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Abstract— The difference between self-organizing maps based
phoneme classifiers that emerge for different input languages is
studied. For each such language a self-organizing map is trained
on Mel-Frequency Cepstral Coefficient (MFCC) converted au-
ditory input to form a phoneme classifier. Unsupervised learning
is used as the training method. The emerging classes are then
compared to the classes found in the International Phonetic
Alphabet. Particular class differences across languages and
speakers are discussed. We show that SOMs adapt to speakers
and languages, even when only given a small training data-set.
Additionally, we show that some neurons in SOMs react only
to input in one of the two trained languages and that some
neurons can be used as word boundary classifiers.

I. I NTRODUCTION AND RELATED WORK

Kepuska et al. [1] have shown that a hexagonal lattice self-
organizing map (SOM) shows similar response patterns for
the same words and different response patterns for different
words. They used 9 repetitions of 20 different words to train
and test their SOM. Kumpf et al. [2] showed that using a
Hidden Markov Model (HMM) they were able to classify
accents within a group of Australian English speakers with
an accuracy of up to85.3%. Kangas [3] has shown that using
a time-dependant representation of Mel-Frequency Cepstral
Coefficients (MFCCs) can improve phoneme classification
from a 10.4% rate error to a5.0% rate error. However
none of these works have compared the resulting classes
to the classes found in the international phonetic alphabet
(IPA). This alphabet is a much studied and widely accepted
classification of phonemes that provides a representation for
phonemes of any spoken language [4]. A comparison of the
classes learned by a phoneme-recognition SOM to the IPA
might reveal strengths or weaknesses of training phoneme
classifiers using SOMs and possibly lead to improvement.
Further a positive correspondence would suggest that SOMs
are capable of capturing the functionality of the human
auditory system.

We investigate the differences between phone classes of
different languages. The languages are chosen to be different
enough so that a native speaker of one language usually has
a strong accent in the other language chosen. We first convert
the audio signal using Mel Frequency Cepstral Coefficients
(MFCCs) which approximate the human auditory system’s
response and are widely used in speech recognition systems
[5], [6]. A self-organizing map is then trained on feature
vectors for each of the languages tested. We use unsupervised
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learning. The classes found in the resulting feature maps are
then compared to the IPA by submitting example words for
specific phonemes to the trained SOMs or by looking at
neurons that respond only to utterances from a particular
language. In particular we look for classes that are present
in at least one of the trained SOMs but not present in the
other trained SOMs. In addition we trained an SOM on
two languages and examined the neurons in this SOM that
responded only to utterances from one of the two languages.
We then identified the phoneme class that these neurons
correspond to. Finally we investigate the use of Principal
Component Analysis (PCA) to find phoneme classes and to
compare phoneme classes from different languages.

The paper is organized as follows. Section II explains how
data was collected, preprocessed, and how the SOMs were
trained. Section III talks about differences between SOMs
that were trained on utterances from different speakers and
in different languages. Section IV focuses on differences
between languages. Section V examines the use of PCA to
detect language and speaker dependencies. Section VI sum-
marizes the results and Section VII contains brief critique.

II. M ETHODOLOGY

First we describe the setup for recording our wave samples.
Then we describe how the self-organizing maps were trained,
and we introduce a distance measure for the trained SOMs.

A. Recording

Wave files for the experiment were recorded at 8 bits mono
with a 22 kHz sampling rate. Subjects were presented with
text excerpts from newspaper articles, encyclopedia entries,
and stories. A simple computer microphone was used for
recording and it was placed in front of the subject at a
distance of about 50 cm. We recorded four speakers. The first
three speakers are native German speakers and were recorded
reading German and English texts. The fourth speaker is a
native Polish speaker and was recorded reading Polish as
well as English texts. The first speaker is male, the others
are female. The first speaker is the first author of this paper.
For each language / speaker, four wave files were recorded
for a total of 32 wave files. Each wave file had a 120 second
duration and is about two paragraphs of text long. In the
following, the labelsS1E and S1G denote the first speaker
in English and German respectively. The labelsS2E , S2G,
S3E , andS3G denote the second and third speaker in English
and German respectively. The fourth speaker is referred to
by the labelsS4E and S4P for English and Polish.S1E,1

