Towards Real-time, Reliable and Efficient Service in Wireless Cyber-Physical Systems

Qiao Xiang

School of Computer Science, McGill University

April 23rd, 2015

Outline

- Introduction
- 2 Wireless Networked Sensing and Control
- 3 Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- 6 Concluding Remarks
- List of Publications

Introduction

Wireless Cyber-Physial Systems (WCPS)

Introduction

Our focus

Design real-time, reliable and efficient WCPS

Our methodology

- Light-weight algorithm and protocol design
- Theoretical analysis of different algorithms
- Extensive experimental and simulation evaluation

Case Studies

- Wireless Networked Sensing and Control
- Intelligent Transportation Systems
- Electric-Vehicle-Integrated Smart Grid

Outline

- Introduction
- Wireless Networked Sensing and Control
- 3 Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- 6 Concluding Remarks
- List of Publications

Wireless Networked Sensing and Control (WNSC)

- Wireless sensor networks + Close-loop control
- Various mission-critical applications

Wireless Networked Sensing and Control

Wireless Sensor Networks

- Communication infrastructure of WNSC
- Highly resource-constrained

In-Network Processing (INP)

- Reduce traffic flow → resource efficient
- End-to-end QoS are usually not considered

Wireless Networked Sensing and Control

Challenges for INP in WNSC

- Stringent end-to-end QoS requirements, e.g., latency, reliability and efficiency, in WNSC
- Dynamic communication environments

To cope with these challenges, we investigate

- Joint optimization between INP and QoS
 - Real-time packet packing scheduling [7][9]
 - Optimal network-coding routing [8][3]

NetEye Testbed

Optimal Network-Coding-Based Routing

10/103

Qiao Xiang (McGill) McDaniel College 04/23/2015

System Model

- A directed graph G = (V, E) with one source S and one destination T
- Edge $(i,j) \in E$ with link reliability $P_{ij} = \frac{1}{ETX_{ij}}$
- Node i has a forwarder candidate set FCS_i, i.e., one-hop neighbors of i

MIN-NC Problem

- Determine the forwarder set FS_i for each node i
- Minimize the total transmission cost to deliver
 K linear independent packets from S to T

Minimize the cost of NC-based routing

A greedy approach

- Sort forwarder candidates in non-descending order of their transmission cost;
- Select the best candidate remaining into forwarder set;
- Keep it in the set if the total transmission cost can be reduced, go back to last step;
- Stop if the total transmission cost cannot be reduced.

Theorem of optimality

Theorem

Given a node S and its forwarder candidate set $D_S = \{A_1, A_2, \dots, A_M\}$, our greedy algorithm yields the minimal transmission cost to the destination node of NC-based routing and the corresponding forwarder set.

We proved this theorem by contradiction.

Properties of the optimal routing braid

Theorem

Given a node S with a candidate set FCS_S of M forwarders, the optimal forwarder set FS_S computed in our greedy algorithm does not always contain node A^* where $A^* \in FCS_S$ and

$$\frac{1}{P_{SA^*}} + C_{A^*} \leq \frac{1}{P_{SA_i}} + C_{A_i}$$
 for any $i \in FCS_S/\{A^*\}$.

Shortest single path routing is not always in the optimal braid.

Properties of the optimal routing braid

The optimal routing braid is $\{A_1, A_2\}$

$$C_{\{A_1,A_2\}} = \frac{1}{1 - (1 - 0.1)(1 - 0.15)} \cdot \left[1 + \frac{0.1}{0.4} + \frac{0.15(1 - 0.1)}{0.2}\right]$$

$$= \frac{1}{0.235} \cdot \left(1 + \frac{1}{4} + \frac{0.135}{0.2}\right)$$

$$= 8.1915$$

$$C_{\{A_1,A_2,A_3\}} = \frac{1}{1 - (1 - 0.1)(1 - 0.15)(1 - 0.9)}$$

$$\cdot \left[1 + \frac{0.1}{0.4} + \frac{0.15(1 - 0.1)}{0.2} + \frac{0.9(1 - 0.1)(1 - 0.15)}{0.1}\right]$$

$$= \frac{1}{0.9235} \cdot \left(1 + \frac{1}{4} + \frac{0.135}{0.2} + \frac{0.6885}{0.1}\right)$$

$$= 9.5398 > C_{\{A_1,A_2\}}$$

Properties of the optimal routing braid

Theorem

Given a node S with a candidate set FCS_S of M forwarders, the optimal transmission cost C_S^* computed in our greedy algorithm is always lower than or equal to $\frac{1}{P_{SA^*} + C_{A^*}}$ where $A^* \in FCS_S$ and $\frac{1}{P_{SA^*}} + C_{A^*} \le \frac{1}{P_{SA_i}} + C_{A_i}$ for any $i \in FCS_S/\{A^*\}$.

