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Abstract— We present a system which observes humans
interacting in the real world and infers their goals and in-
tentions through detecting and analyzing their spatiotemporal
relationships. Given the motion trajectories of human agents
and inanimate objects within a room, the system attempts to
characterize how each agent moves in response to the locations
of the others in the room – towards an object, say, and away
from the other agent. Each of these calculations leads to an
estimate of the agent’s current intentional state. Taken together
with the other agents in the room, and paying particular
attention to the moments when the various agents’ states change,
the system can construct a coherent account of the action similar
to the stories humans tell. We illustrate this approach with a
robot that watches people playing a game of tag, works out for
itself the roles and intentions of the various players, and then
attempts to join in the fun. The robot’s interpretation of events
agrees with human observers on average 70.8% of the time –
nearly as good as the agreement between two humans (78.5%).

Index Terms— Intention recognition, motion, causation

I. INTRODUCTION

Psychologists have long known that humans possess a
well-developed faculty for recognizing dramatic situations
and attributing roles and intentions to perceived characters,
even when presented with extremely simple cues. A human
will watch three animated boxes move around on a white
background, and describe a scene involving tender lovers,
brutal bullies, tense confrontations and hair-raising escapes.
Furthermore, a wide variety of human observers will con-
struct the same dramatic story out of the same ludicrously
simple animation. Our ability to make sense of a scene
does not seem to depend on rich contextual information,
lending credence to the idea that a machine might be able to
accomplish the same sort of inference.

Of course, a problem arises immediately in attempting to
bring computational resources to bear upon this same data,
if we wish to interpret activity and interaction in the real
world rather than in artificially constructed animations and
simulations. Visual perception is an enormous problem in
its own right, and though this area is a subject of intense
research, we still understand only pieces of the process. A
human’s visual system translates retinal impulses into coher-
ent, persistent, reliable object concepts which can be used to
reason about the world in terms of space and motion. At the

Fig. 1. The robot Nico.

current state of the art, however, computational perception
cannot dependably accomplish the same task.

Does this mean, then, that we cannot investigate the
development of embodied, real-world cognition about com-
plex social behaviors until we have completely solved the
problems of perception which stand in the way? No, but it
does suggest that we must endow our robots with other means
of acquiring the information they need if we are to make any
progress. Today’s most advanced robotic navigation systems
still require laser rangefinders and satellite triangulation to
accomplish what human drivers can do with their eyes.
Likewise, to bypass some of the complexities of visual
perception, we use a sensor network to supplement the robot’s
cameras with regular position updates for the people and
objects it watches.

The platform upon which we have implemented our de-
velopmental model is the robot Nico (see Figure 1). It is an
upper-torso humanoid modelled after the body dimensions of
a one-year-old child, possessing seven degrees of freedom in
its head and six in in each arm. Nico has been used for a wide
variety of research into childhood development of kinematics
[1], language acquisition [2] and theory of mind [3], as well
as investigating social interaction among humans such as the
development of gaze following [4].

Nico’s cameras give it stereoscopic vision, both a wide-
angled peripheral and a highly-detailed foveal image. From
the perspective of modelling the development of human



social cognition, of course it would be best to sense the
whereabouts of the people it observes by using this visual
input exclusively. The precise positioning data provided by
our sensor network will hopefully serve as a baseline for
bootstrapping the more complex visual perceptual problem.

II. RELATED WORK

The original inspiration for the approach we take comes
from the pioneering psychology study by Heider and Simmel
more than a half-century ago [5]. They found that humans,
given very rudimentary visual cues in the form of simple an-
imations, would happily spin complex tales about the events
they witnessed. Furthermore, these stories were remarkably
consistent from one subject to another. We are powerfully
motivated to anthropomorphize the interactions we witness,
and to attribute social roles and intentions to candidates as
unlikely as boxes on a white screen.

Our work also draws from more recent literature in devel-
opmental psychology, investigating the fundamental cognitive
processing modules underpinning perception and interpreta-
tion of motion. These modules appear responsible for our
rapid and irresistable computation of physics-based causality
[6] [7], as well as facile, subconscious individuation of
objects in motion independently of any association with
specific contextual features [8] [9] [10].

