Towards Real-time, Reliable and Efficient Service in Wireless Cyber-Physical Systems

Qiao Xiang

School of Computer Science, McGill University

April 23rd, 2015
Outline

1. Introduction
2. Wireless Networked Sensing and Control
3. Intelligent Transportation Systems
4. Electric-Vehicle-Integrated Smart Grid
5. Future CPS Research and College Education
6. Concluding Remarks
7. List of Publications
Wireless Cyber-Physial Systems (WCPS)
Introduction

Our focus
- Design real-time, reliable and efficient WCPS

Our methodology
- Light-weight algorithm and protocol design
- Theoretical analysis of different algorithms
- Extensive experimental and simulation evaluation

Case Studies
1. Wireless Networked Sensing and Control
2. Intelligent Transportation Systems
3. Electric-Vehicle-Integrated Smart Grid
Outline

1. Introduction

2. Wireless Networked Sensing and Control

3. Intelligent Transportation Systems

4. Electric-Vehicle-Integrated Smart Grid

5. Future CPS Research and College Education

6. Concluding Remarks

7. List of Publications
Wireless sensor networks + Close-loop control

Various mission-critical applications
Wireless Sensor Networks

- Communication infrastructure of WNSC
- Highly resource-constrained

In-Network Processing (INP)

- Reduce traffic flow \rightarrow resource efficient
- End-to-end QoS are usually not considered
Challenges for INP in WNSC

- Stringent end-to-end QoS requirements, e.g., latency, reliability and efficiency, in WNSC
- Dynamic communication environments

To cope with these challenges, we investigate

- Joint optimization between INP and QoS
 - Real-time packet packing scheduling [7][9]
 - Optimal network-coding routing [8][3]
NetEye Testbed
Optimal Network-Coding-Based Routing

\[\{1, 2, 3\} = X_1 + 2X_2 + 3X_3 \]
\[\{1, 1, 1\} = X_1 + X_2 + X_3 \]

\[K=3 \]
\[\{1, 0, 0\} = X_1 \]
\[\{0, 1, 0\} = X_2 \]
\[\{0, 0, 1\} = X_3 \]

\[\{2, 3, 4\} = 2X_1 + 3X_2 + 4X_3 \]
\[\{3, 5, 10\} = 3X_1 + 5X_2 + 10X_3 \]

\[\{3, 4, 6\} = 3X_1 + 4X_2 + 6X_3 \]

\[\{2, 3, 5\} = 2X_1 + 3X_2 + 5X_3 \]
\[\{1, 1, 1\} = X_1 + X_2 + X_3 \]
System Model

- A directed graph $G = (V, E)$ with one source S and one destination T
- Edge $(i, j) \in E$ with link reliability $P_{ij} = \frac{1}{ETX_{ij}}$
- Node i has a forwarder candidate set FCS_i, i.e., one-hop neighbors of i

MIN-NC Problem

- Determine the forwarder set FS_i for each node i
- **Minimize** the total transmission cost to deliver K linear independent packets from S to T
Minimize the cost of NC-based routing

A greedy approach

1. Sort forwarder candidates in non-descending order of their transmission cost;
2. Select the best candidate remaining into forwarder set;
3. Keep it in the set if the total transmission cost can be reduced, go back to last step;
4. Stop if the total transmission cost cannot be reduced.
Theorem of optimality

Theorem

Given a node \(S \) and its forwarder candidate set \(D_S = \{A_1, A_2, \ldots, A_M\} \), our greedy algorithm yields the minimal transmission cost to the destination node of NC-based routing and the corresponding forwarder set.

We proved this theorem by contradiction.
Properties of the optimal routing braid

Theorem

Given a node S with a candidate set FCS_S of M forwarders, the optimal forwarder set FS_S computed in our greedy algorithm does not always contain node A^* where $A^* \in FCS_S$ and

$$\frac{1}{P_{SA^*}} + C_{A^*} \leq \frac{1}{P_{SA_i}} + C_{A_i}$$

for any $i \in FCS_S/\{A^*\}$.

