Energy-Efficient Data Organization and Query Processing
in Sensor Networks

Ramakrishna Gummadi* Xin Li* Ramesh Govindan® Cyrus Shahabi® Wei Hong'

ABSTRACT DCS can use any locality-preserving geographically distributed
{ndex structure such as DINS[, GHT[12], DIFS [5], and DIMEN-
SIONS B]. Our focus in this paper is to improve the overall energy
performance of vanilla DCS by a) exploiting the flexibility offered
Dy these underlying data structures during the data insertion phase

distributed indexes offer a rich design space of a) logical decompo- af;]‘?‘l b) opgmizing query plans dLljringqulsry exec_utionfphase. Thus,
sitions of sensor relation schema into indexes, as well as b) physicalW lie eac tI)DC?]_system currently Qe au t? to llemg ‘Z ‘*m’.‘b”‘
mappings of these indexes onto sensors. In this paper, we discusg@nization (by this we mean mappings of tuples and attributes to
this space for energy-efficiedata organizations (logical and phys- network no_des_), we seek_ to ur_lderstand the de5|g_n_spac_e of possible
ical mappings of tuples and attributes to sensor nodes) and examinéjata organizations, and identify more energy efficient (in terms of

ot f total insertion+query costs) candidates.
the performance gburely local query optimization techniques for ; o i .
processing queries that span such decomposed relations. In this paper, we use a dls_trlbutgd index callec_i Digjt which .
serves as our basic storage, indexing, and querying layer, and is in-

teresting because of its locality-preserving property. However, we
1. INTRODUCTION emphasize that the choice of this distributed index is orthogonal
to the data organization and query processing ideas described in
this paper, and it is possible to use other indexes like GHT[
PIFS [5], and DIMENSIONS B]. DIM is overviewed in Sec-
tion 2.1, and can be thought of as a search tree that is spatially
overlaid on a sensor network. In this sense, it resembles classical
database indexes. However, DIMs are also intended to store the
primary copy of the data.

Recent sensor networks research has produced a class of data sto
age and query processing techniques cdleth-Centric Storage

that leverages locality-preserving distributed indexes to efficiently
answer multi-dimensional range and range-aggregate queriee The

Wireless sensor networks are an emerging class of highly dis-
tributed systems with widespread applicability. In such networks,
nodes generate, process and store sensor readings within the ne
work. This architecture is necessitated by the relatively high en-
ergy cost of wireless communication—this cost makes it infeasible
to consider centrally collecting and processing voluminous sen-
sor data. An important component of these networks, then, is an
energy-efficient system that enables users to query the stored data. Consider asensor n_etwork with relation sche_m@wd,abaz,

Existing approaches to organizing data and processing queries""am_>' Tuples in this schema can be stqred in one DIM. Al-
fall under one of the two broad categories namé&gfa-Centric ternatlvely, we can fully depompose them.'mDDlMS each of
Routing (DCR) andData-Centric Sorage (DCS). In DCR, the data Wh'ch §tores a single relation of the for(au|d7_a4), and we can
generated by the sensors is stored at the nodes that generate thermen. oin onuuid on demand to evaluate quenes. A spectr.um of
and queries are flooded throughout the network. Data from the partial deco_mposmons (_Jf the base relation |nto_ sub-relations of
sensors in the sensornet is then aggregated along the query tregqe form <UU|d,ai,..‘,aj>.IS, of course, also _con_celvable._ Clea_rly,
that is built during the query flooding phase on a per-query basis. we can expect these dlfferent data organizations to yield differ-
This approach, pioneered by early systems such as TinyiDB [ent perforr_nance under different wprkloads. Our measure of per
and Cougar], is efficient forcontinuous (long-running) queries, formapce S thg total energy cost |ncgrred for a given workload,
where the high energy cost incurred during the query flooding and including data _mserts and query. ret_rlevals; sensor r_u_atworks are
per-query data aggregation phases is amortized over time. energy-con_stralned, and communication expends significant energy

