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e Wireless Sensor Networks
Highly resource-constrained

e In-Network Processing
Reduce traffic flow — resource efficient
End-to-end QoS are usually not considered

e Mission-Critical Real-Time CPS:

Close-loop control

More emphasis on end-to-end QoS, especially latency and
reliability



e Packet packing
e Application independent INP
e Simple yet useful INP in practice

e UWB intra-vehicle control
o IETF 6LowPAN: high header overhead

e Our focus:
Understanding problem complexity
Designing simple distributed online algorithm

Understanding systems benefits
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e Performance Evaluation
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System Model and Problem Formulation

e System Model
A directed collection tree T = (V,E)
Edge (v, v)) € E with weight ETX,, ; (/)
A set of information elements X = {x}
Each element x: (v, I,, r,, d,)

e Problem (P):

Schedule the transmission of Xto R
Minimize the total number of transmissions
Satisfy the latency constraints of each x € X
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Complexity Analysis
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e Problem P,
Elements are of equal length
Each node has at most one element

e Problem P,
Elements are of equal length
Each node generates elements periodically

e Problem P,
Elements are of equal length
Arbitrary data generating pattern



Complexity Analysis
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Re-aggregation: a packed packet can be dispatched for further packing.




Complexity Analysis

e K23, P,is NP-hard in tree structures -- Reduction from SAT

Given a SAT instance
with n clauses and m
variables

For each clause ] <—

For m variables
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Complexity Analysis

e When K= 3 and T is a tree, regardless of re-aggregation
P,is NP-hard —P, is NP-hard — P, is NP-hard — P is NP-hard

e When K= 3, and T is a chain, regardless of re-aggregation
The reduction from SAT still holds’

e When K = 2 and re-aggregation is not prohibited

The reduction from SAT still holds in both tree and chain structures

e When K = 2 and re-aggregation is prohibited

Problem P is equivalent to the maximum weighted matching problem
in an interval graph.

Solvable in O(N°) by Edmonds’ Algorithm

* This solves an open problem in batch processing
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sed Online Algorithm

e \WWhen a node receives a packet pkt with length s;
Decisions: to hold or to transmit immediately
Utility of action: Reduced Amortized Cost
One-hop locality

#of TX
length of data

AC =



A Utility Based Online Algorithm

e Ultility of holding a packet: Cost with packing
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e Ultility of transmitting a packet:
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A Utility Based Online Algorithm

e Decision Rule

The packet should be immediately transmitted if U, > U,
The packet should be held if U, < U,

e Competitive Ratio
Problem P’
T is a complete tree
Leaf nodes generate elements at a common rate

, _ 2ETX, &
Theorem: For problem P’, tPack is min{K, max '

I 2ETX 5 -ETX g

-competitive, where K is the maximum number of information
elements that can be packed into a single packet, V., is the set of
nodes that are at least two hops away from the sink R.

Example: When ETX is the same for each link, tPack is 2-comptetive

}
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e Experiment Setting Up
Testbed: NetkEye, a 130-sensor testbed
Topology: 120 nodes, half are source nodes

Protocols compared: noPacking, simplePacking,
spreaded latency, common clock, tPack

Traffic patterns: periodic traffic and event traffic
Metrics: .
e packing ratio
o delivery reliability
o delivery cost
o deadline catching ratio
o latency jitter
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e Conclusion
Impact of INP constraints on problem complexity

Feasibility of a simple, distributed online algorithm
Systems benefits in terms of efficiency and predictable latency

e Future Work
Complete competitive analysis on the utility based algorithm
Joint optimization of other INP and QoS constraints in WCPS