stands for the first wave file recorded for the first speaker in



S1E S1G S2E S2G S3E S3G S4E S4P

S1E 11.8 15.0 62.1 61.5 61.3 51.5 48.9 48.3
S1G 15.0 10.3 52.9 52.2 54.0 44.4 47.9 42.7

S2E 62.1 52.9 12.3 16.7 26.1 28.6 32.1 24.2
S2G 61.5 52.2 16.7 11.7 24.0 22.7 30.3 22.5

S3E 61.3 54.0 26.1 24.0 12.7 20.2 30.3 27.9
S3G 51.5 44.4 28.6 22.7 20.2 13.2 30.3 27.2

S4E 48.9 47.9 32.1 30.3 30.3 30.3 10.9 19.1
S4P 48.3 42.7 24.2 22.5 27.9 27.2 19.1 12.2

TABLE I

AVERAGE DISTANCES FORSOMS THAT WERE TRAINED ON DATA FROM EIGHT GROUPS(FOUR

SPEAKERS, EACH IN TWO LANGUAGES). FOR EACH SPEAKER/LANGUAGE GROUP FOURSOMS

WERE TRAINED, ONE ON EACH WAVE FILE IN THAT GROUP. THIS RESULTED IN A TOTAL OF 32

SOMS AND 1024DISTANCES. DISTANCES WERE COMPUTED ACCORDING TOSECTION II-C.

EACH ENTRY IN THIS TABLE IS THE AVERAGE OF ALL 16 DISTANCES COMPUTED FOR THAT

PARTICULAR PAIRING. THE STANDARD DEVIATION FOR ALL REPORTED AVERAGES IS< 10%.

S1E S2E S2G

S1E 0.28 0.72 0.80
S2E 0.72 0.21 0.37
S2G 0.80 0.37 0.25

TABLE II

AVERAGE DISTANCES BETWEEN THE

FIRST PRINCIPAL COMPONENTS OF THE

INPUT DATA , SORTED BY GROUP

(LANGUAGE, SPEAKER). THE ABSOLUTE

VALUES ARE OF NO MEANING, HOWEVER

THERE IS A SIGNIFICANT DIFFERENCE

BETWEEN THE DISTANCE FOR SPEAKERS

AND THE DISTANCE FOR LANGUAGES.

THIS SUGGESTS THATPCA IS ABLE TO

CAPTURE SPEAKER DIFFERENCES.

English, etc. The index for wave files extends to the other
abbreviations appropriately.

B. Training the Self-Organizing Maps

Recorded wave files were first processed using the Matlab
MFCC library [7]. The library offers tools to convert the
entire wave file into 20-dimensional MFCCs. The signal was
converted using a Hamming window of size 32 msec and a
hop time of 16 msec. For example, a 32 second wave file
would result in 2000 MFCCs of size 20. This fine grained
resolution (62.5 Hz) was chosen to account for fast changing
phonemes like fricatives.

All the SOMs trained in this paper are of size10 × 10
neurons. Training data sets were chosen from the above
mentioned set of preprocessed wave files according to each
experiments specification. During training the entire selected
training data was repeatedly presented as an epoch to the
SOM being trained (a total of 20 times). We used compet-
itive learning with a Gaussian neighborhood function and a
learning coefficient that decreased after each epoch.

C. A Distance Measure

For each SOMN and i ∈ {1, ..., 100} let N(i) ∈ R20 be
the weight vector of theith neuron ofN . For j ∈ {1, ..., 20}
let N(i, j) be thejth entry of theith weight vector ofN .
An advantage of this notation is, that a10 × 10 SOM N
can be represented by a100 × 20 matrix in which each
row represents one neuron. Define the distance between two
neurons to be the square of the euclidian distance of their
weight vectors:

d′(N1(a), N2(b)) =
20∑

k=1

(N1(a, k)−N2(b, k))2

Further define the bijective functionm : 1, ..., 20 → 1, ..., 20
to be the optimal match between the neurons of two SOMs

using the metric just defined. This means thatm minimizes
the following function:

d(N1, N2) =
100∑

i=1

d′(N1(i), N2(m(i)))

Define this optimal match distance to be the distance
between two SOMs. We see that this distance measure
satisfies the three distance axioms:

1) d(N1, N2) ≥ 0 and d(N1, N2) = 0 iff N1 = N2.
(Obvious.)