The specific analysis undertaken by our system, hypothe-
sizing vectors of attraction and repulsion between agents and
objects in the world in order to explain the causal relation-
ships we note in an interaction, relates to the dynamics-based
model of causal representation proposed by Wolff [11] and on
Talmy’s theory of force dynamics [12]. Humans can explain
many events and interactions by invoking a folk-physics
notion of force vectors acting upon objects and agents. This
holds not only for obviously physical systems (we talk easily
of how wind direction affects the motion of a sailboat), but
for social interactions as well (the presence of a policeman
can be interpreted as an actual force opposing our desire to
jaywalk). Our system explicitly generates these systems of
forces in order to make sense of the events it witnesses.

Gerd Gigerenzer and Peter Todd have used simple ani-
mations of the Heider and Simmel variety for testing simple
social classification heuristics [13], [14]. They asked subjects
to generate animations via a game: two people sat at com-
puters and controlled two insect-like icons using a mouse,
producing simple socially significant scenarios such as “pur-
suit and evasion”, “play” or “courting and being courted”.
Using these animations, they generated features such as
relative heading and absolute speed and used very simple
decision mechanisms to identify the social context behind
the animation. Their approach showed that indeed machines
could recover this sort of social information from simple
animations. However, they largely intended their experiments
to demonstrate, successfully as it happens, the efficacy of
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Fig. 2. Schematic representation of lab layout, from above. Sensors 1-4
and 6-9 are affixed to the ceiling (z = 0). Sensor 5 hangs from an overhead
light, 95 cm below the ceiling, and sensor 10 is attached to a wall at z = 128
cm.

their simple heuristics in relation to more computationally
complex classification mechanisms. Their scenarios were
very stylized, with a very narrow repertoire of possibilities,
and while humans created the animations, they did so in
an artificial machine-mediated fashion. Our approach, on the
other hand, provides us with a record of real human activity
in the world. Our scenarios are richer, and the level of detail is
much greater. Rather than simple classification among a half-
dozen intentions, our system generates a genuine narrative.

III. SETUP

Most of the literature examining how intentions and goals
can be inferred from motion cues relies on canned or
simulated worlds. From Heider and Simmel’s manually-
constructed animations to Peter Todd’s computer bug game,
researchers have studied humans’ and computers’ abilities to
classify and interpret simple, abstract animations by generat-
ing such animations in simple, abstract ways. In contrast, our
data derive from real-world human interaction, obtained with
a localizing sensor network of radio- and acoustic-enabled
Cricket nodes.1 These devices send messages to one another
using a simultaneous radio broadcast and ultrasound chirp,
and the receiving unit can calculate distance by comparing
the difference in arrival times between the two signals. With
a beacon node corresponding to each agent involved in a
particular game or dramatic scenario, and ten listener nodes
in fixed positions throughout the room, we can determine a
person or object’s location within a few centimeters through
triangulation. Each participant carried or wore a uniquely-
identified sensor throughout a particular scenario, and the
toys or objects they manipulated were likewise tagged.

1See [15] for hardware details. We entirely redesigned the embedded
control systems and data analysis software to meet the needs of our
experiments.



This sensor system produces a five-dimensional vector of
data: the identity of an object, its x, y and z coordinates in the
room, and the time at which these coordinates were measured
(accurate to the millisecond). Figure 2 shows the coordinate
frame and the robot’s position with respect to the rest of
the room. The z coordinate, measuring vertical distance
from the lab’s ceiling, is only used for appropriate distance
measuring and robot-human interaction; a two-dimensional
top-down representation is perfectly adequate to interpret the
activity. Our robot uses this data to perform its analysis of
the interactions it sees, and to respond appropriately.