Shortest single path routing is not always in the optimal braid.
Properties of the optimal routing braid
The optimal routing braid is \(\{A_1, A_2\} \)

\[
C_{\{A_1, A_2\}} = \frac{1}{1 - (1 - 0.1)(1 - 0.15)} \cdot [1 + \frac{0.1}{0.4} + \frac{0.15(1 - 0.1)}{0.2}]
\]

\[
= \frac{1}{0.235} \cdot (1 + \frac{1}{4} + \frac{0.135}{0.2})
\]

\[
= 8.1915
\]

\[
C_{\{A_1, A_2, A_3\}} = \frac{1}{1 - (1 - 0.1)(1 - 0.15)(1 - 0.9)} \cdot [1 + \frac{0.1}{0.4} + \frac{0.15(1 - 0.1)}{0.2} + \frac{0.9(1 - 0.1)(1 - 0.15)}{0.1}]
\]

\[
= \frac{1}{0.9235} \cdot (1 + \frac{1}{4} + \frac{0.135}{0.2} + \frac{0.6885}{0.1})
\]

\[
= 9.5398 > C_{\{A_1, A_2\}}
\]
Properties of the optimal routing braid

Theorem

Given a node S with a candidate set FCS_S of M forwarders, the optimal transmission cost C_S^* computed in our greedy algorithm is always lower than or equal to \(\frac{1}{P_{SA^*} + C_{A^*}} \) where $A^* \in FCS_S$ and
\[
\frac{1}{P_{SA^*}} + C_{A^*} \leq \frac{1}{P_{SA_i}} + C_{A_i}
\]
for any $i \in FCS_S / \{A^*\}$.

Cost of optimal NC-based routing is upper bounded by shortest single path routing.
Routing engine: a distributed implementation of our greedy algorithm

M-NSB: a coded ACK scheme to solve the collective space problem with lower implementation complexity than CCACK

Rate control: nodes forward a flow after receiving a load-dependent threshold of packets to 1) reduce contention and 2) avoid potential linear dependence between forwarded packets
Performance evaluation

Experiment setting up

- Testbed: NetEye, a 130-sensor testbed at Wayne State University
- Topology: 40 nodes, 10/20 are source nodes, 1 sink node
- Protocols compared: ONCR, CTP, MORE, CodeOR
- Traffic pattern: 3-second periodic traffic
- Metrics: delivery reliability, delivery cost, goodput and routing diversity
10-source: delivery reliability

![Average delivery reliability chart]

- ONCR
- CTP
- MORE
- CodeOR
10-source: delivery cost

![Bar chart showing delivery cost comparison for different methods: ONCR, CTP, MORE, and CodeOR. The chart displays the average delivery cost across different methods, with MORE significantly outperforming the others.]
10-source: goodput
10-source: routing diversity

Number of forwarders

- ONCR
- MORE
- CodeOR
Outline

1. Introduction
2. Wireless Networked Sensing and Control
3. Intelligent Transportation Systems
4. Electric-Vehicle-Integrated Smart Grid
5. Future CPS Research and College Education
6. Concluding Remarks
7. List of Publications
A smarter and safer transport networks

Source: U.S.DOT
Vehicle-to-Vehicle (V2V) Communication

- Communication infrastructure for Intelligent Transportation Systems (ITS)
V2V Safety Data Dissemination

- Crucial for vehicle safety
- Contain periodic routine data and event-driven emergency data
- Emphasis on small delay and high coverage

Sources: www.gm.com and www.Mercedes-Benz.com

(c) Collision Avoidance
(d) Lane Change
Dedicated Short Range Communication (DSRC)

In February 2014, the U.S. DoT announced to commit to the use of DSRC technologies on new light-duty vehicles.
Challenges for DSRC

- Unstable communication quality between vehicles due to high mobility
- Severe “broadcast storm” during rush hours
To cope with these challenges, we explore

- the correlation between transmission power and data rate during broadcast [1]
- vehicle’s data preference when collecting safety-data [4]
Online Control Approach of Power and Rate (OnCAR)

- Adaptively controls transmission power and data rate to improve the performance of DSRC
- Leverages a feed forward loop and a feedback control loop to produce the optimal choices of power and rate
VSmart: DSRC-enabled smart vehicle testbed
VSmart: DSRC-enabled smart vehicle testbed

Laptops or tablets as in-vehicle CPU

iRobot Create as vehicles

USRP B210 boards as DSRC radios
Existing ACC systems:

- Based on radar and cameras
- Perform poorly under bad weather and at night
To simulate these weather conditions:

