; this is due to the

following reasons:

. If a packet pktmax contains lpkt0 þ l00 amount of data
payload without constrained by packet size limit,
then the spare time of pktmax is 0.

. Consider a packet pkt00 transmitted by vi in OPT
whose length is lopt0 . If vi holds pkt00 until its spare
time is 0 (instead of transmitting pkt00) in OPT, the
resulting length of the new packet pkt000 is no more
than lpkt0 þ l00. This is because data flow faster
toward the sink in tPack as compared with OPT,
and pkt0 reaches vi earlier than pkt00 does.

. Therefore, lopt0 is no more than the length of
pkt000 , which is no more than lpkt0 þ l00. Thus,
lopt0 � lpkt0 þ l00.

Therefore, we have

lopt0

lpkt0
<

2ETXviR

2ETXviR � ETXpiR
: ð21Þ

From (19) and (21), we know that tPack is at least

O maxvj2V>1

2ETXvjR

2ETXvjR �ETXpjR

� �
-competitive:

Therefore, tPack is minfK;maxvj2V>1

2ETXvjR

2ETXvjR
�ETXpjR

g-com-
petitive for problem IP0. tu
From Theorem 5, we see that tPack is 2-competitive if

every link in the network is of equal ETX value.

5 PERFORMANCE EVALUATION

To characterize the impact of packet packing and its joint
optimization with data delivery timeliness, we experimen-
tally evaluate the performance of tPack.

5.1 Methodology

Testbed. We use the NetEye wireless sensor network testbed
at Wayne State University [16]. NetEye is deployed in an
indoor office as shown in Fig. 3. We use a 10� 13 grid of
TelosB motes in NetEye, where every two closest neighbor-
ing motes are separated by 2 feet. Out of the 130 motes in
NetEye, we randomly select 120 motes (with each mote being
selected with equal probability) to form a random network
for our experimentation. Each of these TelosB motes is
equipped with a 3 dB signal attenuator and a 2.45 GHz
monopole antenna.

In our measurement study, we set the radio transmission
power to be �25 dBm (i.e., power level 3 in TinyOS) such
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that multihop networks can be created. We also use channel
26 of the CC2420 radio to avoid external interference from
sources such as the campus WLANs. We use the TinyOS
collection tree protocol (CTP) [17] as the routing protocol to
form the routing structure, and we use the Iowa’s Timesync
protocol [18] for network wide time synchronization.

Protocols studied. To understand the impact of packet
packing and its joint optimization with data delivery
timeliness, we comparatively study the following protocols:

. noPack: information elements are delivered without
being packed in the network.

. simplePack: information elements are packed if they
happen to be buffered in the same queue, but there is
not packing-oriented scheduling.

. SL: the spread latency algorithm proposed in [3], where
the spare time of an information element is evenly
spent at each hop from its source to the sink without
considering specific network conditions (e.g., net-
work-wide traffic pattern). SL was proposed with
total aggregation in mind without considering ag-
gregation constraints such as maximum packet size.

. CC: the common clock algorithm proposed in [3],
where the spare time of an information element is
only partly spent at the node where it is generated.
Same as SL, CC was proposed with total aggregation
in mind.

. tPack: the packing- and timeliness-oriented schedul-
ing algorithm that maximizes the local utility at each
node, as we discussed in Section 4. (We have also
evaluated another version of tPack, denoted by
tPack-2hop, where the forwarding utility Up considers
both the parent node and the parent’s parent; we
find that tPack-2hop does not bring significant
improvement over tPack while introducing higher
overhead and complexity, thus our discussion here
only focuses on tPack.)

We have implemented, in TinyOS [19], a system library
which includes all the above protocols. The implementation
takes 40 bytes of RAM (plus the memory required for
regular packet buffers) and 4,814 bytes of ROM.

Performance metrics. For each protocol we study, we
evaluate their behavior based on the following metrics:

. Packing ratio: number of information elements
carried in a packet.

. Delivery reliability: percentage of information ele-
ments correctly received by the sink.

. Delivery cost: number of transmissions required for
delivering an information element from its source to
the sink.

. Deadline catching ratio: out of all the information
elements received by the sink, the percentage of
them that are received before their deadlines.

. Latency jitter: variability of the time taken to deliver
information elements from the same source node,
measured by the coefficient of variation (COV) [20]
of information delivery latency.

Traffic pattern. To experiment with different sensornet
scenarios, we use both periodic data collection traffic and
event detection traffic trace as follows:

. D3: each source node periodically generates 50
information elements with an interelement interval,
denoted by �r, uniformly distributed between
500 ms and 3 s; this is to represent high traffic load
scenarios.