Compared to DCR, DCS is a relatively new class of data storage We approximate the energy cost of a single message as a praduct
and query methodologies proposed i8]| In DCS, data generated of the size of the message (in bits) and the number of hops the mes-
by a sensor is stored at remote nodes as soon as it is generated sucifge tr.averses.. . .
that related sensor data gets stored together regardless of where We find that, in many cases, fully dec_o_mposmg the base relation
in the sensornet the data originates. Consequently, queries can bgerforms _better thqn partial decomposition, even when the query
directed to the precise locations of the network where relevant datawo_rkload IS knOV_/n in advance. _V_/e then study three rele_lted mech-
is stored, and data can be aggregated locally and more efficiently@"SmS that can improve the efficiency of query processing when a

than in DCR-based approaches. Thusavesall (insertion+query) base relation is fully decomposed into multiple DIMs:

cost for DCS is lower for mangd-hoc (short-lived) workloads. e Spatially Partitioning Sub-Relations. Each fully decomposed
sub-relation is stored in a DIM, and all DIMs are assigned

“Computer Science Department, University of Southern Cali- spatially disjoint sections of the sensor field.

fornia, Los Angeles, CA 90089, USAnai | : {gummadi , .)))) .

xinli, ramesh, cshahabi }@sc. edu e Efficient Query Planning via Decentralized Join-Ordering.

TIntel Research at Berkeley, 2150 Shattuck Ave., Suite 1300, Queries are satisfied by applying an equi-join on the decom-

Berkeley, CA 94704, USAEmmi | : wei . hong@ntel .com posed sub-relations. We show that can good join-order can

be obtained by summarized global information in the form of

a low overhead coarse-grained multi-dimensional histogram @ @ @
that approximates the distribution of data stored within the
network. 010 011 110 111

o Efficient Query Execution via Optimistic Join-Caching. We
describe a simple and robust mechanism to cache the results

of partial joins across sub-relations locally at each sensor 1001 1011

node (Sectior8.3). This caching strategy enhances query

performance by eliminating redundant tuple movement dur- @ @ @

ing query execution. 1010
We show using extensive simulations that for a variety of data 000 001 @ 1000 @

distributions (both synthetic and real-world) and synthetic query
workloads, these schemasgether provide more than a four-fold
reduction in energy expenditure over storing the base relation in
one DIM even for a small number (4) of sensor attributes; we argue
analytically in Sectior3.1 that we can expect this factor of im-
provement to improve with increasing number of sensor attributes.

Figure 1: Example DIM Organization

Then, hyper-rectangles in the attribute space are mapped to zones.
Given a tuple, nodes can compute which zone the tuple belongs to
2. BACKGROUND AND MOTIVATION entirely locally—the only global information they need is an ap-
In this Section, we describe the mechanics of insertion and query-proximate boundary of the sensor field. They do this by essentially
ing in DIM, and motivate the performance advantages of decom- subdividing the attribute space in the same way that the sensor field

posing base relations using qualitative arguments. is geographically partitioned (this algorithm generalizes to more
) than 2 dimensions on the attribute space). Thus each tuple can be
2.1 DIM Overview assigned a code and will be stored at the node whose code matches
Sensor networks are typically tasked to individually or collabo- that of the tuple. Tuples are then routed to the appropriate zone
ratively sense an environment and produce higher-leveits or using a geographic routing algorithi [Multi-dimensional range

features after local signal processing and filtering. Examples of gueries on a DIM can be described by hyper-rectangles in the at-
such events might be local micro-climate temperature gradients or tribute space. Given these hyper-rectangles, nodes can map them
bird sightings. It is these events that we are primarily interested t0 DIM zones using the same mapping algorithm as was used for
in querying in an energy-efficient manner. An event can, thus, be tuple insertions.

thought of as a tuple consisting of a small (typically 4-6) number of

attributes. Each attribute corresponds to a sensor type and can bg-z Motlvatlng Alternative Data Organlzatlons
treated as a column in a single relation table consisting of all pos- We are now ready to consider the subject of the paper; the trade-
sible sensor types. For example, a typical habitat-monitoring sen- offs involved in storing a relation in a single DIM versus decom-
sornet may generate tuples consisting of 4 attributes;t, x,y > posing it across multiple DIMs. A crucial aspect of this tradeoff is
corresponding to light and temperature readings, andxfg co- our cost metric: the energy cost of transporting a message from one
ordinates of the sensor that sensed this reading. The events ar@ode to another is proportional to the product of the message size
then cast into a tuple and timestamped. Each tuple is assigned aand the number of hops traversed (in sensor nodes, each transmis-
universally-unique identifier (uuid). The uuid can be constructed sion costs significant energy).