- Block the webcam of the laptop
• One vehicle follows the movements of the other
Existing ACC under bad weather

- Two vehicles crashed
ACC with baseline DSRC

- The leader sends movement commands to the follower via DSRC
ACC with baseline DSRC

- The follower repeats the same movements when receiving commands via DSRC
ACC with baseline DSRC

- Only four out of ten commands were received.
ACC with OnCAR

- All ten movement commands were received successfully

No crash! Reliable!
Vehicles show the following preferences when collecting safety data:

- **Spatial preference**: the closer, the better;
- **Temporal preference**: the newer, the better;
- **Type preference**: the more important, the better.

Figure: Spatial Preference
Quantify these preferences on a per-packet level

Packet Value = Spatial Value × Temporal Value × Type Value.

Given a packet p, its packet-value for vehicle v:

$$PV_v(p) = S_v(p) \cdot T_v(p) \cdot W_p.$$
A new packet p

Packet Value Update

1-Hop Dissemination Utility Computation

Probabilistic Broadcast Test

Contention Window Size Assignment

Broadcast

$PVA(p) = 0$

Fail

Discard packet
Performance Metrics

- Per-Vehicle Throughput
- Broadcast Rate
- Broadcast Efficiency
- Per-Packet Delivery Delay
- Per-Packet Vehicle Coverage
- Per-Vehicle Emergency Throughput
Simulation Results

Per-Vehicle Throughput

- CBD
- FARTHEST
- slottedP
- PVCast

Median per-vehicle throughput vs. Number of vehicles:
- 20 vehicles: CBD ~ 15, FARTHEST ~ 65, slottedP ~ 50, PVCast ~ 70
- 40 vehicles: CBD ~ 30, FARTHEST ~ 110, slottedP ~ 80, PVCast ~ 100
- 60 vehicles: CBD ~ 45, FARTHEST ~ 150, slottedP ~ 95, PVCast ~ 120
- 80 vehicles: CBD ~ 60, FARTHEST ~ 180, slottedP ~ 105, PVCast ~ 130
- 100 vehicles: CBD ~ 75, FARTHEST ~ 200, slottedP ~ 110, PVCast ~ 140
Simulation Results

Broadcast Rate

- CBD
- FARTHEST
- slottedP
- PVCast

Broadcast rate vs. Number of vehicles for different broadcast rates.
Simulation Results

Broadcast Efficiency

![Bar Chart]

- **CBD**
- **FARTHEST**
- **slottedP**
- **PVCast**

Y-axis: Broadcast efficiency

X-axis: Number of vehicles

Values:
- 20 vehicles: CBD = 0.5, FARTHEST = 1.5, slottedP = 2.0, PVCast = 3.0
- 40 vehicles: CBD = 1.0, FARTHEST = 2.0, slottedP = 2.5, PVCast = 3.5
- 60 vehicles: CBD = 1.5, FARTHEST = 2.5, slottedP = 3.0, PVCast = 4.0
- 80 vehicles: CBD = 2.0, FARTHEST = 3.0, slottedP = 3.5, PVCast = 4.5
- 100 vehicles: CBD = 2.5, FARTHEST = 3.5, slottedP = 4.0, PVCast = 5.0
Simulation Results

Per-Packet Delivery Delay

- CBD
- FARTHEST
- slottedP
- PVCast

- Median per-vehicle delivery delay
- Number of vehicles: 20, 40, 60, 80, 100

Qiao Xiang (McGill)
Per-Packet Vehicle Coverage

- CBD
- FARTHEST
- slottedP
- PVCast

Median per-packet vehicle coverage vs. Number of vehicles:
- 20 vehicles: CBD < FARTHEST < slottedP < PVCast
- 40 vehicles: CBD < FARTHEST < slottedP < PVCast
- 60 vehicles: CBD < FARTHEST < slottedP < PVCast
- 80 vehicles: CBD < FARTHEST < slottedP < PVCast
- 100 vehicles: CBD < FARTHEST < slottedP < PVCast
Simulation Results

Per-Vehicle Emergency Throughput

![Simulation Results Chart]

- CBD
- FARTHEST
- slottedP
- PVCast

Graph Details:
- **Y-axis:** Median per-vehicle emergency throughput
- **X-axis:** Number of vehicles (20, 40, 60, 80, 100)

