When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks

Qiao Xiang^{*}, Jinhong Xu[†], Xiaohui Liu^{*}, Hongwei Zhang^{*}, Loren J. Rittle[‡]

* Department of Computer Science, Wayne State University

† Department of Computer Science, Indiana University

‡ Applied Research and Technology Center, Motorola

Introduction

Wireless Sensor Networks

- Highly resource-constrained
- In-Network Processing
 - Reduce traffic flow \rightarrow resource efficient
 - End-to-end QoS are usually not considered
- Mission-Critical Real-Time CPS:
 - Close-loop control
 - More emphasis on end-to-end QoS, especially latency and reliability

Introduction

- Packet packing
 - Application independent INP
 - Simple yet useful INP in practice
 - UWB intra-vehicle control
 - IETF 6LowPAN: high header overhead

- Our focus:
 - Understanding problem complexity
 - Designing simple distributed online algorithm
 - Understanding systems benefits

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

System Model and Problem Formulation

System Model

- A directed collection tree T = (V,E)
- Edge $(v_i, v_j) \in E$ with weight ETX_{v_i, v_j} (1)
- A set of information elements X = {x}
- Each element *x*: (v_x, I_x, r_x, d_x)
- Problem (P):
 - Schedule the transmission of X to R
 - Minimize the total number of transmissions
 - Satisfy the latency constraints of each $x \in X$

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

• Problem P_0

- Elements are of equal length
- Each node has at most one element

• Problem P_1

- Elements are of equal length
- Each node generates elements periodically
- Problem P_2
 - Elements are of equal length
 - Arbitrary data generating pattern

P _{0,} P ₁ , P ₂ , P	K ≥ 3	K = 2	
		re-aggregation is	re-aggregation is
		not prohibited	prohibited
Complexity	strong	strong	O(N ³)
	NP-hard	NP-hard	
NP-hard to achieve	$1 + \frac{1}{(1 - \frac{1}{1})}$	$1 + \frac{1}{(1 - \frac{1}{2})}$	
approximation ratio	່ 200N	$1 + \frac{1}{120N}(1 - \frac{1}{\epsilon})$	

K = Maximal packet length N = |X|Re-aggregation: a packed packet can be dispatched for further packing.

• $K \ge 3$, P_0 is NP-hard in tree structures -- Reduction from SAT

Auxiliary elements related to the red ones

- When $K \ge 3$ and T is a tree, regardless of re-aggregation
 - P_0 is NP-hard $\rightarrow P_1$ is NP-hard $\rightarrow P_2$ is NP-hard $\rightarrow P$ is NP-hard
- When $K \ge 3$, and T is a chain, regardless of re-aggregation
 - The reduction from SAT still holds^{*}
- When K = 2 and re-aggregation is not prohibited
 - The reduction from SAT still holds in both tree and chain structures
- When K = 2 and re-aggregation is prohibited
 - Problem *P* is equivalent to the maximum weighted matching problem in an interval graph.
 - Solvable in *O*(*N*³) by Edmonds' Algorithm
 - * This solves an open problem in batch processing

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

A Utility Based Online Algorithm

• When a node receives a packet pkt with length s_f

- Decisions: to hold or to transmit immediately
- Utility of action: Reduced Amortized Cost
- One-hop locality

$$AC = \frac{\# \text{ of TX}}{\text{length of data}}$$

A Utility Based Online Algorithm

• Utility of holding a packet: $AC'_{l} = \frac{1}{L - s'_{f}} ETX_{jR}(L - s'_{f})$ $AC'_{l} = \frac{1}{L - s'_{f} + S_{l}} ETX_{jR}(L - s'_{f} + S_{l})$

Cost without packing $U_l = AC'_l - AC_l$

• Utility of transmitting a packet:

$$\begin{split} U_p' &= \left\{ \begin{array}{ll} \frac{t_f'}{t_p} ETX_{p_jR}(s_p)}{t_f'} - \frac{t_f'}{t_p} ETX_{p_jR}(L)}{t_p'} \\ &= \left(\begin{array}{c} \frac{L-s_f'}{L-s_p} \end{bmatrix} ETX_{p_jR}(s_p)}{s_p} - \left(\begin{array}{c} \frac{L-s_f'}{L-s_p} \end{bmatrix} ETX_{p_jR}(L) + I_{mod} ETX_{p_jR}(s_p+l_{mod})}{t_p'} \\ &= \left(\begin{array}{c} \frac{L-s_f'}{L-s_p} \end{bmatrix} ETX_{p_jR}(L) + I_{mod} ETX_{p_jR}(s_p+l_{mod})}{t_p'} \right) \\ &= \left(\begin{array}{c} U_p' & \text{if } \frac{t_f'}{t_p} (L-s_p) \le L-s_f' \\ U_p'' & \text{otherwise} \end{array} \right) \\ \end{array} \right) \\ \end{split}$$

A Utility Based Online Algorithm

Decision Rule

- The packet should be immediately transmitted if $U_p > U_l$
- The packet should be held if $U_p \leq U_l$
- **Competitive Ratio**
 - Problem *P*'
 - T is a complete tree
 - Leaf nodes generate elements at a common rate Theorem: For problem *P'*, tPack is min{K, max_{$v_j \in V_{>1}}} ETX_{p_iR}$ }</sub>

-competitive, where K is the maximum number of information elements that can be packed into a single packet, $V_{>1}$ is the set of nodes that are at least two hops away from the sink R.

Example: When ETX is the same for each link, tPack is 2-comptetive

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

Performance Evaluation

Experiment Setting Up

- Testbed: NetEye, a 130-sensor testbed
- Topology: 120 nodes, half are source nodes
- Protocols compared: noPacking, simplePacking, tPack
- Traffic patterns: 6 second periodic traffic and event traffic
- Metrics:
 - packing ratio
 - delivery reliability
 - delivery cost
 - latency jitter

Packing Ratio

Delivery Reliability

Delivery Cost

Latency Jitter

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

Conclusion and Future Work

Conclusion

- Impact of INP constraints on problem complexity
- Feasibility of a simple, distributed online algorithm
- Systems benefits in terms of efficiency and predictable latency
- Future Work
 - Complete competitive analysis on the utility based algorithm
 - Joint optimization of other INP and QoS constraints in WCPS