2) d(N1, N2) = d(N2, N1). (Obvious.)
3) d(N1, N3) ≤ d(N1, N2) + d(N2, N3). If m12 is the

optimal match forN1, N2 and m23 is the optimal
match forN2, N3 then the optimal match forN1, N3

is at least as good asm23(m12).

III. SPEAKER AND LANGUAGE DEPENDENCIES

In this section we examine the differences (distances)
between SOMs that are trained on utterances from differ-
ent speakers and in different languages. We computed the
distances between SOMs trained separately for all 32 wave
files (S1E,i, S1G,i, S2E,i, S2G,i, S3E,i, S3G,i, S4E,i, and
S4P,i i ∈ 1, 2, 3, 4). The process was repeated 5 times to
obtain a good average. However it turned out that the SOMs
converge so strongly that the differences across two SOMs
trained for the same data-set are negligible and thus with a
Matlab precision of 4 digits the distances computed for all
5 runs were the same. The results can be seen in Table I.

Note that the absolute value of each distance does not pro-
vide useful information, because it depends on the number of
neurons used and the representation of the MFCCs. However
since the number of neurons and the MFCC representation
chosen are the same for all SOMs, comparing two distances
is a relevant approach to seek meaning. First we notice
that the distance for SOMs trained on the same speaker
and the same language are closer to each other then all the



other SOMs. This means that the metric used does capture
some difference between different speakers and languages.
Note next that the distance between speakers seems to be
larger than the distance between languages. This means that
our SOMs characterize speaker dependencies more readily
than language dependencies. However the SOMs are still
capable of capturing the difference between languages for
one speaker. Thus we decided to use only one speaker who
spoke multiple languages in the balance of the experiments.

IV. L ANGUAGE SPECIFICSOM AREAS

In this section we attempted to measure and visualize
differences between SOMs that were trained on utterances in
multiple languages collected from one speaker. In order to be
able to generalize we trained SOMs with data from all four
subjects. However a single SOM was always trained with
data from only one subject to avoid speaker dependencies.
Instead of using our previously defined distance measure,
we now use activation maps (specified in this section) to
visualize similarities for different language inputs. Because
we work only with single SOMs, the distance measure does
not enter into this part of the study.

A. Training the SOM

A separate SOM was trained for each speaker. Only the
first two out of four wave files from each language were
used to train the SOMs for this experiment. For example, for
speaker 1 we usedS1E,1, S1E,2, S1G,1 andS1G,2 to train the
SOM. Training is described in detail in Section II-B. Note
that the rest of this section is based on the one particular
SOM that resulted from such training (speaker 1). However
this training process was repeated multiple times for all four
speakers. While the resulting SOMs had a different spatial
distribution of the neurons, they showed the same properties.
These properties are presented in the following subsections.

B. Activation Maps

After training the SOM the remaining four wave files
S1E,3, S1E,4, S1G,3, andS1G,4 were processed into MFCCs.
The newly trained SOM was used to classify the input
vectors. For each input vector the Euclidean distance to
all neurons was computed. Each input vector was then
assigned the number of the neuron with the smallest Eu-
clidean distance to this input vector (That means this neuron
fired for that particular input vector). A count was kept
how often each neuron would respond to the input data
stream. A separate counter was kept for each of the four
data streams{English,German} × {training, test}. The
activation counts were then visualized in activation maps that
are shown in Figure 1. In these maps the height of the bars in
each neuron corresponds to the firing frequency for a given
data stream. These streams are (from left to right){S1E,1,
S1E,2}, {S1E,3, S1E,4}, {S1G,1, S1G,2}, and{S1G,3, S1G,4}.
English and German (Polish in case of speaker 4) are color
coded red and green respectively. A neuron’s shade intensity
corresponds to

brightness = ||log(fred/fgreen)||

wherefred andfgreen are the firing frequencies of the two
languages. The further apart the firing frequencies are, the
higher is this value and the brighter the neuron is colored.
That means that bright neurons responded predominantly to
one of the two languages. The two activation maps shown
have been trained and tested on utterances from speaker 1
(Figure 1(a)) and speaker 4 (Figure 1(b)). The activation
maps for speaker 2 and speaker 3 are not shown because
they show similar properties as Figures 1(a) and 1(b).