Legend:
- CBD: Green
- FARTHEST: Yellow
- slottedP: Light Green
- PVCast: Dark Green

Insights:
- PVCast consistently shows the highest throughput across all vehicle numbers.
- CBD has the lowest throughput compared to other methods.
- The throughput increases with the number of vehicles.
Outline

1. Introduction
2. Wireless Networked Sensing and Control
3. Intelligent Transportation Systems
4. Electric-Vehicle-Integrated Smart Grid
5. Future CPS Research and College Education
6. Concluding Remarks
7. List of Publications
Electric-Vehicle-Integrated Smart Grid

Source: www.gm.com
OnStar - TimberRock Solar EV Charging

Electric Grid

TimberRock Solar EV Charger w/Integrated Energy Storage

Vehicle Data

Control Request

Charging Control

Vehicle Data

Source: www.timberrockes.com
Challenges for EV-integrated Smart Grid

- Unpredictable supply and demand
- Limited information exchange between supplier and consumer
- Lack of efficient market mechanism
To cope with these challenges, we leverage a reliable vehicle-to-infrastructure communication system, e.g., OnStar, and

- design an online auction mechanism for EV park-and-charge [5]
- develop distributed charging scheduling algorithm for EV park-and-charge [2]
- design demand-response-based optimal operation strategy for commercial EV charging stations [6]
Park-and-Charge
Inefficient Electricity Allocation

SOC: 20/40
SOC: 5/25
SOC: 20/40
SOC: 35/40
SOC: 20/25
+15
+15
Park and Charge

A
B
A
B
Efficient Electricity Allocation

- SOC: 20/40
- SOC: 5/25
- SOC: 30/40
- SOC: 25/25

Park and Charge

- +10
- +20

A

B

A

B
Auc2Charge Framework

- Customers send their bids, i.e., how much money to charge how much electricity, to charging station via smart phone/tablet
- Charging station decides how to allocate the electricity and how to charge customer using approximated algorithm of binary integer programming
Properties of Auc2Charge

- **Truthful**: customers’ dominant strategy is to bid truthfully
- **Individual Rational**: every customer gets a non-negative utility
- **Computational Efficient**: auction runs in polynomial time
- **Social Welfare Guarantee**: explicit approximation ratio
Simulation Result: Social Welfare

(a) $T = 12$

(b) 100 Electric Vehicles
Simulation Result: User Satisfaction

(c) User Satisfaction Ratio

(d) Unit Charging Payment
Simulation Result: User Satisfaction

(e) Total Charging Payment

(f) Budget Utilization Ratio
Outline

1. Introduction
2. Wireless Networked Sensing and Control
3. Intelligent Transportation Systems
4. Electric-Vehicle-Integrated Smart Grid
5. Future CPS Research and College Education
6. Concluding Remarks
7. List of Publications
What is the Future of Cyber-Physical Systems?
Exploration of larger physical space in CPS design,

- Example: joint scheduling of generation and deferrable load in micro grid

Source: www.civicsolar.com
Interaction between different CPS

- Example: connecting ITS and Smart Grid through EV

Source: www.gm.com

Qiao Xiang (McGill) McDaniel College 04/23/2015 68/103
Data Security and Privacy

- Example: develop unified differential privacy solution for data management in CPS
Efficient Market Mechanism

- Example: mechanism design for microgrid-based electricity market

(g) Single Microgrid
(h) Many Microgrids

Source: ourenergypolicy.org
Next Milestone of CPS

Smart City

Source: holyroodconnect.com

Qiao Xiang (McGill)
Core CPS Courses

- Computer Networks
- Wireless (Sensor) Networks
- Control Theory
- Real-Time Systems

Sources: galwaycartridge.ie, osu.edu, nielsentechnologies.com, umass.edu
Future CPS education requires a curriculum with multi-disciplinary courses

- Data Science
 - Machine Learning, Data Security and Privacy and etc
- Mathematic
 - Convex Optimization, Stochastic Optimization and etc
- Economics
 - Algorithmic Game Theory, Behavior Economics and etc
- Social Science
 - Social Psychology and etc
Concluding Remarks