In addition, we use the data to construct simple Heider-
and-Simmel-style animations representing the scenario. Our
system generates a colored square for each agent and inter-
polates between detected positions to create an animation for
human evaluation. From a record of the raw position reports
coming from sensors, we generate a Scalable Vector Graphics
(SVG) file specifying an animation which can then be viewed
in a web browser. A test subject can view the video and click
with the mouse to specify her interpretation of the events she
sees, with the system capturing the times and locations of the
clicks. In this way, we can directly compare the human and
robot ability to generate hypotheses concerning the witnessed
activity, using exactly the same perceptual data. In most
cases, the interpolation of the motion between the detected
positions is simply linear, but for some of our test runs, we
used cubic splines to generate a smoother cartoon. Our human
test subjects had no trouble interpreting the simpler linear
model, however, though most test subjects reported that the
smoother animation looked subjectively better.

To be considered as an appropriate model of social cog-
nition, our system should produce the same analyses from
the same data as the subjective impressions of the humans
watching these cartoons. Provided that humans can readily
interpret the intentions, goals and dramatic moments in
animated representations of simple four-dimensional data,
our machine-based algorithm should be able to do the same.
To do this, we take our cue from psychology and folk physics
and cause the robot to imagine “forces” acting on the people
it sees, causing them to act the way they do.

Our basic approach involves generating a set of hypotheses
for each agent’s attractions and antipathies toward the other
objects and agents in the room, and recognizing the points at
which these hypotheses needed to change in order to continue
to represent the data well. We assumed that each agent
moved in accordance with these qualities – in other words,
at each moment in time, an agent’s velocity (or, alternately,
acceleration) is the sum of the attractive and repulsive vectors
associated with each of the other agents and objects in the
scenario. The algorithm searches for the best fit in a least-
squares sense among competing hypotheses over a short time
frame – 2-5 seconds. Additionally, the influences between
agents could be inverse, inverse-square or constant.

To make these calculations, we proceed as follows:
1) Calculate the current velocity of an agent separately for

each dimension: Vxn
i

= xn+1
i −xn

i

tn+1−tn
(and similarly along

the y dimension). Here, Vxn
i

represents the x compo-
nent of agent i’s velocity at time n. xn

i , xn
j and xn

k are
the x coordinates of agents i, j and k respectively, at
time n. Below, dn

ij and dn
ik are the Euclidean distances

between i and j or i and k at time n. The extra d in the
denominators comes about because simple coordinate
subtraction introduces distance into the numerator, and
must be normalized out.
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of equations:
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3) Collect all of the data points falling within a short time

period into a pair of matrices. For three total agents
involved, using the constant-influence hypothesis, and
with a window of δn = 2 seconds, these matrices
would be:
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The matrices representing the other two hypothesis
domains are constructed similarly.

4) Construct a QR-decomposition of matrix A, and use
it to find the least-squares solution of A × X = b.
The matrix X thus found corresponds to the best-fit
constants for the hypothesized equations of motion.

The constants found by this process reflect the strengths
of the relative force vectors in play at a particular point
in time as they influence the motion of the agents in the
scene – not necessarily physical forces, of course, but rather
the conceptual forces arising from the social situation and
the agents’ goals. These constants form a set of features
which the robot uses to segment and identify the events it
watches. Moments when the constants change sign, or vary



Fig. 3. A scenario where the defender tries to prevent the aggressor
from snatching the object, but ultimately fails. The object remains still
while the aggressor approaches and the defender moves to interpose itself.
The aggressor obtains the object and moves rapidly away, followed by the
defender.

dramatically in magnitude, or where the set of equations that
produce the best data fit changes, are particularly important,
and often corresponding to significant events in the scenario.
These are usually the same moments that human observers
mark, as well, as the experiments described below bear out.

This sort of computation is not scalable to arbitrarily
large numbers of participants, though the matrices grow in
a fairly reasonable O(n2) fashion. On the other hand, it
does not seem plausible that humans are able to interpret
the individual roles of every participant in a crowd scene,
either. Rather, they tend to analyze large-scale interactions in
terms of groups of people with similar roles and goals, and
our approach can be extended to accommodate the same kind
of evaluation.