Cost of optimal NC-based routing is upper bounded by shortest single path routing.

ONCR: an Optimal Network-Coding-based Routing Protocol

- Routing engine: a distributed implementation of our greedy algorithm
- M-NSB: a coded ACK scheme to solve the collective space problem with lower implementation complexity than CCACK
- Rate control: nodes forward a flow after receiving a load-dependent threshold of packets to 1) reduce contention and 2) avoid potential linear dependence between forwarded packets

Performance evaluation

Experiment setting up

- Testbed: NetEye, a 130-sensor testbed at Wayne State University
- Topology: 40 nodes, 10/20 are source nodes, 1 sink node
- Protocols compared: ONCR, CTP, MORE, CodeOR
- Traffic pattern: 3-second periodic traffic
- Metrics: delivery reliability, delivery cost, goodput and routing diversity

10-source: delivery reliability

10-source: delivery cost

10-source: goodput

10-source: routing diversity

Outline

- Introduction
- 2 Wireless Networked Sensing and Control
- 3 Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- 6 Concluding Remarks
- List of Publications

A smarter and safer transport networks

Vehicle-to-Vehicle(V2V) Communication

 Communication infrastructure for Intelligent Transportation Systems (ITS)

V2V Safety Data Dissemination

- Crucial for vehicle safety
- Contain periodic routine data and event-driven emergency data
- Emphasis on small delay and high coverage

McDaniel College

(c) Collision Avoidance

(d) Lane Change

Dedicated Short Range Communication(DSRC)

 In February 2014, the U.S. DoT announced to commit to the use of DSRC technologies on new light-duty vehicles.

bluetooth®

Challenges for DSRC

- Unstable communication quality between vehicles due to high mobility
- Severe "broadcast storm" during rush hours

To cope with these challenges, we explore

- the correlation between transmission power and data rate during broadcast [1]
- vehicle's data preference when collecting safety-data [4]

Online Control Approach of Power and Rate (OnCAR)

- Adaptively controls transmission power and data rate to improve the performance of DSRC
- Leverages a feed forward loop and a feedback control loop to produce the optimal choices of power and rate

VSmart: DSRC-enabled smart vehicle testbed

32/103

VSmart: DSRC-enabled smart vehicle testbed

Laptops or tablets as in-vehicle CPU

iRobot Create as vehicles

USRP B210 boards as DSRC radios

OnCAR in VSmart: Adaptive Cruise Control

Existing ACC systems:

- Based on radar and cameras
- Perform poorly under bad weather and at night

OnCAR in VSmart: Adaptive Cruise Control

To simulate these weather conditions:

Block the webcam of the laptop

35/103

OnCAR in VSmart: Adaptive Cruise Control

• One vehicle follows the movements of the other

Existing ACC under bad weather

Two vehicles crashed

ACC with baseline DSRC

The leader sends movement commands to the follower via DSRC

ACC with baseline DSRC

 The follower repeats the same movements when receiving commands via DSRC

ACC with baseline DSRC

Only four out of ten commands were received.

McDaniel College

40 / 103

ACC with OnCAR

All ten movement commands were received successfully

 Qiao Xiang (McGill)
 McDaniel College
 04/23/2015
 41/103

Data Preference: A New Perspective of Safety Data Dissemination

- Vehicles show the following preferences when collecting safety data:
 - Spatial preference: the closer, the better;
 - Temporal preference: the newer, the better;
 - **Type preference**: the more important, the better.