Outline

1. Introduction
2. Wireless Networked Sensing and Control
3. Intelligent Transportation Systems
4. Electric-Vehicle-Integrated Smart Grid
5. Future CPS Research and College Education
6. Concluding Remarks
7. List of Publications
Concluding Remarks

- Review our recent findings in enabling real-time, reliable and efficient service for WCPS
 - Wireless Networked Sensing and Control
 - Intelligent Transportation Systems
 - EV-integrated Smart Grid
- Future Research on CPS → Smart City
- A multi-disciplinary curriculum for CPS education

Thank you!
Outline

1. Introduction
2. Wireless Networked Sensing and Control
3. Intelligent Transportation Systems
4. Electric-Vehicle-Integrated Smart Grid
5. Future CPS Research and College Education
6. Concluding Remarks
7. List of Publications
Xi Chen, Linghe Kong, Xue Liu, Lei Rao, Fan Bai, and Qiao Xiang. Oncar: Online adaptive control of transmission power and data rate for vehicular communications, under review. 2015.

Fanxin Kong, Qiao Xiang, Linghe Kong, Jing Chen, and Xue Liu. On-line scheduling for electric vehicle charging in park and charge systems, under review. 2015.

Qiao Xiang, Fanxin Kong, Xi Chen, Lei Rao, and Xue Liu. Green revenue from green energy: A brokers perspective of electric vehicle charging stations, under review. 2015.

Real-time packet packing scheduling
Real-time packet packing scheduling

System Model

- A directed collection tree \(T = (V, E) \)
- Edge \((v_i, v_j) \in E\) with weight \(ETX_{v_i,v_j}(l) \)
- A set of information elements \(X = \{x\} \)
- Each element \(x : (v_x, l_x, r_x, d_x) \)

Problem (P)

- Schedule the transmission of \(X \) to \(R \)
- Minimize the total number of transmissions
- Satisfy the latency constraints of each \(x \in X \)
Problem P_0
- Elements are of equal length
- Each node has at most one element

Problem P_1
- Elements are of equal length
- Each node generates elements periodically

Problem P_2
- Elements are of equal length
- Arbitrary data generating pattern
<table>
<thead>
<tr>
<th>P_0, P_1, P_2, P</th>
<th>$K \geq 3$</th>
<th>$K = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>strongly NP-hard</td>
<td>strongly NP-hard</td>
</tr>
<tr>
<td></td>
<td>$1 + \frac{1}{200N} (1 - \frac{1}{\epsilon})$</td>
<td>$1 + \frac{1}{120N} (1 - \frac{1}{\epsilon})$</td>
</tr>
</tbody>
</table>

$K = \text{Maximal packet length}$

$N = |X|$

Re-aggregation: a packed packet can be dispatched for further packing
When a node receives a packet pkt with length s_f

- Decisions: to hold or to transmit immediately
- Utility of action: Reduced Amortized Cost
- One-hop locality

\[
\text{AC} = \frac{\# \text{ of TX}}{\text{length of data}}
\]

Decision Rule

- The packet should be immediately transmitted if $U_p > U_I$
- The packet should be held if $U_p \leq U_I$
Performance evaluation

Experiment setting up

- Testbed: NetEye, a 130-sensor testbed at Wayne State University
- Topology: 120 nodes, half are source nodes, 1 sink node
- Protocols compared: noPacking, simplePacking, spreaded latency, common clock, tPack
- Traffic patterns: periodic traffic and event traffic
- Metrics: packing ratio, delivery reliability, delivery cost, deadline catching ratio and latency jitter
3-second periodic traffic: packing ratio

![Graph showing packing ratio vs maximum allowable latency]

- noPack
- simplePack
- SL
- CC
- tPack

Mean packing ratio

Maximum allowable latency:
- L1
- L3
- L5
3-second periodic traffic: delivery reliability

![Bar chart showing median delivery reliability for different maximum allowable latencies (L1, L3, L5). The chart compares different packing methods: noPack, simplePack, SL, CC, tPack.]{:width=1000}
3-second periodic traffic: delivery cost

![Graph showing mean delivery cost vs. maximum allowable latency]

- **noPack**
- **simplePack**
- **SL**
- **CC**
- **tPack**

Qiao Xiang (McGill)
3-second periodic traffic: deadline catching ratio

![Bar graph showing median deadline catching ratio for SL, CC, and tPack across L1, L3, and L5 latency levels.](image)
3-second periodic traffic: latency jitter

