Auc2Charge: An Online Auction Framework for Electric Vehicle Park-and-Charge

Qiao Xiang¹, Fanxin Kong¹, Xue Liu¹, Xi Chen¹, Linghe Kong¹ and Lei Rao²

¹School of Computer Science, McGill University ²General Motors Research Lab

July 16th, 2015

Introduction

Q

Electric Vehicles(EV)

- Crucial component of Intelligent Transportation System(ITS)
- Shift energy load from gasoline to electricity
- Cause high penetration of power grid
- Require large-scale deployment of charging stations

Various charging stations

			· = · / ~
ao Xiang <i>et al.</i> (McGill)	ACM e-Energy'15	07/16/2015	2/ 26

Park-and-Charge

An up-and-coming mode for charging stations

- A parking lot equipped with Level 1 and Level 2 chargers
- EVs get charged during parking, e.g., a few hours
- Slow charging, inexpensive hardware and high utilization of space

Figure: An illustration of park-and-charge

Qiao Xiang et al. (McGill)

Introduction

Park-and-Charge

Current Field Deployment

- Workplace, airport, military base and etc.
- Pricing policies
 - Pay-per-use
 - Flat rate

Boston University

Seattle-Tacoma Airport

Sources: bu.edu and plugincars.com

Qiao Xiang *et al.* (McGill)

ACM e-Energy'15

Pay-Per-Use and Flat-Rate Pricing

Advantages

- Simple and straightforward
- Helpful for early market expanding

Limitations

- Overpricing and underpricing
- Undermined social welfare i.e., sum of station revenue and user utilities

Social Welfare in Park-and-Charge: An Example

Pay-per-use and flat-rate: allocate 15kWh to each EV

However,

- Marginal utilities of EVs are different
- \bullet Lower arriving SOC \rightarrow Higher marginal utility
- \bullet Ignorance of such difference \rightarrow Undermined social welfare

Motivation and Challenges

Motivat<u>ion</u>

Social Welfare in Park-and-Charge: An Example

To maximize social welfare:

• Allocate electricity to low SOC vehicle as much as possible

Pay-per-use and flat-rate focus on station revenue, not social welfare.

	. €	□▶ ◀륨▶ ◀불▶ ◀불▶	き うくぐ
Qiao Xiang <i>et al.</i> (McGill)	ACM e-Energy'15	07/16/2015	7/ 26

Future market deployment of park-and-charge desires an **efficient market mechanism** to

- Avoid overpricing and underpricing
- Maximize social welfare

Our Focus

Our Focus

- Investigate auction as market mechanism for park-and-charge
- Auc2Charge: an online auction framework
- Understanding system benefits via numerical simulation

Related Work

- Auctions has been widely studied in Internet Adwords, cloud computing and smart grid.
 - Social welfare maximization
 - Truthfulness and individual rationality
- What enables Auc2Charge?
 - Budget-constrained online auction and randomized auction theory
- *Auc2Charge* can be extended to other operation modes of charging stations, e.g., fast charging reservation.

System Settings and Problem Formulation

System Settings and Problem Formulation

- EVs arrive, park-and-charge, and leave
- Users send bids on how much to charge, when to charge and how much to pay, i.e., $\{b_i^k(t), c_i^k(t)\}$, to the charging station
- Auctions are conducted every time slot, and users get notified
- Users can adjust future bids anytime during parking,

System Settings and Problem Formulation

A Binary Programming Formulation

PNC : maximize	$\sum_{k=1}^{T} \sum_{i=1}^{M} \sum_{k=1}^{K} b_{i}^{k}(t) y$	$v_j^k(t)$ Social Welfare
subject to	l=1 $j=1$ $k=1$	
$\sum_{k=1}^{K}\sum_{t=1}^{T}b_{j}^{k}(t)y_{j}^{k}(t)\leq B_{j},$	$\forall j,$	Users Budget
$\sum_{j=1}^M\sum_{k=1}^K c_j^k(t)y_j^k(t)\leq R(t),$	$\forall t,$	Station Supply
$\sum_{k=1}^{\mathcal{K}} y_j^k(t) \leq 1,$	$\forall j \text{ and } t,$	No Double Wins
$\sum_{k=1}^{K}c_{j}^{k}(t)y_{j}^{k}(t)\leq C_{j}(t),$	$\forall j \text{ and } t,$	Unit-Time Charging Capacity
$y_j^k(t) \in \{0,1\},$	$\forall j, k \text{ and } t$	Winning Indication

Challenges

• PNC is NP-hard

 \rightarrow The auction must be computationally efficient

- PNC is stochastic
 - ightarrow The auction must be online
- \bullet Users may bid strategically \rightarrow The autcion must be truthful and individual rational

1. Decompose **PNC** into smaller auctions via bids update process.

Bids Update Process:

- Originally proposed in budget-constrained online Adwords auction¹, and extended to resource auction in cloud computing.²
- \bullet Intuition: adjust reported valuation in $\mathsf{PNC}_{\mathsf{one}}(t)$ based on the results from $\mathsf{PNC}_{\mathsf{one}}(t-1)$
 - Users not getting electricity in t-1
 - ightarrow No adjust in t
 - Users getting electricity in t-1
 - \rightarrow Reduce reported valuation in t based on remaining budget
- **Rationale**: avoid user depleting budget fast without fully charged
- Result: the overall budget constraint is dropped.