Figure: Spatial Preference

42 / 103

Data Preference: A New Perspective of Safety Data Dissemination

- Quantify these preferences on a per-packet level
 Packet Value = Spatial Value × Temporal Value × Type Value.
- Given a packet p, its **packet-value** for vehicle v:

$$PV_{\nu}(p) = S_{\nu}(p) \cdot T_{\nu}(p) \cdot W_{p}.$$

 Qiao Xiang (McGill)
 McDaniel College
 04/23/2015
 43/ 103

PVCast: a Packet-Value-Based Dissemination Protocol

→ロト→同ト→ヨト→ヨ のQ○

44/103

Simulation on Highway Scenario

Performance Metrics

- Per-Vehicle Throughput
- Broadcast Rate
- Broadcast Efficiency
- Per-Packet Delivery Delay
- Per-Packet Vehicle Coverage
- Per-Vehicle Emergency Throughput

Per-Vehicle Throughput

4 D > 4 B > 4 B > 4 B > 3 B > 9 C

Broadcast Rate

Qiao Xiang (McGill) McDaniel College 04/23/2015 47/ 103

Broadcast Efficiency

◆ロ → ◆ 個 → ◆ 量 → ◆ 量 → り へ ○

Per-Packet Delivery Delay

 Qiao Xiang (McGill)
 McDaniel College
 04/23/2015
 49/ 103

Per-Packet Vehicle Coverage

Per-Vehicle Emergency Throughput

Outline

- Introduction
- 2 Wireless Networked Sensing and Control
- 3 Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- 6 Concluding Remarks
- List of Publications

Source: www.gm.com

OnStar - TimberRock Solar EV Charging

Challenges for EV-integrated Smart Grid

- Unpredictable supply and demand
- Limited information exchange between supplier and consumer
- Lack of efficient market mechanism

To cope with these challenges, we leverage a reliable vehicle-to-infrastructure communication system, e.g., OnStar, and

- design an online auction mechanism for EV park-and-charge [5]
- develop distributed charging scheduling algorithm for EV park-and-charge [2]
- design demand-response-based optimal operation strategy for commercial EV charging stations [6]

Park-and-Charge

57/103

Inefficient Electricity Allocation

Efficient Electricity Allocation

Auc2Charge Framework

- Customers send their bids, i.e., how much money to charge how much electricity, to charging station via smart phone/tablet
- Charging station decides how to allocate the electricity and how to charge customer using approximated algorithm of binary integer programming

Properties of Auc2Charge

- Truthful: customers' dominant strategy is to bid truthfully
- Individual Rational: every customer gets a non-negative utility
- Computational Efficient: auction runs in polynomial time
- Social Welfare Guarantee: explicit approximation ratio

Simulation Result: Social Welfare

(a) T = 12

(b) 100 Electric Vehicles

Simulation Result: User Satisfaction

User Satisfaction Ratio

(d) Unit Charing Payment

63/103

Simulation Result: User Satisfaction

64 / 103

Outline

- Introduction
- 2 Wireless Networked Sensing and Control
- Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- 6 Concluding Remarks
- List of Publications

Future CPS Research and College Education

What is the Future of Cyber-Physical Systems?

Exploration of larger physical space in CPS design,

 Example: joint scheduling of generation and deferrable load in micro grid

Source: www.civicsolar.com

Interaction between different CPS

 Example: connecting ITS and Smart Grid through EV

Data Security and Privacy

 Example: develop unified differential privacy solution for data management in CPS

Efficient Market Mechanism

Example: mechanism design for microgrid-based electricity market

(h) Many Microgrids

Source: ourenergypolicy.org

Next Milestone of CPS

Smart City

Source: holyroodconnect.com

CPS-Related Curriculum Developing

Core CPS Courses

- Computer Networks
- Wireless (Sensor) Networks
- Control Theory
- Real-Time Systems

Sources: galwaycartridge.ie, osu.edu, nielsentechnologies.com, umass.edu

72/103

CPS-Related Curriculum Developing

Future CPS education requires a curriculum with multi-disciplinary courses

- Data Science
 - Machine Learning, Data Security and Privacy and etc
- Mathematic
 - Convex Optimization, Stochastic Optimization and etc
- Economics
 - Algorithmic Game Theory, Behavior Economics and etc
- Social Science
 - Social Psychology and etc

Outline

- Introduction
- 2 Wireless Networked Sensing and Control
- 3 Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- **6** Concluding Remarks
- List of Publications

Concluding Remarks

- Review our recent findings in enabling real-time, reliable and efficient service for WCPS
 - Wireless Networked Sensing and Control
 - Intelligent Transportation Systems
 - EV-integrated Smart Grid
- Future Research on CPS → Smart City
- A multi-disciplinary curriculum for CPS education

Thank you!

Outline

- Introduction
- 2 Wireless Networked Sensing and Control
- 3 Intelligent Transportation Systems
- 4 Electric-Vehicle-Integrated Smart Grid
- 5 Future CPS Research and College Education
- **6** Concluding Remarks
- List of Publications

List of Publications I

Xi Chen, Linghe Kong, Xue Liu, Lei Rao, Fan Bai, and Qiao Xiang. Oncar: Online adaptive control of transmission power and data rate for vehicular communications, under review. 2015

Fanxin Kong, Qiao Xiang, Linghe Kong, Jing Chen, and Xue Liu. On-line scheduling for electric vehicle charging in park and charge systems, under review.