as a simple concatenation of node number and a locally unique se- In DIM, the cost of a query response is influenced by the node

guence number (which could be the timestamp itself). distribution (which defines the zone structure) and by how many
The relational schema for a general sensor network can thus bezones need to be consulted as part of the quesy {hich nodes
viewed as a single table of the forfuuid, a;,ap, ..., ax) wherek is contain data for parts of the query hyper-rectangle). For exam-

the number of sensor attributes. Throughout the rest of this paper,ple, in Figurel, if the DIM is organized as a 2-D index structure
we call this single logical tableensors. Whenever a sensor gen- over 2 attributegl,t), to answer a quer@1 of the form:sel ect
erates a tuple, insertsit (or some decomposed version of it) into avg(t), from sensors, where 0.25<=t<0. 5thenodes
one or more DIM indexes, as described later. with zone prefixe§0001 0011 1001 1011} (in this example, these

A DIM index is best described by visualizing a collection of sen- would be nodes 1, 2, 6, and 8) would have to be consulted because
sor nodes distributed on a two-dimensional surface. In DIM, this the first attribute|, can take on either O or 1.
geographic region occupied by the sensor nodes is spatially parti- Consider now an alternative organization in which we construct
tioned such that each node “owns” the part of the region around two separate DIMs, one each foandt (we call these 1-DIMs).
it (we call these spatial sub-divisions “zones”). This spatial parti- The 1-DIMs are fully-decomposed tables of the fo(ouid, &)
tioning can be logically thought of as recursive equal-sized subdivi- whereg; is the value of tha'th sensor type in the tuple. The 1-
sions of the 2-D space alternately along tendy axes. Each spa- DIM itself is constructed on the sensor attribateand theuuid’s
tial region resulting from a series of subdivisions can be assigned aare used for joining; with other sensor attributes during query ex-
unique bit code; for example in Figulle the zone assigned a code ecution. In this organization, we need to only consult the two nodes
1001 indicates that the zone is on the right side of the first subdi- 3 and 4 corresponding to zone prefiX€40 011} to answer query
vision (along the x-axis) as indicated by the 1 in the first bit, along Q1. Also, more importantly, these two zones are closer together in
the bottom half of the second subdivision (along the y-axis) as indi- terms of geometric distance by a factor of 2 compared to the four
cated by the 0 in the second bit, and so on. This spatial partitioning zones that would need to be searched with 2-DIM.
can be accomplished by a distributed algorithm that is described On the other hand, for a que@2 of the form:sel ect avg(l),
in [8]. from sensors, where 0.25<=|<0.75 and 0.5<=t<0.75

1.0 1)

we would have to consult nodes owning zones with prefixes be-

tween 0110 and 1100 in case of a 2-DIM (assuming it is constructed

on (I,t)). These nodes would be 4, 5, 6, 7, 8, and 9. With 1-DIMs, Y X

the prefixes would be 0100 to 1011 figrand 1000 to 1011 forr

(thus, the nodes would be 3, 4, 5, 6, 7, 8), comparable in number

and distribution to the 2-DIM case. Thus, we see that the size of

the query hyper-rectangle can critically affect query efficiency.
Thus, to answer queries of tyfggl using a 2-DIM, we needed L

to scan all zones for which the second attribute of the DilMan

be treated as a wildcard (this is true as soon as at least one attribute (0,0) (1,0)

in a multi-dimensional query is absent from the range part). On

the other hand, if we were to use two separate 1-DIMs, one each

for | andt, we would not have this inefficiency. In general, we Figure 2: Example spatially-partitioned fully-decomposed

typically end up having to visit fewer and more closely separated DIMs

nodes with fully-decomposed DIMs. However, in order to answer

queries of the formQ2, using 1-DIMs, we need to (a) select both

attributes(uuid, l) that make up the table data for the 1-DIM gn

(b) transport them to the nodes containing the za@8 & | < 0.75,

(c) locally match thé tuples witht tuples on uuid’s and filter out

thosel’s that don’t have a matchingwithin the query range, and

(d) finally aggregate the remaining valued @fnd return the result

to the query issuer. Thus, we see that this form of query execu-

tion on partially- or fully-decomposed relations is generalizable to

a larger number of sensor attributes and naturally leads to the fa-

miliar database notion @binsin sensor networks.

