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Abstract— Joint attention is the skill of attending to the same
object another person is looking at. The acquisition of this skill
is crucial in children for the development of many social and
communicative abilities, and has been proposed as a critical social
capability for interactive robots. Although recent attempts to
model the acquisition of this skill on a robot have been moderately
successful [5], [8], they all assume that the robot remains passive
during the learning process. Infants, on the other hand, have
already acquired some rudimentary sensorimotor skills by the
time they start to learn joint attention. We believe that these
sensorimotor skills can jumpstart and considerably accelerate
the learning of joint attention. In this paper we demonstrate
on a humanoid robot how to use pointing and reaching to
accelerate the learning of joint attention. We show that a robot
can acquire this skill with a 95% accuracy after a total of only
220 training samples compared to 85% accuracy after totals of
10,000+ samples in other approaches [5], [8].

I. I NTRODUCTION

Joint attention is the skill of attending to the same object
another person is looking at. It is a skill that is fully acquired
by children around the age of 18 months [1] and that is crucial
for the development of further social and language abilities [2].

Recently researchers have investigated how an agent might
be learning joint attention by trying to simulate the devel-
opment of this skill on humanoid robots [3], [4], [5]. All
of these approaches assume that the child robot is passive
and learns joint attention purely by observing the caregiver
and environment. In contrast, children acquire a rich set of
sensorimotor skills before they begin to show joint attention
behavior. Children start learning how to reach and point at
an age of four to five months [6]. Initial pointing gestures
(known as imperative pointing) consist of an extended arm as
if reaching for an object without the extended index finger
characteristic of adult pointing gestures (known as declarative
pointing). Infants are typically skilled at imperative pointing
by the time they start to learn joint attention, around 9 months
of age [4], [7].

It is our hypothesis that pointing gestures can be exploited
to rapidly and efficiently learn joint attention behavior. We
present in this paper a robot that first learns how to reach
and point to objects using traditional techniques. The robot
then actively directs the attention of the caregiver by point-
ing to specific objects. The object’s location (obtained from
visual depth estimation) and the head pose of the caregiver
(also obtained from visual information) are used as positive
training examples for a neural network which produces the
joint attention function. That is, given a sensed head pose

Fig. 1. Typical joint attention scenario.

estimate, the network predicts of the location of the attended
object. We demonstrate that this layered learning technique
can obtain higher performance than other reported techniques
and obtains this accuracy in two orders of magnitude fewer
training examples.

The rest of the paper is organized as follows. Section 2
gives an overview of related work. In Section 3 we present
our methodology and explain how learning joint attention takes
place in our robot. Results are presented in section 4 and a
discussion is given in section 5.

II. RELATED WORK

Nagai, Hosoda & Asada [5] demonstrated a system which
learned joint attention by watching for shifts in the caregiver’s
head pose. Whenever the caregiver’s head moved, the robot
would move its head to look at one of the salient objects
within its field of view. Initially, this selection was random;
each salient object within the field of view was equally likely
to be selected. The robot then assumed that the caregiver
was looking at the same object that it was attending to.
The caregiver’s head pose and the object location were used
as a training sample. If there were multiple objects in the
robot’s view, this example had a chance of being false; the
robot might randomly select a different object. Over time, the
selection of a visual target is accomplished by a neural network
which produces a gaze shift motor command given a head
pose change of the caregiver. Although the training samples
contain many false associations (from an incorrect initial
random object selection), this model succeeds in learning joint
attention because the random spatial distribution of negative
examples tend to cancel each other out.



(a) Start position. (b) Pointing. (c) Strong indication.

Fig. 2. Pointing to a visual target.a,b: The robot is presented with multiple objects on the table and points to one of them with its arm.c: Small oscillations
emerge naturally from our trajectory generation algorithm.Object labels: LL: lion front left, M: pig front middle, RR: genie front right, L: cow middle left,
R: dog middle right, B: rabbit in the back.

One advantage of this approach is that the robot’s field of
view grows as the neural network becomes more and more
accurate. Whenever the network selects a location that does not
contain a salient visual target, a second gaze shift is performed
to a randomly chosen salient object within the field of view.
If the second gaze shift is in the same direction as the initial
shift, the robot can attain an object position that is initially
outside of its range. In this way, the effective field of view of
the network can increase over time.