Not only is the robot able to detect and interpret the
events it sees, but it can respond and participate as well. We
implemented a repertoire of gestures and behaviors that the
robot can use in real time while observing a social interaction.
The robot’s motor system acts on information from the sensor
tracking system and the intention recognition system. While
the robot constantly receives sensor position data from the
tracking system, the intention recognition system can induce
Nico to perform the following behaviors:
• Visual Tracking: Nico can visually track a particular

agent or object by turning its head to follow a sensor’s
movement about the room. At any time, the system can
substitute one object of attention for another, or leave
off visual tracking entirely.

• Arm Tracking: Nico stretches its right arm to point at
a particular object or agent. This behavior is controlled
flexibly and dynamically, according to the robot’s cur-
rent evaluation of the events and intentions it perceives.

• Avoidance Behavior: Nico can decide to show avoid-

Fig. 4. A scenario where the donor hands an object to the recipient. The
object accompanies the donor as the two agents approach each other, and
then leaves with the recipient as they walk away.

ance behavior towards the sensor attached to one of the
objects or people in the room. It will look away from
whatever it is avoiding and shield its face with an arm.
This behavior supersedes the previous behaviors.

The first two behaviors can be combined – Nico can
watch and point at different things simultaneously – but the
avoidance behavior can only be executed exclusively.

We measured the absolute positions of the head (H) and
the right shoulder (S) in the coordinate system that the cricket
sensors use. To track an object with position X either visually
or with the arm we geometrically compute the difference
vectors DH = X −H or DS = X − S respectively. Using
the difference vectors and a geometrical model of the robot
we compute the desired motor positions. The head always
uses two degrees of freedom (pitch and yaw). For the arm
we usually use only two degrees of freedom in the shoulder
(move arm up/down, left/right). However if the sensor we
point to is far to the right the shoulder joints reach it’s limits
and we use two elbow joints in addition to point towards the
target sensor with the lower arm.

IV. RESULTS

A. Experiment 1

Our first experiment explored the feasibility of the force-
dynamic approach in qualitative fashion. We devised simple
scenarios such as “Person A wants the toy, but Person B tries
to prevent him from getting it,” and asked subjects to act out
the events described. We collected the motion trajectory data
and generated both animations and vector hypotheses.

We first asked human observers to watch the cartoon and
describe what happens in their own words. Although the
descriptions were somewhat idiosyncratic, most identified
the same relationships between the pictured entities and
noticed the same dramatic moments where those relationships



change. For instance, for the interaction illustrated in Figure
3, one observer commented “The red guy wants to get the
blue thing. First he just walks up, but then the green guy
tries to get in the way. They dance around a bit, and then
the red guy gets past, grabs the blue square and takes off.
The green one chases him.” Different subjects used slightly
different vocabularies, but told the same story and noticed
the same events. The green square “got between” or “fought
off” or “tried to stop” the red one, while the red square, 28
seconds into the animation, always succeeded in “taking” or
“stealing” the blue object.

We allowed Nico to analyze the same data and produce
its estimates of the time-varying constants and equations of
motion which describe the agents’ relationships with each
other. We provided basic English phrases for the robot to
use to describe its conclusions, selected according to the
values of the mathematically-determined constants. At every
significant event (whenever the hypothesized vectors changed
sign or a different set of equations produced a better fit), the
robot produced a new phrase. For the scenario just described,
Nico was able to produce the following: “Red approaches
blue. Green approaches red and approaches blue. Red avoids
green and approaches blue. Green approaches red and avoids
blue. Red and blue avoid green. Green approaches red and
approaches blue.” After the human subjects produced their
own scenario descriptions, they were asked to answer the
question “Was Nico’s summary accurate (yes or no)?” They
responded positively 2/3 of the time.

In order to obtain a more objective measure of how clear
and interpretable our animations are, we provided a set
of descriptions of the scenarios depicted in animations, as
well as a few descriptions that did not correspond to any
animation. For example, we described the scenario shown
in Figure 4 as “Red gives green the blue toy.” We asked
our subjects to match descriptions and animations. All six
subjects chose exactly the same description for each of ten
animated scenarios, validating our assumption that humans
are quite adept at understanding complex social interactions
with very impoverished context and sensory data, and more-
over different people’s interpretations of the same data are
largely consistent with one another.