We offered qualitative arguments in Secti2r? that a full de-
composition of a relation of attributes into multiple 1-DIMs can
achieve significant energy efficiency over storing the base relation
in a single DIM. A related obvious optimization we can leverage
is spatial partitioning: the DIMs that store a sub-relation can be
assigned to spatially disjoint partitions of the original sensor field.
For example, in Figur@, thel (for light) attribute values of a tu-
ple are all stored in a 1-DIM in the lower left (quadrant 0) corner
of the sensor-field, all the (for temperature) values are stored in
2.3 The Focus of the Paper the lower right (quadrant 1), and tlxeandy values in quadrants 2

This paper focuses on efficiently supporting multi-dimensional and 3 respecFiv_er. This organization (_:onstrains the _distance data
range and range-aggregate queries using DIMs. Before we describ must move within each DIM by clust_erlng related attribute values
the questions that the previous section motivates, we describe somdl0re densely, thereby further reducing the overall cost compared
important assumptions. We assume that queries can be issued fro Ca 4'D|M' . . oo .
any node in the network and data can be inserted from any node 10 motivate the utility of this optimization, consider the exe-
in the network at any time. We wish to accommodate a wide va- cution of the following simple query on this data organization:
riety of aggregation operators because we allow for aggregation tosel ect ayg(1), from Sensors. The average message cost
be performed both locally at a node after collecting relevant tuples, fOF @nswering such a query in this data organization can be ex-
and as a form of in-network processing. Thus, we aim to support a pected to ben x 1/4 wheren is the total number of tuples in the
flexible, wide-ranging set of range, aggregation and order-statistics SYStem because these tuples would have to move an average of
operators (like median9], etc., that are not fully amenable to 1/4 (assuming the whole square t_o be a unit square) to get aggre-
any form of hierarchical aggregation) without sacrificing efficiency gatt_ad somewhere near Fhe centroid of_the lower left quadrant. An-
when computing simpler aggregates like sums and averages. In a||all}/(2t|(:lz/azlly, the average distance an attribute would move would be
cases, our system supports SQL-like relational queries involving Jo"Jo " X=1/4Fy=1/4ddy o n 56 the area of this quadrant=1/4;
standard clauses like “select”, “where”, “group bgc. 4

The previous subsection pointed out that decompositions of the
base relation into multiple DIMs can have different query perfor-
mance characteristics. The important tradeoff here is that when
sub-relations are stored in DIMs, scans are more efficiently sup-
ported than when the base relation is stored in one DIM. On the flip
side, however, to answer queries in general, the sub-relations nee
to be joined on uuid’s. Joins entail additional costs in the form of
data movement between the various DIMs. Clearly, then, the per-
formance of decomposition will depend on the query workloads.

This discussion motivates several additional questions: given a
decomposed base relation, how might a node decide on an efficien
join-ordering? Given that query hyper-rectangles might overlap, is 3 2 Optimizing Join Orders
it beneficial to cache the results of joins to reduce data movement
costs? If so, what mechanism might we use to do this? We address|e
these questions in the next section.

assuming a?;ﬁﬂl norm). Withk > 4 attributes, we can analytically
show that we can get correspondingly higher multiple of message
reduction, although this multiple grows @/k).

For a non-partitioned data organization with separate overlap-
ping DIMs for individual attributes, intuitively, the average execu-
c]Eiion cost would ben x 1/2 because the tuples now have to move an

verage of 12 to get aggregated near the center of the unit square.
Thus, the non-partitioned case moves tuples twice farther than the
partitioned one, and, hence, incurs double the energy cost in this
scenario. It alsquadruplesits hotspot concentration compared to
tpartitioned.