The disadvantage of Nagai, Hosoda & Asada’s method
is that it requires a large amount of training data. In fact,
the amount of training samples needed is so large that the
authors had to gather initial data and then simulate the learning
environment and the caregiver’s gaze. The neural network
needed more then2 ∗ 105 learning steps to accomplish an
acceptable success rate of about0.8 with three objects in the
FOV. The success rate drops substantially when the number
of object increases.

Triesch et al [8] have proposed a theoretical model for the
study of joint attention development. The model assumes that
both the infant and the caregiver are located in an idealized
grid world, where interesting objects can only exist at a
limited number of positions. In their model, the infant acquires
the gaze following skill through reinforcement learning. The
performance of this model heavily depends on the probability
of the caregiver looking at the right positions, i.e. the positions
occupied by interesting objects. Similar to Nagai’s model, the
performance of Triesch’s model also deteriorates quickly with
the total number of objects in the grid world and a large
number of training samples is required for convergence.

We believe that the disadvantages of both these models
arise from the assumption that the robot/infant remains passive
throughout learning. We propose that simple sensorimotor
skills can vastly accelerate the learning process. Our approach
is for the robot to draw the caregiver’s attention toward an
object by pointing to it and thus actively acquiring a positive
training example for a joint attention network (see figure 1).

III. M ETHODOLOGY

Our experiments used an upper torso humanoid robot, called
Nico, constructed to match the kinematics of a one-year old
infant. Nico’s head has a total of seven degrees of freedom

(DOFs) including separate yaw and simultaneous pitch for
both eyes. The arms have six DOFs each, two at the shoulder,
elbow and wrist respectively. All arm and head joint angles are
constrained to represent the abilities of a human infant. The
eyes are equipped with two miniature CCD cameras each, one
for foveal and one for peripheral vision. In the experiments
described in this paper we used only the peripheral vision
cameras.

Our experiment is conducted in three phases. First the robot
learns to reach by acquiring a forward model of its arm.
Second the robot extends this model to pointing. Finally, it
uses the gained skills to learn how to recognize the caregiver’s
gaze towards an object. Due to the low resolution of our
current cameras we were not able to estimate eye gaze and
used only head pose estimation. The following subsections
describe the algorithms used and the experimental setup.

A. From Reaching to Pointing

We previously implemented a fast method for learning
iterative reaching through motor babbling [9], [10]. In this
method, the robot randomly moves its arm and records the
position of the end-effector each time. This data is used to
train a neural network that represents a forward model of the
arm. When the robot reaches for an object it will create the
Jacobian matrix for the current end effectors position and use
it to move its end-effector closer to the target. In our model
this Jacobian matrixJ is a3×6 matrix (6 DOFs in the arm and
3 dimensions to describe the end-effectors position). We then
derive it’s local inverseJ# with a simple algebraic calculation:

J# = JT · (J · JT )−1 (1)

The desired arm displacement in joint angles can be calculated
by multiplyingJ# with the distance vectorD = Opos−EEpos

whereOpos is the object position andEEpos the end-effector
position:

θ̇ = J# ·D (2)

This behavior generates very natural looking curved reaching
trajectories [11].

This reaching model can be extended to produce imperative
pointing. Children use imperative pointing as a result of not
being able to reach objects that are too far away to grasp [4]. It
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Fig. 3. Outline and data flow of our system used during the joint attention
experiment.

has been proposed that early imperative pointing results from
the child being unaware of the distance they can reach; the
imperative point results from trying to reach for an object
but ultimately failing because it is too far away. In this case,
the arm has been extended to come as close to the object as
possible. In many cases, a caregiver will eventually recognize
the gesture and move the pointed-to object into the child’s
grasp. The reward of obtaining the desired object might be
used to learn that pointing can also achieve the goal of getting
an object. We have thus altered out reaching model to follow
this conjecture.