In-network processing for mission-critical wireless networked sensing and control: A real-time, efficiency, and resiliency perspective.

PhD Dissertation, Wayne State University.

Qiao Xiang, Xi Chen, Linghe Kong, Lei Rao, and Xue Liu. Data preference matters: A new perspective of safety data dissemination in vehicular ad hoc networks.

In IEEE 34th International Conference on Computer Communications, INFOCOM '15, 2015.

List of Publications II

Qiao Xiang, Fanxin Kong, Xi Chen, Linghe Kong, Xue Liu, and Lei Rao. Auc2charge: An online auction framework for electric vehicle park-and-charge. In ACM sixth International Conference on Future Energy Systems, e-Energy 2015, Bangalore, India, July 14th - 17th, 2015, 2015.

Qiao Xiang, Fanxin Kong, Xi Chen, Lei Rao, and Xue Liu. Green revenue from green energy: A brokers perspective of electric vehicle charging stations, under review. 2015.

Qiao Xiang, Jinhong Xu, Xiaohui Liu, Hongwei Zhang, and Loren J. Rittle. When in-network processing meets time: Complexity and effects of joint optimization in wireless sensor networks.

In The 30th IEEE Real-Time Systems Symposium, RTSS'09, 2009.

Qiao Xiang, Hongwei Zhang, Jianping Wang, Guoliang Xing, Shan Lin, and Xue Liu.

On optimal diversity in network-coding-based routing in wireless networks. In *IEEE 34th International Conference on Computer Communications, INFOCOM'15.* 2015.

List of Publications III

Qiao Xiang, Hongwei Zhang, Jinhong Xu, Xiaohui Liu, and L.J. Rittle. When in-network processing meets time: Complexity and effects of joint optimization in wireless sensor networks.

Mobile Computing, IEEE Transactions on, 10(10):1488 -1502, oct. 2011.

Real-time packet packing scheduling

 Qiao Xiang (McGill)
 McDaniel College
 04/23/2015
 80/ 103

Real-time packet packing scheduling

System Model

- A directed collection tree T = (V, E)
- Edge $(v_i, v_j) \in E$ with weight $ETX_{v_i, v_i}(I)$
- A set of information elements $X = \{x\}$
- Each element $x:(v_x, I_x, r_x, d_x)$

Problem (P)

- Schedule the transmission of X to R
- Minimize the total number of transmissions
- Satisfy the latency constraints of each $x \in X$

81 / 103

Computational Complexity

Problem P_0

- Elements are of equal length
- Each node has at most one element

Problem P_1

- Elements are of equal length
- Each node generates elements periodically

Problem P₂

- Elements are of equal length
- Arbitrary data generating pattern

Computational Complexity

P_0, P_1, P_2, P	<i>K</i> ≥ 3	K = 2	
70,71,72,7	N ≥ 3	re-aggregation is not prohibited	re-aggregation is prohibited
Complexity	strongly NP-hard	strongly NP-hard	$O(N^3)$
NP-hard to achieve approximation ratio	$1+rac{1}{200N}(1-rac{1}{\epsilon})$	$1+rac{1}{120 extsf{N}}(1-rac{1}{\epsilon})$	

K = Maximal packet length

$$N = |X|$$

Re-aggregation: a packed packet can be dispatched for further packing

tPack: A Utility-Based Online Scheduling Algorithm

When a node receives a packet pkt with length s_f

- Decisions: to hold or to transmit immediately
- Utility of action: Reduced Amortized Cost
- One-hop locality

$$AC = \frac{\# \text{ of } TX}{\text{length of data}}$$

Decision Rule

- ullet The packet should be immediately transmitted if $U_p > U_l$
- The packet should be held if $U_p \leq U_l$

Performance evaluation

Experiment setting up

- Testbed: NetEye, a 130-sensor testbed at Wayne State University
- Topology: 120 nodes, half are source nodes, 1 sink node
- Protocols compared: noPacking, simplePacking, spreaded latency, common clock, tPack
- Traffic patterns: periodic traffic and event traffic
- Metrics: packing ratio, delivery reliability, delivery cost, deadline catching ratio and latency jitter