. D6: same as D3 except that �r is uniformly
distributed between 500 ms and 6 s; this is to
represent relatively low traffic load scenarios.

. D9: same as D3 except that �r is uniformly
distributed between 500 ms and 9 s.

. Elites: an event traffic where a source node generates
one packet based on the Lites [21] sensornet event
traffic trace.

To understand the impact of the timeliness requirement of
data delivery, we experiment with different latency
requirements. For periodic traffic, we consider maximum
allowable latency in delivering information elements that
are one, three, and five times the average element
generation period, and we denote them by L1, L3, and
L5, respectively; for event traffic, we consider maximum
allowable latency that is 2, 4, or 6 s, and we denote them by
L20, L40, and L60, respectively. Out of the 120 motes selected
for experimentation, we let the mote closest to a corner of
NetEye be the sink node, and the other mote serves as a
traffic source if its node ID is even. For convenience, we
regard a specific combination of source traffic model and
latency requirement a traffic pattern. Thus, we have eight
traffic patterns in total. To gain statistical insight, we repeat
each traffic pattern 20 times. Note that, in each traffic
pattern, all the information elements have the same
maximum allowable latency. In our implementation, each
information element is 16-byte long, and the TelosB motes
allow for aggregating up to seven information elements into
a single packet (i.e., K ¼ 7).

5.2 Measurement Results

In what follows, we first present the measurement results
for periodic traffic patterns D3, D6, and D9, then we discuss
the case of event traffic pattern Elites; for conciseness, we
relegate the detailed discussion on D9 and Elites to [12]. In
most figures of this section, we present the means/medians
and their 95 percent confidence intervals for the corre-
sponding metrics such as the packing ratio, delivery
reliability, delivery cost, deadline catching ratio, and the
latency jitter.

For the periodic traffic pattern D3, Figs. 4, 5, 6, 7, and 8
show the packing ratio, delivery reliability, delivery cost,
deadline catching ratio, and latency jitter in different
protocols. tPack tends to enable higher degree of packet
packing (i.e., larger packing ratio) than other protocols
except the CC protocol. The increased packing in tPack

reduces channel contention and thus reduces the prob-
ability of packet transmission collision, which improves
data delivery reliability. The reduced probability of trans-
mission collision and the increased number of information
elements carried per packet in tPack in turn reduces
delivery cost, since there are fewer number of packet
retransmissions as well as fewer number of packets
generated. Note that the low delivery reliability in
simplePack is due to intense channel contention.
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Exceptions to the above general observation happen in

the case of maximum allowable latency L1 or when

comparing tPack with CC. In the first case, the packing

ratio in tPack is lower than that in SL, but tPack still

achieves much higher delivery reliability (i.e., by more than

40 percent) and much lower delivery cost (i.e., by a factor of

more than 3). This is because the packing ratio in SL is too

high such that, in the presence of high wireless channel

contention due to the high traffic load of D3 and the

stringent real-time requirement of L1, the resulting long

packet length leads to higher packet error rate and lower

packet delivery reliability (as shown in Fig. 5). The routing

protocol CTP adapts to the higher packet error rate in SL,

and this leads to longer routes and larger routing hops in

SL. This can be seen from Fig. 9 which shows the histogram

of routing hop counts in different protocols. The maximum

hop count in tPack is 4, whereas the hop count can be up to

9 in SL. Together, the higher packet error rate and the

longer routes in SL lead to larger delivery cost in SL as

compared with tPack. Similar arguments apply to the case

when comparing tPack with CC. From these data on the

benefits of tPack in comparison with SL and CC, we can see

the importance of adapting to network conditions and data

aggregation constraints in in-network processing. Note that

similar arguments also explain the phenomenon where SL

has higher packing ratio than simplePack but lower

delivery reliability and higher delivery cost under all

latency settings of D3 traffic.
Fig. 5 also shows that tPack improves data delivery

reliability even when the allowable latency in data delivery

is small (e.g., in the case of L1) where the inherent

probability for packets to be packed tends to be small.

Therefore, tPack can be used for real-time applications
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Fig. 4. Packing ratio: D3.

Fig. 5. Delivery reliability: D3.

Fig. 6. Delivery cost: D3.

Fig. 7. Deadline catching ratio: D3.

Fig. 8. Latency jitter: D3.