When an object is out of reach it means that to get as
close as possible we usually have to stretch our elbow. The
iterative reaching model alone will allow for this to happen,
but the arm movement will stop here since the elbow joint
reaches singularity. We have extended the model to remove
the elbow joints from the Jacobian matrix calculation at this
point and continue iterative movement by simply using the
shoulder joints. The details are as follows:

J3×6 ⇒ J ′3×4, θ6×1 ⇒ θ′4×1 (3)

θ̇′ = J ′# ·D (4)

Since the iterative method used in our approach tries to
minimize the distance between the end-effector and the object,
out arm will move into a straight line pointing directly at the
object. It means that the robot is in fact pointing from the
shoulder on towards the object although it was never explicitly

told the vector between the head cameras and the shoulder. In
a straight forward model, this information would be necessary
in order to calculate an accurate pointing gesture. Without any
stop mechanism, the discrete steps used in arm control may
cause oscillation around this perfect line of pointing. With
minimal smoothing, the behavior of this system looks very
much like the imperative pointing of an infant. Figure 2 shows
a sample scenario of the robot pointing to one of the objects
on the table.

It is important to note that this pointing behavior is obtained
purely by cutting away the two elbow joints when they reach
singularity during object reaching. Learning how to point
imperatively happens along the way as our robot learns how
to reach. The robot is not currently aware of the fact that it is
pointing and that it cannot reach the object.

B. Learning Joint Attention

Pointing is used to actively learn joint attention. The robot
points to draw the caregiver’s attention towards an object and
records the caregiver’s head pose in the process. Contrary to
the approach in [5], we actively select which object to attend
to and thus have far fewer negative samples. We still might
encounter negative samples when two objects are so near each
other that the caregiver cannot distinguish the pointing gesture
or when we encounter a glitch in some component of the
system. But in this case the error is very small and slows the
learning process only slightly.

Fig. 3 gives an outline of the software modules that control
Nico during the joint attention learning phase of the experi-
ment. The neural network for reaching and pointing is already
trained and the control module uses output from the object
position detector to find objects it can point to. The output
from the stereo cameras is also fed into the SVS (small vision
system) for stereo processing and from there into the Watson
headpose detector [12]. Based on the theory of contingency
learning the joint attention module analyzes the headpose
estimation and extracts learning samples for the joint attention
neural networks. The complete system runs at ten frames /
samples per second.

The experiment is conducted as follows. The robot is
presented with multiple objects on a table in front of it (six
small stuffed animals were used in this experiment as shown
in fig. 2). The robot first engages the caregiver by looking
at him/her. The robot then looks down at one of the objects
on the table and records its position. It then looks back at the
caregiver and starts to move its arm to point towards the object.
The neural network for pointing is precise enough by now to
allow for pointing without visual feedback. The robot waits
for two seconds and then retracts its arm. Each of these events
is signaled to the joint attention module (start pointing, arm
movement stops, retract). These markers are used by the joint
attention module to determine when to extract an appropriate
headpose training sample. Information regarding to how this
is done is presented in section IV-A.

If enough training samples have been gathered the control
module trains a neural network for attention estimation. Cur-
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Fig. 4. Examples of how three different subjects respond to the robot’s pointing gestures. The black curve represents the velocity of the head movement
recorded during the experiments. The blue curve is its smoothed-out version. The red line marks the time when the robot completes a pointing gesture.
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Fig. 5. Histogram of the time delays of the experiment subjects’ responses to
the robot’s point gestures. Despite the individual differences, the distribution
shows a single peak and resembles a Gaussian. The mean and the standard
deviation of the distribution are2.08s and0.67s respectively.

rently this happens when the system has 100 training samples,
a number found by trial and error. In the future we would like
to include an evaluation function that allows the robot to take
this step autonomously.

Once a joint attention neural network has been trained the
last step of the experiment starts. The robot begins a trial by
looking at the caregiver. When the caregiver looks down at
any object on the table, the perceptual system computes the
head pose angle and provides that value as the input to the
trained joint attention model. The model produces an estimated
motor command to fixate the object of attention. The actual
motor command is determined by selecting a visually salient
object closest to the position estimated by the joint attention
model. The robot foveates that object and then points toward
the object to emphasize its attention towards it. The robot
succeeds in establishing joint attention if the caregiver (when
asked) indicates that the robot is attending to the same object.