Qiao Xiang et al. (McGill)

¹Buchbinder, Niv, *et al.* "Online primal-dual algorithms for maximizing ad-auctions revenue." Algorithms-ESA 2007.

²Shi, Weijie, *et al.* "An online auction framework for dynamic resource provisioning in cloud computing." ACM SIGMETRICS 2014.

A Binary Programming Model without Budget Constraint

$PNC_{one}(t)$: maximize	$p(t) = \sum_{j=1}^{M} \sum_{k=1}^{K} c_{j}$	$\omega_j^k(t)y_j^k(t)$, Social Welfare
subject to	-	
$\sum_{j=1}^M\sum_{k=1}^{K}c_j^k(t)y_j^k(t)\leq R(t),$		Station Supply
$\sum_{k=1}^{K} y_j^k(t) \leq 1,$	$\forall j$	No Double Wins
$\sum_{k=1}^K c_j^k(t) y_j^k(t) \leq C_j(t),$	$\forall j$	Unit-Time Charging Capacity
$y_j^k(t)\in\{0,1\},$	$\forall j \text{ and } k.$	Winning Indication

2. Execute randomized auction for $PNC_{one}(t)$

17/26

Randomized Auction Aucone

- \bullet Basic idea: design truthful mechanism via approximation algorithm 3
- Perform a fractional VCG auction for $PNC_{one}(t)$
- Decompose fractional solutions to PNC_{one}(t) into a polynomial number of feasible solutions
- Randomly select one feasible solution as the allocation decision
- Compute the corresponding pricing decision

Qiao Xiang et al. (McGill)

³Lavi, Ron, *et al.* "Truthful and near-optimal mechanism design via linear programming." Journal of the ACM (JACM) 58.6 (2011): 25.

How to find a polynomial number of feasible solutions?

 \bullet Use a greedy primal-dual approximation algorithm for $\mathsf{PNC}_{\mathsf{one}}(t)$ as a separation oracle

Greedy approximation algorithm

- Drop bids exceeding the unit-charging capacity
- Select the bid with highest unit-value, one at a time, while supply and demand lasts

Theorem

The greedy algorithm provides a close-form approximation ratio of α and an integrality gap of α to problem $\mathsf{PNC}_{\mathsf{one}}(t)$ in polynomial time.^a

 $a\alpha = 1 + \epsilon (e-1) \frac{\theta}{\theta-1}.$

▲ □ ▶ ▲ □ ▶ ▲

Properties of Auc2Charge

Theorem

Auc_{one} is computationally efficient, truthful, individual rational, and $\alpha(1 + R_{max})$ -competitive in the one-shot auction of Auc2Charge online auction framework.^a

^a*R*_{max}: the maximal per-timeslot bid-to-budget ratio.

Theorem

Using Auc_{one} as the one-shot auction, the Auc2Charge framework is truthful, individual rational, computationally efficient and $(1 + R_{max})(\alpha(1 + R_{max}) + \frac{1}{\varphi - 1})$ -competitive on the social welfare for the EV park-and-charge system.^a

$${}^{a}\varphi = (1+R_{max})^{rac{1}{R_{max}}}.$$

Simulation Settings

- Park-and-charge Facility: 500 spots
- EV battery capacity: 40kWh
- Arriving SOC \in (0, 0.7]
- Parking time \in [2, 6] hours
- Budget: \in [8, 12] dollars
- Number of bids/hour: \leq 5
- Simulated time T = 12, 18, 24 hours
- Simulated scale M = 100, 200, 300, 400, 500 EVs

Simulation Settings

Metrics

- Social Welfare
 - Approximation ratio over offline optimum
- User Satisfaction
 - User Satisfaction Ratio
 - Unit Charging Payment
 - Total Charging Payment
 - Budget Utilization Ratio

Evaluation Results

Evaluation Results

Approximation Ratio on Social Welfare

Qiao Xiang *et al.* (McGill)

Performance Evaluation

Evaluation Results

Evaluation Results

User Satisfaction

Evaluation Results

User Satisfaction - Cont'd

Concluding Remarks

Conclusion and Future Work

Conclusion

- Explore auctions as efficient market mechanisms for EV charging stations
- Propose *Auc2Charge*, an online auction framework for EV park-and-charge
- Demonstrate system benefits in terms of social welfare and user satisfaction

Future Work

- Include other realistic constraints, e.g., V2G transmission and ramp-up/down generation cost
- Investigate privacy-preserving auctions for EV charging