Having established that fully decomposing a base relation is at

ast a reasonable data organization, it remains to show how to ef-
ficiently determine join orders. Clearly, different join orders can
have vastly different costs, but we make the following key obser-
3. DATAORGANIZATION FOREFFICIENT vation: knowing which DIMs exist in the system, and given an

QUERYING approximate joint data distribution, each node atfependently

compute an efficient join order for the query. This is possible for

3.1 Full Decomposition and Spatial Partition- three reasons. First, DIMs are spatially distributed indexes, and

Ing the mapping between a data item and the location it is stored can

be computed locally. Second, we use a histogram to give ap-an gregation bit energy cost differs for the various data organizations,
proximate indication of the number of tuples generated by selecting and is primarily a function of the size of the sensor field. It needs to
the appropriate range from each of the sub-relations. Third, know- be paid for every query by all schemes. However, the join cost need

ing the selectivity and the locations of the query hyper-rectangles,

not be paid for by every query, and can be very effectively reduce

each node can compute the approximate cost of a query plan bythrough use of simple caching techniques.

estimating the messaging cost by either the Euclidean or#the
distance.

In our design, each node in the network contains a query op-
timizer. When the query optimizer is presented with a range or

The caching technique we study here is a very simple localized
scheme. Consider a join order in which noldas to send tuples
from its sub-relation to nodB for joining. A remembers which
tuples it has earlier transferred B that fall within the current

range-aggregate query, it outputs a query plan consisting of a se-queried range. It then refrains from sending these tuples during
guence of select and join operations that needs to be executed bethis join step.B receives both the query and a partial list of tuples

fore the final aggregation. In our current instantiation of the design,
the optimizer considers all possible join orde®K!) (this is fea-
sible if the number of attributdsis small; also, we don’t consider

and knows that it has to add missing ranges of the joining tuples
from its local cache.
Thus, the caching protocol is straightforward and robust because

join trees that are not simple chains because chains are simple andhe sender nodes do not need to know which receiver has which

robust to execute distributively and tend to be good enough) and
determines the least cost one.

To analytically understand the importance of good join ordering,
consider Figur@ once again. If our query is of the formel ect
avg(l),avg(t), fromsensors, where 0<=l<0.5.The
cost incurred for executing this query by movintp | is approx-
imately n/2 x 1/2 for join because roughly/2 tuples would be
selected by the range query@=1 < 0.5, and moving thesa/2
tuples incurs a cost af/2 x 1/2 as can be intuitively seen and an-

data ranges, but only whether they have sent the relevant tuples pre-
viously or not. Furthermore, there is no distributed cache mainte-
nance overhead to guarantee correctness in the presence of caching
node failures. When node failures cause some cached data in the re-
ceiver to become unavailable, we use a simple on-demand resend-
based failure recovery scheme to replenish the unavailable data.
DIM provides a way for nodes in adjacent zones to takeover the
failed nodes. These newly responsible nodes can invalidate the
caches for data ranges in the adopted zones. Then, during the join

alytically shown. The query also has to pay an aggregation cost of step, they inform the sending nodes that they need to resend the

2xn/2x1/4 because the 2 attributdst numberingn/2 need to

be moved 14 distance after reaching the quadrant 1. Thus, the to-
tal energy cost in this caserig2. On the other hand, if we were to
execute this query by first joininigwith t, we would have incurred
ajoin cost ofn x 1/2 and an aggregation cost ok/2 x 1/4 for

a total cost of &/4.

It is instructive to consider this query cost with that of a 4-DIM:
there is only aggregation cost, and itrig2 x 2x 1/2 = n/2 be-
cause each node in the 4-DIM has to locally retrieve ltlaadt
attributes of each tuple and route them to the centroid of the unit
square. While this is as expensive as with spatially-partitioned 1-
DIMs that use optimal join ordering, we can readily see that the join
component of the query cost in the 1-DIM case can be eliminated
if we can cache the join results. This would double the efficiency
of the data organization scheme employing normalized DIMs, and
one such caching scheme is described in Se&ian