IV. RESULTS

A. Social Delay

Fig. 4 shows examples of how three different experiment
subjects respond to the robot’s pointing gestures. The black
curves represent the velocity of the subjects’ head movement
within a time window of 12 seconds (the video grabbers
operate at 10 frames/second). The blue curves are simply the
smoothed-out versions of the actual velocity curves using a
box filter. The red line in each plot reflects the time point

when the robot completes the current pointing movement. It is
obvious that different subjects respond to the robot in different
manners. Subject M (Fig. 4(a)) follows the robot’s arm move-
ment closely and finds the object the robot is pointing to even
before the robot fully completes the movement. The velocity
curves in Fig. 4(a) reflects this behavior and shows that the
velocity of the head movement falls back to zero before the
red line. Fig. 4(b) shows the velocity curves of Subject P who
also starts to move their head soon after the robot starts its
arm movement. However, P stops the head movement after the
robot completes the pointing gesture. The velocity curves in
Fig. 4(c) characterizes the behavior of Subject L who apparent
uses eye movements to follow the robot’s arm movement and
only starts to move the head after the robot completes the
pointing gesture. In addition to the difference in moving the
head to look at the object the robot points to, the length of
the time spent on looking at the object varies from person to
person. While subject M often looks at the object longer than
two seconds, subject L usually moves the head back quickly
to look at the robot’s eyes.

During the experiments, each time the robot pointed to an
object, the joint attention module extracted from Watson’s
continuous output a single head pose that best characterizes
the caregiver’s response. It has been hypothesized in [13] that
the response delay of an individual in a social interaction can
be modelled by a Gaussian distribution. A careful analysis
of the data collected during our experiments has partially
confirmed this hypothesis. For each of the subjects, the original
velocity curves recorded during experiments are smoothed
with a box filter that is twenty frames wide. These curves
are then segmented into a number of episodes, each of them
containing the subject’s response to a particular pointing
gesture produced by the robot. For each episode, the difference
between the time the robot completes the arm movement and
the time the subject exhibits a minimum amount of head
movement is calculated. This difference characterizes the delay
of the subject’s response to the robot’s social gesture. These
delays are then aggregated and shown in Fig. 5. Despite the
differences in how subjects react to the robot’s pointing (as
illustrated in Fig. 4), the distribution of the social delays shows
a single peak and some resemblance to a Gaussian with a
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(a) Head pose data of Subject L.
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(b) Head pose data of Subject P.
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(c) Mixed data from five different subjects (20
samples each).

Fig. 6. Headpose samples collected autonomously by the robot. Each marker represents a head pose vector projected to the X and the Y axis. The shading
of each marker indicates the object position it is associated with.
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Fig. 7. A RBFN is trained on a mixed data set portrayed in Fig. 6c. The
performance of this RBFN is tested on another mixed data set consisting
of 100 samples. This plot shows the projection of the head pose data in
the test set on the X-Z plane. The original positions of the objects on the
table (illustrated in Fig. 2) are marked with red crosshairs. The shading of
each marker is determined by the closest-neighbor rule. Only 15 samples are
misclassified. These samples are plotted with diamond markers.

mean of2.08s and a standard deviation of0.67s. During the
automatic sample extraction mode, the main control module
records the head pose data obtained from Watson after a2s
delay and associates this head pose with the position of the
object the robot is currently pointing to. All training sets
described in the following section are built in this manner.

B. System Performance

The same coordinate system is used to measure the object
positions on the table and the head poses of the test subjects.
The origin is at the focal point of the left camera, and the
X-axis points to the focal point of the right camera. The Y-
axis and Z-axis point straight down and toward the experiment
subjects respectively. The Y components of positions of the
six objects on the table are all of the same value because the
table is parallel to the X-Z plane of the coordinate system
we use. The average distance of two neighboring objects is
about 250mm. The head pose of a subject at any particular
moment is described with a three dimensional vector output
by Watson. Only two of the components are independent. All
training samples are collected using the social delay approach
described in the last section. Each training sample is in the
form of (pi, oi), where pi and oi describe the head pose
and the associated object position respectively. We use a

simple Radial Basis Function Network (RBFN) to learn the
association betweenpi (input) andoi (output). The two free
parameters for training a RBFN - the spread of the Gaussians
in the hidden layer and the error threshold as stopping criterion
- are determined by a simultaneous optimization procedure.