C. Observations

Note that the SOM develops the following four types of
neurons:

1) There are a few neurons that respond sparsely to
utterances from either language. For example, neuron
(10, 9) in Figure 1(a) and neuron(9, 10) in Figure
1(b) show very low firing frequencies (For neuron
numbering, see the caption of Figure 1). These neurons
are most likely a result of the neighborhood-rule, i.e.
two neighboring neurons that are far apart ’pull’ this
neuron into a space that is not used by the input.

2) Most neurons respond in similar ways to utterances
in both languages. This is to be expected. Examples
are neurons(10, 1) and (10, 2) in Figure 1(a). These
neurons have a dark background in the figures.

3) Some neurons respond almost exclusively to utterances
in German (or Polish in the case of speaker 4). One
such neuron is neuron(2, 10) in Figure 1(a). These
neurons have a light background in the figures.

4) Some neurons respond almost exclusively to utterances
in English. One such neuron is neuron(4, 6) in Figure
1(a). These neurons also have a light background in
the figures.

The occurrence of neurons that respond only to utterances
in one language is a sign that the SOM does develop
language-specific regions. The similarity in response patterns
to training-set and test-set data shows that these regions are
not entirely training-set dependant. As can be expected the
response frequencies are not identical, however the predom-
inance of certain similarities supports the hypothesis that
SOMs develop language specific neurons. In the example
illustrated in Figure 1(a) we can see that the upper right
corner is German-dominated and that the center of the
SOM is English-dominated. The left bottom corner responds
frequently for both languages. As we shall see later it
corresponds to silence (i.e., a pause) between words.

D. A Closer Look at Single Neurons

To illustrate the occurrence of each of the four neuronal
classes discussed above and to show that language dependant
neurons emerged during training, we have singled out the
parts of the wave files that activate certain neurons that are
predominant in one or in both languages, as the case may
be. We give the total response time of neurons to utterances
in different languages. The total response time for a neuron
is calculated by multiplying the number of input vectors to
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(a) Speaker 1: English (red) & German (green).
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(b) Speaker 4: English (red) & Polish (green).

Fig. 1. TheseSOM activation maps display the response frequency of each of10× 10 neurons to utterances in both languages spoken by each speaker.
For every neuron four bars represent the response frequency of that neuron to utterances from the following data sets (from left to right): [language 1,
training set], [language 1, test set], [language 2, training set], [language 1, test set]. The taller a bar, the more a neuron responded to utterances from the
associated data set. Languages are color coded (first language in green, second language in red). The background shade of each neuron corresponds to how
language specific a neuron is. Dark shaded neurons fire equally often in response to data from both languages. Light shaded neurons fire predominantly
in response to utterances in one of the two languages and fire only infrequently in response to utterance in the other language. For each SOM the neurons
are numbered lexicographically in row/column order.

which this neuron responded by the stepping size that was
used to calculate the input vectors (16 msec).

To see how well our SOM responded to single phonemes,
we used it to classify recordings of single vowels spoken by
speaker 1. A single and unique neuron responded to each
utterance. The corresponding neurons are shown in Figure
2(d). This shows that the SOM is very well capable of
distinguishing single phonemes.

Then we examined neuron number(10, 1) which was very
frequently activated for both data streams. We found that this
neuron responded to MFCCs that represented silence. For
the training set this neuron responded for a total of 7.6 sec
for German and 5.75 sec for English. For the test set the
total response time was 12.3 sec for German and 7.75 sec
for English. This suggests that when speaking German, our
speaker paused longer between words. However pauses might
also have been classified by neighboring neurons. Since
pauses occur frequently between words in both languages,
the neurons corresponding to pauses were predominant in
all activation maps. In Figure 1(b) for example, neuron(1, 1)
represented silence. To demonstrate this effect further Figure
2(a) shows neurons that responded to recorded silence.
Although in the case of this particular SOM there are 8
neurons that respond to silence, they are all clustered together
and still allow for an easy recognition of silence.