B. Experiment 2

We devised our second experiment to take a closer, more
quantitative look at the robot’s performance in a longer,
more complex motion scenario, and to give the robot the
opportunity to participate meaningfully in the action. To that
end, we chose to focus on watching and learning about
the game of Tag. As Nico is currently not ambulatory, its
participation in the game must be somewhat stylized, but it
can still take appropriate actions that are readily interpreted
as relevant to the game by human observers. While a game
is being played, Nico looks at the person it currently judges

to be “IT”, while pointing to another player, the one farthest
away from the robot itself – as if to say, “Hey, you, go over
there. Get that guy, not me!” If the person Nico perceives as
“IT” comes within two meters of itself, it assumes a defensive
posture, throwing its arm over its face and looking away.

Figure 5 shows the robot’s performance over the course
of a 45-second game. We also converted this game and
others to an animation and showed them to three human
subjects, who were instructed to indicate the identity of “IT”
as participants tagged each other back and forth over the
course of the game. One of these sequences is also shown in
the figure for comparison. Compared across four games and
three subjects, the robot and humans agreed 70.8% of the
time. This compares with an agreement between the human
coders alone of 78.5% – that is, when watching a cartoon of
a typical 45-second game of tag, two humans will disagree
with each other about the identity of “IT” for a half a second
here, a couple seconds there, for a total of about 9.8 seconds
of incongruity. Both the human and robot performances are
dramatically above random (33%).

The small disparity in performance likely arises from the
fact that Nico has no preconceived notions about how the
game of Tag operates. Specifically, it cannot deduce that “IT”
can only pass between players when they are next to each
other, unless such a pattern emerges from the games it sees.
Human observers know this a priori. Such a discrepancy is
illustrated in Figure 6.2 At t = 9, blue (which had been
chased by red) now moves toward green, while green runs
away. Both human and robot judge that red has tagged blue
and blue is now “IT”. At t = 13, however, blue is still chasing
green a little, but red begins moving quickly toward the other
two. The computer assumes this means red is now “IT”, but
the human observer knows that red was too far away to have
been tagged. Shortly afterwards, red and blue start running
away from green, and it is obvious to both human and robot
that a new player has become “IT’.

V. CONCLUSION

Humans have a powerful capacity to construct rich, con-
sistent interpretations of very impoverished data, so long as
they have motion cues to work from. We have shown that,
provided we can get around the difficulties in perceiving
motion in the first place, machines are able to draw many
of the same conclusions. We have demonstrated a robotic
system that can infer roles, intentions and events based on
hypothetical social “forces” constructed in real time from
real-world motion data. The verisimilitude of the data thus
collected enables us to draw stronger conclusions with respect
to real human interaction and interpretation, in contrast to
data derived from simulation or computer-mediated play.

2The colored squares are exactly what the human coders see in the
animations. The arrows have been added for clarity on the page.



Fig. 5. Robot’s opinion of who is “IT” in a game of tag, compared to a single human’s analysis of identical data. The agreement between human and robot
is closest in this sample to the statistical average, out of twelve total (three human coders × four games).

Fig. 6. Stills excerpted from game represented in Figure 5. See text for
details.

We have so far investigated only simple scenarios with
a fairly limited range of activity, but we have nevertheless
demonstrated how much information can be gleaned from
remarkably simple input. Furthermore, we have implemented
a computational mechanism which draws conclusions that
reasonably parallel our own human judgments. This approach
can be extended in a number of ways. We would like to
investigate how a system could learn a larger vocabulary of
roles and intentions by observing and reasoning about its own
inferences. For example, after watching enough Tag, the robot
may be able to work out for itself that touch is an important
component of the game, and begin looking for instances of
touching on its own. We would also like to develop better
algorithms for extracting this sort of motion from vision,
using location information coming from the sensor network
as scaffolding. Armed with conjectures about the roles and
intentions of the people in a room, our robot may be able
to harness its expectations about future events to guide its
visual processing in top-down fashion.
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