The performance of the RBFN is first evaluated by testing
on the same individual that the network was trained upon.
The training set and the test set consist of 80 and 20 samples
respectively. The performance of the trained network is very
good in this case; an average recognition rate of 95% is
achieved. However, if we use a network trained on one subject
directly to test on the head poses of another subject, the
average recognition rate is only 62%. The reason for this
severe degradation is the variance of head pose data among
different subjects. Fig. 6(a) and Fig. 6(b) visualize the head
pose data of subject L and subject P by using only the first
two components ofpis. (The third component is redundant
sincepi is a normalized vector.) The shading of each marker
indicates which object position it is associated with. These
two plots show that although both L’s and P’s head pose
data are well clustered, they have significant differences. This
performance issue can be resolved by training a neural network
on a mixed data set collected on different subjects. Fig. 6(c)
shows the head pose data of a training set (100 samples)
created by mixing data collected from five different subjects.
When a network trained on this training set is applied to
the head poses contained in another mixed data set (100
samples), a recognition rate of 85% is achieved. Fig. 7 shows
the projection of the head poses in the test set. The same color
coding system is used to show the correct object association of
each projected position. If a head pose is incorrectly classified
by the RBFN, its projected position is plotted with a diamond
marker instead of a round one. The positions of the objects on
the table are plotted with crosshairs. The axes of 7 are arranged
in such a way that object positions in it are topologically
consistent with Fig. 2.

V. D ISCUSSION

In this paper we have presented a complete robotic system
that learns joint attention much faster then previously proposed
systems. Our system runs in real time and all the learning is



TABLE I

COMPARISON OF EXISTING JOINT ATTENTION MODELS.

Y. Nagai, K. Hosoda J. Triesch, C. Teuscher, G. Déak Nico

and M. Asada [5] and E. Carlson [8]

Real world model: + Yes. − No. Model assumes discrete
world.

+ Yes.

Real time online training: − Off line learning. − Only simulated. + Complete online algorithms.

Number of samples / time
steps required:

− 200, 000 samples − 10, 000 to 100, 000 timesteps
(reinforcement learning)

+ 220 samples in real time

Recognition rate with
multiple objects in view:

− Drops fast with number of ob-
jects (∼ 80% for 3 objects).

− Drops fast with number of ob-
jects.

+ ∼ 95% for 6 objects

Cross subject training /
evaluation:

− Model tested on only one
subject. Neural network takes
face image as input and is
likely highly personalized.

− Agents are characterized by
probability of looking at an
object but there is no behav-
ioral personalization.

+ Training on multiple subjects
yields ∼ 85% recognition
rate.

Y. Nagai, K. Hosoda
and M. Asada

J. Triesch, C. Teuscher,
G. Deák and E. Carlson
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Fig. 8. Quantitative comparison between different joint attention models and
implementations.

done online without any human intervention. This is made
possible by breaking the learning task apart into finer and
easier tasks and learning them one after the other. First
the robot learns how to reach objects using as few as 120
examples. Once the robot has learned how to reach objects it
extend the reaching model to pointing. This is done without
the need for further data samples. Using these two basic skills
our robot can learn joint attention with only 100 additional
data samples. In addition to being computationally efficient
our system works on multiple subjects.

When compared to other existing joint attention learning
approaches our system has multiple advantages that are sum-
marized in table I. The two most important points are that our
system reduces the number of training samples by a factor
of at least 50 and it is the first complete online system that
works autonomously. Triesch’s approach is purely theoretic,
whereas Nagai’s system performs training off line. In regard
to speed other systems need up to 200,000 samples for a
comparable accuracy to that of our system after 220 samples.
This can be seen in figure 8. Additionally our system has been
trained and tested on multiple subjects whereas other joint
attention learning approaches did not attempt to generalize
to different subjects. When trained on multiple subjects and
tested on another data set from multiple subjects we had a
85% recognition rate with our system. It is worth mentioning
that the modular design presented here is easier to identify

and isolate weaknesses and could more easily be extended for
further improvements.

Having a set of basic skills allows the robot to decompose
the learning of more advanced skills into smaller learning
units. This can dramatically increase learning speed as in our
joint attention model. Thus we believe that this model can be
extended to let the robot continuously learn more and more
complicated skills.

For future work we would like to add eye gaze tracking
support to make the model more accurate and allow the
users to move freely. In order to do so foveal vision cameras
could be used. Afterwards we would like to expand our
developmental model to learn to recognize the caregiver’s
pointing gestures. We would like to use the newly learned
gaze estimation to classify pointing directions correctly and
thus allow for a fast learning.
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