Once this consistent and high join cost component of a query is
eliminated, we can intuitively see why it is possible to get a small
multiple (indeed, more than 2 even with 4 attributes) benefit in to-
tal energy savings by using normalized DIMs compared to 4-DIMs:

the data values returned by a query come from nodes all over the

sensor field (due to full-interleaving of attributes in 4-DIM) and

end up getting aggregated near the center of the unit square af

ter traveling long distances, while a normalized 1-DIM that can
minimize join overhead through caching only has to pay a small

variable localized aggregation cost (because of zero interleaving,
the values desired by the attribute range of a query tend to come
from close by nodes whose dispersion is defined only by the selec-

tivity of a query). Additionally, spatial partitioning adds a small,

on an average constant, but useful percentage to the proceedings,

A secondary benefit of spatial partitioning is that it distributes the
aggregation hotspots over the entire network in contrast to 4-DIM
which tends to reinforce the single hotspot region around the net-
work centroid with each query.

3.3 Reducing Join Costs through Caching

As we have seen in Sectidh2, the energy cost of a query has

two components: the join cost, and the aggregation cost. The ag-

entire set of tuples in the query range.

4. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of our approach
using simulations over both real-world and synthetic datasets on
a wide variety of query workloads. Our goal is to quantify the
total performance benefits of our data organization and query pro-
cessing over more straightforward approaches, and we use a full-
dimensional DIM as the base case against which we compare en-
ergy efficiency.

4.1 Methodology

We have implemented our mechanisms on a custom simulator
that allows us to evaluate the effects of decomposition, spatial parti-
tioning, caching and join-ordering. Our primary performance met-
ric is the totalbit energy cost incurred by the network as part of
query execution. We evaluate this cost by keeping track of the size
and number of messages transmitted by each query, and the number
of hops undertaken by each message. Message sizes include header
and payload sizes, and these are set to be the same as in the imple-
mentation described in Secti@(7 and 36 bytes respectively).

We vary the number of sensor nodes in the network from 50-200
to explore scaling effects. The node locations are generated by us-
ing radio and node-connectivity models assuming a radio range of
250m and node connectivity of 9. This generates the node locations
within a square grid whose size is determined by the node number,
radio range, and node connectivity. Without loss of generality, we
then normalize the locations to fall within a unit square.

We also vary the query workload from 100-400 queries in which
each query computes aggregates over up to four attributes, with
each attribute being included or excluded with equal probability;
we do likewise for the range attributes. We use a variety of data
workloads including uniform distributions, correlated Gaussian dis-
tributions (to better model natural sensor readings and to skew and
stress the network), and data from a real-world set (measurements
from the Great Duck Island dataset] 1] to better understand the
behavior of our approach on varying workloads.

We normalize all the data in the real-world dataset to fall within

uery Processor
Query Relatlon‘al query Query Issuer Remote node overlappin

[0,1). The synthetic dataset generator also produces values in this Fer— Query Engine. et anibute range

range. For the Gaussian distribution, we generate a four-attribute Query Optimizer?

tuple in which the first two attributes are positively correlated with n mbi
order Module|

Mult-Di
Hi

H
Ef

the mean vecto(0.5,0.5) and co-variance matrix o5 07)

0.039 Q04
and the next two attributes are negatively correlated with the same
mean vector and co-variance mat(ixﬁ%‘gf’BQ 0089). B e
The Great Duck Island set called gdinet consists of 23548 tuples ow

ot
lode-set overlapping
next atiribute range

while the synthetic datasets had 4000 tuples on average each. Thus,
the query-data ratio varied from 10% to~ 0.5%. We normalize
our energy cost by dividing the total cost by the number of nodes in
the system as well as the number of tuples in the dataset. This gives
us the average cost per tuple per query. Note that this cost includes))
the tuple’s original insertion cost as well. Figure 4: Software Components of the Query Engine
We also tested our approach on a wide variety of synthetic query
workloads. For each workload, we re-ran our simulations with mul-
tiple instances of the workload until the standard deviation of the
set of averaged results fell below 20% of that of any one run. The

Mulihop Mica2 radio network

occur abundantly in nature, and gdinet approximates Gaus-
sians more than uniform.

error-bars for all points within a series (likgptimized in Figure3) e While we don't report the hotspot values here, we observed
are then calculated as the worst case error-bars and plotted. that 4—DIM has the highest hotspot value, a@gtimized

