When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks

Master Thesis

by

Qiao Xiang

Advisor: Hongwei Zhang

Department of Computer Science, Wayne State University

December 8th, 2011

Introduction

- Wireless Sensor Networks
 - Highly resource-constrained
- In-Network Processing
 - Reduce traffic flow → resource efficient
 - End-to-end QoS are usually not considered
- Mission-Critical Real-Time CPS:
 - Close-loop control
 - More emphasis on end-to-end QoS, especially latency and reliability

Introduction

- Packet packing
 - Application independent INP
 - Simple yet useful INP in practice
 - UWB intra-vehicle control
 - IETF 6LowPAN: high header overhead

- Our focus:
 - Understanding problem complexity
 - Designing simple distributed online algorithm
 - Understanding systems benefits

Outline

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

System Model and Problem Formulation

System Model

- A directed collection tree T = (V,E)
- Edge $(v_i, v_j) \in E$ with weight $ETX_{v_i, v_j}(I)$
- A set of information elements X = {x}
- Each element x: (v_x, I_x, r_x, d_x)

Problem (*P*):

- Schedule the transmission of X to R
- Minimize the total number of transmissions
- Satisfy the latency constraints of each x ∈ X

Outline

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

- Problem P₀
 - Elements are of equal length
 - Each node has at most one element
- Problem P₁
 - Elements are of equal length
 - Each node generates elements periodically
- Problem P₂
 - Elements are of equal length
 - Arbitrary data generating pattern

P ₀ , P ₁ , P ₂ , P	<i>K</i> ≥ 3	K = 2	
		re-aggregation is	re-aggregation is
		not prohibited	prohibited
Complexity	strong	strong	O(N ³)
	NP-hard	NP-hard	
NP-hard to achieve	1 (1 1)	1 (1 1)	
approximation ratio	$\frac{1}{200N} \frac{1}{\epsilon}$	$1 + \frac{1}{120N} (1 - \frac{1}{\epsilon})$	

K = Maximal packet length N = |X|

Re-aggregation: a packed packet can be dispatched for further packing.

• $K \ge 3$, P_0 is NP-hard in tree structures -- Reduction from SAT

Auxiliary elements related to the red ones

- When $K \ge 3$ and T is a tree, regardless of re-aggregation
 - P_0 is NP-hard $\rightarrow P_1$ is NP-hard $\rightarrow P_2$ is NP-hard $\rightarrow P$ is NP-hard
- When K ≥ 3, and T is a chain, regardless of re-aggregation
 - The reduction from SAT still holds*
- When K = 2 and re-aggregation is not prohibited
 - The reduction from SAT still holds in both tree and chain structures
- When K = 2 and re-aggregation is prohibited
 - Problem P is equivalent to the maximum weighted matching problem in an interval graph.
 - Solvable in O(N³) by Edmonds' Algorithm
 - * This solves an open problem in batch processing

Outline

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

A Utility Based Online Algorithm

- When a node receives a packet pkt with length s_t
 - Decisions: to hold or to transmit immediately
 - Utility of action: Reduced Amortized Cost
 - One-hop locality

$$AC = \frac{\text{\# of TX}}{\text{length of data}}$$

A Utility Based Online Algorithm

Utility of holding a packet:

Cost with packing

$$AC'_l = \frac{1}{L - s'_f} ETX_{jR}(L - s'_f)$$

$$AC'_{l} = \frac{1}{L - s'_{f}} ETX_{jR}(L - s'_{f}) \qquad AC_{l} = \frac{1}{L - s'_{f} + \mathcal{S}_{l}} ETX_{jR}(L - s'_{f} + \mathcal{S}_{l})$$

Cost without packing
$$U_l = AC_l' - AC_l$$

Utility of transmitting a packet:

$$U'_{p} = \frac{\frac{t'_{f}}{t_{p}}ETX_{p_{j}R}(s_{p})}{\frac{t'_{f}}{t_{p}}s_{p}} - \frac{\frac{t'_{f}}{t_{p}}ETX_{p_{j}R}(L)}{\frac{t'_{f}}{t_{p}}L} \quad U''_{p} = \underbrace{\begin{bmatrix} \frac{L-s'_{f}}{L-s_{p}} \end{bmatrix}ETX_{p_{j}R}(s_{p})}_{L-s'_{f}} - \underbrace{\underbrace{ETX_{p_{j}R}(s_{p})}_{t_{p}}L}_{L} \\ = \underbrace{\underbrace{ETX_{p_{j}R}(s_{p})}_{s_{p}} - \underbrace{ETX_{p_{j}R}(L)}_{L}}_{L} \\ \underbrace{\underbrace{L-s'_{f}}_{L-s_{p}} \end{bmatrix}ETX_{p_{j}R}(L) + I_{mod}ETX_{p_{j}R}(s_{p} + l_{mod})}_{\begin{bmatrix} \frac{L-s'_{f}}{L-s_{p}} \end{bmatrix}s_{p} + L-s'_{f}}$$

$$U_p = \begin{cases} U_p' & \text{if } \frac{t_f'}{t_p}(L-s_p) \leq L-s_f' \qquad \text{Every packet received by parent can get fully packed via } \textbf{\textit{pkt}} \\ U_p'' & \text{otherwise} \end{cases}$$

A Utility Based Online Algorithm

Decision Rule

- The packet should be immediately transmitted if $U_p > U_l$
- The packet should be held if $U_p \leq U_l$

Competitive Ratio

- Problem P'
 - T is a complete tree
- Leaf nodes generate elements at a common rate $2ETX_{v_jR}$ Theorem: For problem P', tPack is $min\{K, max_{v_j \in V_{>1}} \frac{2ETX_{v_jR}}{2ETX_{v_iR} ETX_{p_iR}}\}$
 - -competitive, where K is the maximum number of information elements that can be packed into a single packet, $V_{>1}$ is the set of nodes that are at least two hops away from the sink R.
- Example: When ETX is the same for each link, tPack is 2-comptetive

Outline

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

Performance Evaluation

Experiment Setting Up

- Testbed: NetEye, a 130-sensor testbed
- Topology: 120 nodes, half are source nodes
- Protocols compared: noPacking, simplePacking, spreaded latency, common clock, tPack
- Traffic patterns: periodic traffic and event traffic
- Metrics:
 - packing ratio
 - delivery reliability
 - delivery cost
 - deadline catching ratio
 - latency jitter

3 second packing ratio

3 second delivery reliability

3 second delivery cost

3 second deadline cathcing ratio

3 second latency jitter

6 second

9 second

Event traffic

Outline

- System Model and Problem Formulation
- Complexity Analysis
- A Utility Based Online Algorithm
- Performance Evaluation
- Conclusion

Conclusion and Future Work

Conclusion

- Impact of INP constraints on problem complexity
- Feasibility of a simple, distributed online algorithm
- Systems benefits in terms of efficiency and predictable latency

Future Work

- Complete competitive analysis on the utility based algorithm
- Joint optimization of other INP and QoS constraints in WCPS