For further analysis we examined a neuron that exhibited
a strong response only for MFCCs created from English
utterances. Neuron(4, 6) is predominantly red and responded

a total of 0.05 sec for German and 3.15 sec for English in the
training set and 0.05 sec for German and 3.15 sec for English
in the test set. Here is a list of some of the words during
which neuron(4, 6) fired. Each word is accompanied by
a pronunciation transcription as presented by the Merriam-
Webster Online Dictionary [8].
• thirty [’th&r-tE ]
• traverse [tr&-’v&rs ]
• effort [’e-f&rt ]
• computer [k&m-’py\ u-t&r”]
• service [’s&r-v&s ]
• aircraft [’er-\ kraft”]
The neuron responded in particular to the [&r], which is

pronounced like the ur/er in further.
Neuron(7, 7) was also examined. It shows a much stronger

activation for the German utterances. It responded for a
total of 4.7 sec for German and 0.45 sec for English for
the training set and 4.65 sec for German and 1.0 sec for
English for the test set. This neuron corresponded to the
nasal [n] sound as in ’nice’ which occurs less frequently in
English then it does in German. Figure 2(c) shows neurons
that responded to recordings of only the [n] sound spoken
by speaker 1.

Similarly to neuron(7, 7), neuron(2, 10) responded more
frequently to German than to English. It represented the [sh]
sound as in ’shoe’. It responded for a total of 4.0 sec for
German and 2.05 sec for English for the training set and 4.5
sec for German and 2.9 sec for English for the test set.
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(a) Silence.
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(b) This & that.
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(d) A, E, I, O, U.

Fig. 2. Activation maps for a bilingual SOM trained on utterances from speaker 1 (English and German). The SOM used to create these activation maps
is also displayed in Figure 1(a).a-c: These activation maps show neuron response frequencies to several different utterances. The shade of the neuron
corresponds to the firing frequency with a darker shade corresponding to a higher firing frequency.d: Neurons that respond to the vowels [a, e, i, o, u] are
marked.

We also examined the [th] phoneme that does not occur
in the German language but frequently occurs in English in
words like ’this’ and ’that’. A small test file that contained
only the words ’this’ and ’that’ was recorded and the re-
sulting MFCCs were classified with our bilingual SOM. The
result is shown in figure 2. Multiple neurons responded to this
input and we identify neuron(5, 5) to be one of the neurons
that responded to [th]. Neuron(5, 5) responded for a total
of 0.8 sec for German and 2.35 seconds for English for the
training set and 1.45 sec for German and 3.6 sec for English
for the test set. Neuron(8, 5) also responded to [th] and
showed similar total response times as neuron(5, 5). While
both neurons responded far more frequently to English then
to German it is still surprising that these neurons responded
to German at all, since the [th] sound does not occur in the
German language. We see two possible reasons for this:

1) The most likely reason is that the speaker recorded
was a native German speaker whose pronunciation very
likely biased the result.

2) The resolution of the SOM might cause two sounds
to be classified by the same neurons. Thus the same
neurons might respond to similar sounds like [v].

V. PRINCIPAL COMPONENTANALYSIS

We also investigated the use of Principal Component
Analysis (PCA) to recognize speaker or language dependen-
cies. PCA is a good candidate because it both extracts the
most significant components and allows for a dimensionality
reduction of the data. We hoped that we could identify
components that would help identify the speaker or the
language.

We used the files (S1E,i, S2E,i, S2G,i, i ∈ 1, 2, 3, 4).
We applied PCA to each of the MFCC data streams and
saved the principal components (20 components for each file,
each component of size 20). For each principal component
and each pair of files we computed the Euclidian distance
giving a total of 12 × 12 = 144 distances. The distances
were then averaged over comparisons between files from the
same group (there are three groups:S1E , S2E , and S2G).
This resulted in 20 tables, one for each principal component.

Each table gives the average distances for this particular
principal component between languages and speakers. We
found that the first component represented the distances
between speakers well as can be seen in Table II. However
none of the components seemed to represent differences in
language.

In a second analysis we used PCA to reduce the input
space for our SOM training algorithm. For this the MFCC
transformed filesS1E,1, S1G,1, S2E,1, and S2G,1 were con-
catenated and PCA was applied to the resulting data stream.
This time the representation in principal components was
input to the SOM as input. The results were similar to those
in Section IV.

However we found the following problem in utilizing
PCA together with SOMs. PCA generates different principal
components for different input files as shown in Table II.
This results in the problem that if we transform two files
separately then their representation in their respective princi-
pal components are of no value to the SOM, because they are
independent of each other. We tried to represent additional
data in the principal component space of the training data
but only with marginal results.