We compare the performance of our proposed organization tech- has lowest (less intense thar-DIM by a factor of 4, as to
nique with four other cases, giving us a total of five scenarios for be expected).

each workload and dataset:

e 4-DIM (abbreviated agl-DIM in the graphs). This is the 5. IMPLEMENTATION
straightforward case with all four attributes being storedina In this section, we describe our design and implementation of a
single DIM. prototype of the main data organization and query processing ideas

e 1- DIM, (abbreviated a©ptimized). This is the perfor- described in the paper and report its performance. We have imple-
mance with optimized join-ordering and with caching en- Mented this prototype on the popular Mica2 mote platf@mfhe
abled on 4 fully-decomposed 1-DIMs that are spatially par- SOftware is written in NesG4] and runs on top of an existing DIM
titioned and each assigned to one quadrant of a unit square.IMplementation done using the TinyO§ poftware platform so as
However, note that the optimal join ordering daet use to provide a realistic proof-of-concept demonstration of a practical

knowledge of the current state of the global cache, and only @nd workable system. Itis designed to reuse as much of the exist-
uses information that an oblivious query issuer would have N9 software infrastructure on the Mica2's as possible, and achieve

access to. the desired functionality through cleanly introduced abstractions
. o and API's. In particular, we use a full-fledged implementation of
e 1-DIM, (abbreviated at)ncached). This is same as & DIM that doubles as the geographic hash-based primary storage
DIM, abave, but with caching turned off. and range-index layer, and a complete implementation of GPBR [
e 1—DIM, (abbreviated aRandom). This is the performance as the underlying routing and packet-delivery mechanism over a
with random join ordering but otherwise same as-DIM. multihop Mica2 radio network. This software stack organization

and design is shown in Figude
In Figure 4, the query evaluator runs on the query issuer and
consists of a query optimizer and an end-to-end reliability module
4.2 Main Results (the relie_tbility module is responsible for rt_atrying missing parts of
i o . the received answers). There is also an instance of the histogram
Given space limitations, we only present the main results from ganerator that runs in the background on each node that lazily col-
our extensive simulations (Figugedepicts some of these results). |gcs and maintains a coarse-grained multi-dimensional histogram
° Cachln_g ehmmgt_es a large fraction of Joins, and gets Us t0 of the tuple values present in the DIM. The query evaluator and the
the point of efficiency of 4-DIMs after which we can use pistogram generator taken together form the query processor.

e 1—DIMy, (abbreviated agrst). This is the performance of
aworst-case join ordering, but otherwise same asIM.

optimizat_ions Iil_«_e optimal joip ordersZ fu_II_decompos_itions, The query optimizer, in turn, has two sub-components: a his-
and spatial partitioning to deliver us significant benefits. togram analyzer that takes as input the current query and-the
o The relative spreads of the various seri@pt{mized, Ran- dimensional histogram cube to compute the number of tuples that

dom, 4-DIM, Worst, Uncached) is roughly the same across ~ Would be generated along each attribute dimension, and the join-
all simulation runs, workloads, and number of queries. The order selector that then selects the optimal join order of the at-
absolute values depend on the simulation parameters. tributes so as to minimize the total energy cost.

The output of the query optimizer is a sequenced join and aggre-
gate operation chain that specifies the order in which the attributes
must be moved for joining and aggregation. The resulting instruc-
tion chain is packaged as a DIM query that is then handed down
to the DIM layer (using the standard DIM query API) as a range
query on the first attribute in the join order, with the rest of the
e Gaussians give much better performance over both uniform instruction sequence forming the query payload. Thus, the query

and gdinet data because of high attribute densities within the processor consumes the standard DIM API in this phase, and ex-

bell; but this also creates hotspots, and performance degener-poses the SQL-like query API described in SecfoBito the user.

ates if we employ additional load-balancing. However, they ~ The query engine running inside each node is responsible for

e Random joining is nearly as bad as worst, and we also found
(but not plotted) that average (of all possible join combina-
tions) is also nearly as bad; this means optimal join ordering
is crucial (as will become clear later on, most “good enough”
join orders are OK t00).