85 / 103

3-second periodic traffic: packing ratio

3-second periodic traffic: delivery reliability

3-second periodic traffic: delivery cost

3-second periodic traffic: deadline catching ratio

3-second periodic traffic: latency jitter

Computational Complexity

When $K \geq 3$ and T is a tree, regardless of re-aggregation

• P_0 is NP-hard $o P_1$ is NP-hard $o P_2$ is NP-hard o P is NP-hard

When $K \geq 3$ and T is a chain, regardless of re-aggregation

The reduction from SAT problem still holds*

When K = 2 and re-aggregation is not prohibited

 The reduction from SAT problem still holds in both tree and chain structures

When K = 2 and re-aggregation is prohibited

- Problem P is equivalent to the maximum weighted matching problem in an interval graph
- Solvable in $O(N^3)$ by Edmond's Algorithm

^{*:} This solves an open problem in batch process

Competitive Ratio of tPack

- Problem P'
 - T is a complete tree
 - Leaf nodes generate elements at a common rate
- Theorem: For problem P', tPack is $\min\{K, \max_{v_j \in V_{>1}} \frac{2ETX_{v_jR}}{2ETX_{v_jR} ETX_{p_jR}}\}$ -competitive, where K is the maximum number of information elements that can be packed into a single packet, $V_{>1}$ is the set of nodes that are at least two hops away from the sink R.
- Example: When *ETX* is the same for each link, *tPack* is 2-competitive.

A mathematical framework for cost of NC-based routing

Definition

For a node j in the forwarder candidate set FCS_i , the **effective load** L_j is defined as the number of linear independent packets received by j but none of the nodes in FCS_i that has lower transmission cost to the destination.

How does the framework work?

- **①** Define the whole forwarder set as a virtual node V_S
- 2 Compute the transmission cost from the S to V_S
- Sort forwarders in non-descending order of their transmission cost
- Each forwarder only forwards its effective load with corresponding cost
- Sum up all transmission cost

An example

$$C_{SD_S}(K) = \frac{K}{P_{SV_{D_S}}} = \frac{K}{1 - (1 - P_1)(1 - P_3)(1 - P_5)}$$

$$K_A^S = \frac{KP_1}{1 - (1 - P_1)(1 - P_3)(1 - P_5)}$$
 $K_B^S = \frac{KP_3}{1 - (1 - P_1)(1 - P_3)(1 - P_5)}$
 $K_C^S = \frac{KP_5}{1 - (1 - P_1)(1 - P_3)(1 - P_5)}$

$$L_{A} = K_{A}^{S}$$

$$L_{B} = K_{B}^{S'} = K \frac{K_{B}^{S}}{K} (1 - P_{1}) = K_{B}^{S} (1 - P_{1})$$

$$L_{C} = K_{C}^{S'} = K_{C}^{S} (1 - P_{1}) (1 - P_{3})$$

4□ > 4□ > 4 = > 4 = > = 900

$$C_{S}(K) = C_{SD_{S}}(K) + C_{AT}(L_{A}) + C_{BT}(L_{B}) + C_{CT}(L_{C})$$

$$= \frac{K}{1 - (1 - P_{1})(1 - P_{3})(1 - P_{5})}$$

$$+ \frac{L_{A}}{P_{2}} + \frac{L_{B}}{P_{4}} + \frac{L_{C}}{P_{6}}$$

$$= \frac{K}{1 - (1 - P_{1})(1 - P_{3})(1 - P_{5})}$$

$$\cdot [1 + \frac{P_{1}}{P_{2}} + \frac{P_{3}(1 - P_{1})}{P_{4}} + \frac{P_{5}(1 - P_{1})(1 - P_{3})}{P_{6}}]$$

96/103

Qiao Xiang (McGill) McDaniel College 04/23/2015

20-source

Broadcast Storm

Severe "broadcast storm" would jeopardize the QoS of

source: accessmagazine.org

1-Hop Dissemination Utility

Utility = Packet Value × Effective Dissemination Coverage.

Effective Dissemination Coverage

Probabilistic Broadcast Test

- Piecewise function of dissemination utility
- Higher dissemination utility
 - → Higher chance for broadcasting

Contention Window Size Assignment

- Piecewise function of dissemination utility
- Higher dissemination utility
 - → Smaller minimum CW size
 - → Higher priority to get channel access

Green Revenue: Demand-Response-Based Charging Station

Event-Driven Scheduling for EV Park-and-Charge

(b) Separate zones