Fig. 9. Histogram of routing hop count: D3 with maximum allowable
latency L1.



where high data delivery reliability is desirable. Fig. 4

shows that the packing ratio in tPack is close to 4 except for

the case of L1 where 1) too much packing is undesirable as

discussed earlier and 2) the packing probability is sig-

nificantly reduced by the limited probability for a node to

wait due to stringent timeliness requirement. Our offline

analysis shows that the optimal packing ratio is 
5 for the

traffic patterns D3-L3 and D3-L5; thus, tPack achieves a

packing ratio very close to the optimal, which corroborates

our analytical result in Theorem 5.
Fig. 7 shows the deadline catching ratio in deadline-

aware data aggregation schemes tPack, SL, and CC. Though

the deadline catching ratio of all the three protocols are

close to 1, the catching ratio of tPack is the highest and is

greater than 0.99 in all cases. The slightly higher deadline

catching ratio in tPack is a result of its online adaptation of

packet holding time at each hop according to in-situ

channel and traffic conditions along the path. As a result

of the properly controlled packet packing, the reduced

channel contention and improved packet delivery relia-

bility in tPack also help enable lower performance varia-

bility. For instance, Fig. 8 shows the latency jitter in

different protocols, and we see that the jitter tends to be

the lowest in tPack, especially when the real-time require-

ment is stringent (e.g., in L1 and L3). These properties are

desirable in cyber-physical-system sensornets where real-

time sensing and control require predictable data delivery

performance (e.g., in terms of low latency jitter), especially

in the presence of potentially unpredictable, transient

perturbations.

Figs. 10, 11, 12, 13, and 14 show the measurement results
for periodic traffic patterns D6 and D9, respectively. We
see that, in terms of relative protocol performance, the
overall trends in D6 and D9 are similar to those in D3. For
instance, with stringent real-time requirement in L1, SL
achieves a lower delivery reliability and a higher delivery
cost than tPack even though the packing ratio tends to be
higher in SL. Due to the reduced traffic load and thus the
reduced wireless channel contention and collision, how-
ever, the delivery reliability of noPack, simplePack, and SL
is also relatively high compared with their delivery
reliability in D3.

Note that, in [3], CC is shown to have a much higher
competitive ratio than SL through theoretical analysis. From
our measurement study, however, we see that the perfor-
mance of CC is not always better than SL. For instance, CC
has a lower delivery reliability and a higher delivery cost
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Fig. 10. Packing ratio: D6.

Fig. 11. Delivery reliability: D6.

Fig. 12. Delivery cost: D6.

Fig. 13. Deadline catching ratio: D6.

Fig. 14. Latency jitter: D6.



than SL in D6-L5. This seemingly discrepancy is due to the
fact that the theoretical analysis of [3] does not consider the
limit of data aggregation capacity, nor does it consider
wireless link unreliability and interference in scheduling.

Surprisingly, Figs. 10, 11, and 12 show that, for the traffic
pattern D6, simplePack introduces higher delivery cost than
noPack does even though the packing ratio and the end-to-
end delivery reliability are higher in simplePack. One
reason for this is that, partially due to the increased packet
length in simplePack, the link reliability in simplePack is
lower than that in noPack as shown in Fig. 15.2 The routing
protocol CTP adapts to the lower link reliability in
simplePack and introduces longer routing hop length,
which can be seen from Fig. 16 which shows the histogram
of routing hop counts for noPack and simplePack in traffic
pattern D6-L1. Together, the lower link reliability and the
longer routes in simplePack introduce larger information
delivery cost when compared with noPack in D6. This
observation is also corroborated by the detailed analysis of
the cost (e.g., mean number of transmissions) taken to
deliver an information element. For instance, Fig. 17 shows
the mean cost of delivering an information element from a
node at different geographic distances (in terms of the
number of grid hops) from the base station for the traffic
pattern D6-L1. (Similar phenomena are observed for other
traffic patterns.) We see that, for most of the cases, the per-
element delivery cost is higher in simplePack. Note that
similar arguments explain why simplePack has higher
delivery cost than noPack in traffic pattern D9 and why SL
also has higher delivery cost than noPack in several cases
(e.g., for traffic pattern D6-L1). In view with the consistently
better performance in tPack, these observations demon-
strate again the importance of considering network condi-
tions and data aggregation constraints in in-network
processing.

6 RELATED WORK

In-network processing has been well studied in sensornets,
and many INP methods have been proposed for query
processing (e.g., TinyDB [1]) and general data collection

(e.g., DFuse [2]). When controlling spatial and temporal
data flow to enhance INP, however, these methods did not
consider application requirements on the timeliness of data
delivery. As a first step toward understanding the interac-
tion between INP and application QoS requirements, our
study has shown the benefits as well as the challenges of
jointly optimizing INP and QoS from the perspective of
packet packing. As sensornets are increasingly being
deployed for mission-critical tasks, it becomes important
to address the impact of QoS requirements on general INP
methods other than packet packing, which opens interest-
ing avenues for further research.