Uncached —»

° Random
< Optimized
o
0 o P o

Uncached—»,

z
.

Uncached

20 20 o s0

Nodes

Nodes

20 20 o 50 100 150 200

Figure 3: Comparison of 4-DIM, Optimized, Random, Worst, Uncacted for Uniform with 100 queries (left), Gaussian with 200

queries (center), and GDInet with 400 queries (right)

o010 o011 110
000 o011 1001
| @9 ONY
omo 1000

Figure 5: Topology used for Implementation

controlling the cached data (timeouts, new data inserts), and is
also responsible for propagating the remainder of the query and

answers.

Figure 5 shows an example 10 node topology of two 1-DIMs,
one each on attributdsandt. The node id’s are indicated in the
circles. The number of tuples inserted into each of the 2 DIMs at
each node is indicated in the parentheses adjacent to the node id.
The DIM zone code of a node is indicated in the upper left corner.
The right half of Figure5 shows the physical arrangement of the
nodes. They are configured to be within a few feet of each other,

(2]
(3]

(4]

(5]

(6]

(7]

International Conference on Mobile Data Management,

Hong Kong, January 2001.

Crossbow Technology, Inc. MTS Data Sheet.
http://www.xbow.com/Products/productsdetails.aspx?sid=72.
D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS:
Why do we need a new Data Handling architecture for
Sensor Networks? IRroc. HotNets-I, Princeton, NJ,

October 2002.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to
networked embedded systemsHioc. PLDI, San Diego,

CA, June 2003.

B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker. DIFS: A Distributed Index for Features in Sensor
Networks. InProc. IEEE WSNPA, Anchorage, AK, May

2003.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and

K. Pister. System architecture directions for networked
sensors. IiProceedings of ASPLOS 2000, Cambridge, MA,
Novmeber 2000.

B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. lllobicom 2000, Boston,

MA, August 2000.

and the diameter of the network is four hops, as indicated by the [8] X. Li, Y. J. Kim, R. Govindan, and W. Hong.

logical link structure. We take advantage of the broadcast property

during query execution (in the join caching phase).

We ran several simple SQL queries on these two attributes, and [9]

observed a factor of 2.7 performance improvement withClIM
over standard 2-DIM.

6. FUTURE WORK AND CONCLUSION

In this paper, we tried to understand the design space of data or-
ganization and query processing strategies built on top of DCS. We
examined several general techniques that can be used to providd11]
efficient and robust infrastructure support in sensornets. In partic
ular, we identified a few key concepts like joins, decomposition,
caching, and partitioning. We are currently working on how to ef-
ficiently implement various join algorithms under our energy cost
models. We are also interested in exploring better caching designs[12]
that can leverage the broadcast feature of wireless sensor networks

7. REFERENCES

[1] P. Bonnet, J. E. Gerhke, and P. Seshadri. Towards Sensor

Database Systems. Rroceedings of the Second

(10]

(13]

Multi-dimensional Range Queries in Sensor Networks. In
Proc. Sensys, Los Angeles, CA, November 2003.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGregation Service for Ad-Hoc Sensor
Networks. InOSDI, Boston, MA, December 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. InProc. ACM SGMOD, pages 491-502. ACM
Press, 2003.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat
monitoring. INWSNA *02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and
applications, pages 88—97. ACM Press, 2002.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,

R. Govindan, and S. Shenker. GHT: A Geographic Hash
Table for Data-Centric Storage. Rroc. WSNA, Atlanta, GA,
September 2002.

S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and

D. Estrin. Data-centric storage in sensorn8i&COMM
Comput. Commun. Rev., 33(1):137-142, 2003.

	1 Introduction
	2 Background and Motivation
	2.1 DIM Overview
	2.2 Motivating Alternative Data Organizations
	2.3 The Focus of the Paper

	3 Data Organization for Efficient Querying
	3.1 Full Decomposition and Spatial Partitioning
	3.2 Optimizing Join Orders
	3.3 Reducing Join Costs through Caching

	4 Performance Evaluation
	4.1 Methodology
	4.2 Main Results

	5 Implementation
	6 Future Work and Conclusion
	7 REFERENCES -9pt