![Graph showing latency jitter](graph.png)
When $K \geq 3$ and T is a tree, regardless of re-aggregation

- P_0 is NP-hard \rightarrow P_1 is NP-hard \rightarrow P_2 is NP-hard \rightarrow P is NP-hard

When $K \geq 3$ and T is a chain, regardless of re-aggregation

- The reduction from SAT problem still holds

When $K = 2$ and re-aggregation is not prohibited

- The reduction from SAT problem still holds in both tree and chain structures

When $K = 2$ and re-aggregation is prohibited

- Problem P is equivalent to the maximum weighted matching problem in an interval graph
- Solvable in $O(N^3)$ by Edmond’s Algorithm

*: This solves an open problem in batch process
Problem P'

- T is a complete tree
- Leaf nodes generate elements at a common rate

Theorem: For problem P', $tPack$ is $\min\{K, \max_{v_j \in V_{>1}} \frac{2\text{ETX}_{v_jR}}{2\text{ETX}_{v_jR} - \text{ETX}_{p_jR}}\}$-competitive, where K is the maximum number of information elements that can be packed into a single packet, $V_{>1}$ is the set of nodes that are at least two hops away from the sink R.

Example: When ETX is the same for each link, $tPack$ is 2-competitive.
A mathematical framework for cost of NC-based routing

Definition

For a node j in the forwarder candidate set FCS_i, the effective load L_j is defined as the number of linear independent packets received by j but none of the nodes in FCS_i that has lower transmission cost to the destination.

How does the framework work?

1. Define the whole forwarder set as a virtual node V_S
2. Compute the transmission cost from the S to V_S
3. Sort forwarders in non-descending order of their transmission cost
4. Each forwarder only forwards its effective load with corresponding cost
5. Sum up all transmission cost
An example
\[C_{SD_S}(K) = \frac{K}{P_{SV_{DS}}} = \frac{K}{1 - (1 - P_1)(1 - P_3)(1 - P_5)} \]

\[K_S^A = \frac{KP_1}{1 - (1 - P_1)(1 - P_3)(1 - P_5)} \]
\[K_S^B = \frac{KP_3}{1 - (1 - P_1)(1 - P_3)(1 - P_5)} \]
\[K_S^C = \frac{KP_5}{1 - (1 - P_1)(1 - P_3)(1 - P_5)} \]

\[L_A = K_S^A \]
\[L_B = K_{B}^S' = K \frac{K_S^B}{K} (1 - P_1) = K_S^B (1 - P_1) \]
\[L_C = K_{C}^S' = K_C^S (1 - P_1)(1 - P_3) \]
\[C_S(K) = C_{SDS}(K) + C_{AT}(L_A) + C_{BT}(L_B) + C_{CT}(L_C) \]

\[= \frac{K}{1 - (1 - P_1)(1 - P_3)(1 - P_5)} \]

\[+ \frac{L_A}{P_2} + \frac{L_B}{P_4} + \frac{L_C}{P_6} \]

\[= \frac{K}{1 - (1 - P_1)(1 - P_3)(1 - P_5)} \]

\[\cdot [1 + \frac{P_1}{P_2} + \frac{P_3(1 - P_1)}{P_4} + \frac{P_5(1 - P_1)(1 - P_3)}{P_6}] \]
Severe “broadcast storm” would jeopardize the QoS of
Utility = Packet Value × Effective Dissemination Coverage.

Effective Dissemination Coverage

\[edc_A(p) = 5 - 2 = 3 \]
Probabilistic Broadcast Test

- Piecewise function of dissemination utility
- Higher dissemination utility → Higher chance for broadcasting
Contention Window Size Assignment

- Piecewise function of dissemination utility
- Higher dissemination utility
 - Smaller minimum CW size
 - Higher priority to get channel access

![Dissemination Utility vs Minimum CW Size Diagram]
Green Revenue: Demand-Response-Based Charging Station

Charging Station

Renewable Energy

Power Grid

Electricity Purchase

Electricity Sale

Decision

Price

EV

Qiao Xiang (McGill)

McDaniel College

04/23/2015

102/103
Event-Driven Scheduling for EV Park-and-Charge

(a) A combined zone

(b) Separate zones