VI. SUMMARY OF RESULTS

We demonstrated that training SOMs on MFCCs results in
SOMs that are both, speaker and language dependant. This
result was obtained by comparing the SOMs with a specified
metric. This suggests that SOMs can be used to differentiate
between languages and between speakers.

We further demonstrated that SOMs do capture differences
between languages that can be easily made discernable. In
particular we demonstrated that if an SOM is trained with
two languages then some neurons represent sounds that are
unique or predominant in one of the languages. An additional
result was that independently of the language used, the SOM
has certain neurons that correspond to silence (a pause) and
are activated more frequently than other neurons in the same
SOM.

We demonstrated that PCA might be able to extract
speaker differences but most likely is not suitable to ex-
tract language differences. Further we explained that it is



not possible to use PCA to preprocess the input to the
SOM training algorithm because PCA will generate different
principal components for two separate input samples. Thus
representing each sample in the principal component space
does not allow for a good comparison of two different
samples.

VII. D ISCUSSION

The results suggest that training an SOM on unlabeled
speech data can result in the formation of a phoneme classi-
fier in which groups of neurons or single neurons correspond
to different phonemes. Although these phonemes are not
labeled they seem to represent the phoneme space of spoken
languages well and correspond to phoneme classes found in
the International Phonetic Alphabet. These SOMs help to
further reduce the dimensionality of the input and could be
of use for further classification and speech recognition tasks.
The advantage over existing work is that our system uses
unsupervised learning and thus needs no feedback.

We have found that the SOMs capture speaker as well as
language differences and can adapt to speakers on a relatively
small data set. This suggests that an SOM might be used
for speaker identification or to adjust speech recognition
systems to particular speakers. An analog of this is the
preferential response of infants to their mother’s voice as
found by Mehler et al. [10]. In addition SOMs might show
useful in developmental systems that first learn to discern
phonemes from one speaker and then gradually develop
speaker independence.

The language differences captured suggest that an SOM
adapts to a certain language and its phonemes. This is also
similar to findings in infants who habituate themselves to
a particular set of phonemes and tend to attenuate non-
native phonemes during advanced language learning [9].
Further we have shown that if trained with two languages
at once an SOM can learn both phoneme sets and even
distinguish between sounds that occur only in one of the
languages. For future work we envision a system that learns
to differentiate between several different languages based on
the firing pattern of a trained SOM.

Another utilization of such an SOM could be speech
segmentation. We observed that the neurons representing
silence in the SOM fire more frequently then any other
neuron (see Figure 1). This suggests that if indeed silence is
the predominant feature vector, our system has developed a
set of neurons that represent word-boundary signals. So not
only does our SOM learn to classify phonemes but it could
provide a subsequent speech recognition system with word
boundary information.

We demonstrated that PCA is not well suited for pre-
processing the input for the SOM in the case of building
phoneme classifiers. We believe however that PCA might
serve to extract principal components from a large data
set for the identification of speakers. The reason that PCA
demonstrated no utility for preprocessing is that different
input files produced different principal components. This
happens especially if the input files are small and thus

provide only a small sample of training data. Further study
will show whether the principal components will tend to
stabilize for large bodies of data (multiple hours of recordings
for each speaker / language combination). If such fixed points
exist they might prove useful for preprocessing the speech
signal.

Future work should include a more detailed analysis of
the exhibited behaviors. The results obtained in this study
are based on a relatively small data-set. We believe that a
large scale study employing data from many subjects might
reveal additional features and allow testing of the interaction
between different languages and speakers. The reason that
we used only one speaker for each SOM in the second part
of the study is that currently there is no good method for
extracting speaker independent feature vectors from speech.
MFCC still captures the base frequency and possibly other
speaker dependent features and thus does not allow for
efficient comparison of languages across speakers. Current
work on speaker independent phoneme classification usually
trains classifiers on a large body of subjects [11]. While
these classifiers learn to generalize across different subjects,
they are still presented with speaker-dependent input such as
MFCCs. A similar approach might be used in combination
with the methods presented here. Naturally this would require
a large body of data.

We have shown that the unsupervised learning of SOMs
with as few as 100 neurons enables extraction of speaker
and language differences. We showed that some can extract
additional useful information such as word boundaries. Thus
SOMs are well suited for use in unsupervised learning
systems for word grounding (learning the meaning of words)
and language recognition. We have also shown that SOM
phoneme recognizers show learning and recognition behavior
similar to that of human infants.
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