As a special INP method, packet packing has also been
studied for sensornets as well as general wireless and
wired networks, where mechanisms have been proposed
to adjust the degree of packet packing according to
network congestion level [5], [22], to address MAC/link
issues related to packet packing [23], [6], [24], to enable IP
level packet packing [25], and to pack periodic data
frames in automotive applications [26]. These works have
focused on issues in local, one-hop networks without
considering requirements on maximum end-to-end packet
delivery latency in multihop networks. With the exception
of [26], these works did not focus on scheduling packet
transmissions to improve the degree of packet packing,
and they have not studied the impact of finite packet size
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Fig. 15. Link reliability: D6. Fig. 16. Histogram of routing hop count: D6 with maximum allowable
latency L1.

Fig. 17. Per-element delivery cost versus geographic distance: D6 with
maximum allowable latency L1.

2. The reason why simplePack still has higher end-to-end information
element delivery reliability despite its lower link reliability is because each
packet delivered in simplePack carries more information elements due to
the higher packing ratio.



either. Saket and Navet [26] studied packet packing in
single-hop controller-area networks (CAN) with finite
packet size. Our work addresses the open questions on
the complexity and protocol design issues for jointly
optimizing packet packing and data delivery timeliness in
multihop wireless sensornets.

Most closely related to our work are [3], [27], [28] where
the authors studied the issue of optimizing INP under the
constraint of end-to-end data delivery latency. But these
studies did not consider aggregation constraints and
instead assumed total aggregation where any arbitrary
number of information elements can be aggregated into
one single packet. These studies did not evaluate the impact
of joint optimization on data delivery performance either.
Our work focuses on settings where packet size is finite,
and we show that aggregation constraints (in particular,
maximum packet size and reaggregation tolerance) sig-
nificantly affect the problem complexity and protocol
design. Using a high-fidelity sensornet testbed, we also
systematically examine the impact of joint optimization on
packet delivery performance in multihop wireless net-
works. By showing that tPack performs better than the
algorithm SL and CC [3], [28], our testbed-based measure-
ment results also demonstrate the benefits of considering
realistic aggregation constraints in the joint optimization.

Solis and Obraczka [29] also considered the impact that
the timing of packet transmission has on data aggregation,
and the problem of minimizing the sum of data transmis-
sion cost and delay cost has been considered in [4] and [30].
These studies also assumed total aggregation, and they did
not consider hard real-time requirements on maximum
end-to-end data delivery latency. Ye et al. [31] considered
the local optimal stopping rule for data sampling and
transmission in distributed data aggregation. It did not
consider hard real-time requirement either, and it did not
study network-wide coordination and the limit of data
aggregation. Yu et al. [32] studied the latency-energy trade-
off in sensornet data gathering by adapting radio transmis-
sion rate; it did not study the issue of scheduling data
transmission to improve the degree of data aggregation.

7 CONCLUDING REMARKS

Through both theoretical and experimental analysis, we
examine the complexity and impact of jointly optimizing
packet packing and the timeliness of data delivery. We find
that aggregation constraints (in particular, maximum packet
size and reaggregation tolerance) affect the problem
complexity more than network and traffic properties do,
which suggest the importance of considering aggregation
constraints in the joint optimization. We identify conditions
for the joint optimization to be strong NP-hard and
conditions for it to be solvable in polynomial time. For
cases when it is polynomial-time solvable, we solve the
problem by transforming it to the maximum weighted
matching problem in interval graphs; for cases when it is
strong NP-hard, we prove that there is no polynomial-time
approximation scheme for the problem. We also develop a
local, distributed online protocol tPack for maximizing the
local utility of each node, and we prove the competitiveness
of the protocol with respect to optimal solutions. Our

testbed-based measurement study also corroborates the
importance of QoS- and aggregation-constraint aware
optimization of packet packing.

While this paper has extensively studied the complexity,
algorithm design, and impact of jointly optimizing packet
packing and data delivery timeliness, there are still a rich
set of open problems. Even though we have analyzed the
competitiveness of tPack for nontrivial scenarios and this
has given us insight into the behavior of tPack, it remains an
open question on how to characterize in a closed form the
competitiveness of tPack and nonoblivious online algo-
rithms in broader contexts. The analytical and algorithmic
design mechanisms developed for packet packing may well
be extensible to address other in-network processing
methods such as data fusion, and a detailed study of this
will help us better understand the structure of the joint
optimization problem and will be interesting future work to
pursue. We have focused on the scheduling aspect of the
joint optimization, and we are able to use mathematical
tools such as interval graphs to model the problem; on the
other hand, how to mathematically model and analyze the
impact of the joint optimization on spatial data flow is still
an open question and is beyond the scope of most existing
network flow theory; thus, it will be interesting to explore
new approaches to modeling and solving the joint
optimization problem.
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