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Abstract— The difference between self-organizing maps based learning. The classes found in the resulting feature maps are
phoneme classifiers that emerge for different input languages is then compared to the IPA by submitting example words for
studied. For each such language a self-organizing map is trained specific phonemes to the trained SOMs or by looking at

on Mel-Frequency Cepstral Coefficient (MFCC) converted au- that d v t f icul
ditory input to form a phoneme classifier. Unsupervised learning neurons that respond only to utterances from a particular

is used as the training method. The emerging classes are then language. In particular we look for classes that are present
compared to the classes found in the International Phonetic in at least one of the trained SOMs but not present in the
Alphabet. Particular class differences across languages and other trained SOMs. In addition we trained an SOM on
speakers are discussed. We show that SOMs adapt to speakersyq |anguages and examined the neurons in this SOM that
and languages, even when only given a small training data-set.
Additionally, we show that some neurons in SOMs react only respondeq °“'Y _to utterances from one of the two languages.
to input in one of the two trained languages and that some We then identified the phoneme class that these neurons
neurons can be used as word boundary classifiers. correspond to. Finally we investigate the use of Principal
Component Analysis (PCA) to find phoneme classes and to
compare phoneme classes from different languages.

Kepuska et al. [1] have shown that a hexagonal lattice self- The paper is organized as follows. Section Il explains how
organizing map (SOM) shows similar response patterns folata was collected, preprocessed, and how the SOMs were
the same words and different response patterns for differetnained. Section 1lI talks about differences between SOMs
words. They used 9 repetitions of 20 different words to traithat were trained on utterances from different speakers and
and test their SOM. Kumpf et al. [2] showed that using @n different languages. Section IV focuses on differences
Hidden Markov Model (HMM) they were able to classify between languages. Section V examines the use of PCA to
accents within a group of Australian English speakers witbetect language and speaker dependencies. Section VI sum-
an accuracy of up t85.3%. Kangas [3] has shown that usingmarizes the results and Section VII contains brief critique.
a time-dependant representation of Mel-Frequency Cepstral
Coefficients (MFCCs) can improve phoneme classification
from a 10.4% rate error to a5.0% rate error. However  First we describe the setup for recording our wave samples.
none of these works have compared the resulting classEsen we describe how the self-organizing maps were trained,
to the classes found in the international phonetic alphaband we introduce a distance measure for the trained SOMs.
(IPA). This alphabet is a much studied and widely accepted
classification of phonemes that provides a representation for
phonemes of any spoken language [4]. A comparison of the Wave files for the experiment were recorded at 8 bits mono
classes learned by a phoneme-recognition SOM to the IRAith a 22 kHz sampling rate. Subjects were presented with
might reveal strengths or weaknesses of training phonertext excerpts from newspaper articles, encyclopedia entries,
classifiers using SOMs and possibly lead to improvememand stories. A simple computer microphone was used for
Further a positive correspondence would suggest that SOvecording and it was placed in front of the subject at a
are capable of capturing the functionality of the humaudlistance of about 50 cm. We recorded four speakers. The first
auditory system. three speakers are native German speakers and were recorded

We investigate the differences between phone classesrefiding German and English texts. The fourth speaker is a
different languages. The languages are chosen to be differeative Polish speaker and was recorded reading Polish as
enough so that a native speaker of one language usually egll as English texts. The first speaker is male, the others
a strong accent in the other language chosen. We first convare female. The first speaker is the first author of this paper.
the audio signal using Mel Frequency Cepstral Coefficienfsor each language / speaker, four wave files were recorded
(MFCCs) which approximate the human auditory system’for a total of 32 wave files. Each wave file had a 120 second
response and are widely used in speech recognition syste¢hgation and is about two paragraphs of text long. In the
[5], [6]. A self-organizing map is then trained on featurefollowing, the labelsS; g and S;¢ denote the first speaker
vectors for each of the languages tested. We use unsupervigedEnglish and German respectively. The lab8ls:, Saq,

Ssg, andS3 denote the second and third speaker in English

_Marek W. Doniec, Brian Scassellgti, and WiIIar_d L._ Miranker aregnd German respectively. The fourth speaker is referred to
with the Department of Computer Science, Yale University, New Haverrh he label . .
CT 06511, USA (email: marek.doniec@yale.edu, scaz@cs.yale.edu, y the labelsSyp and Syp for English and PO“ShSlEJ

ranker@cs.yale.edu). stands for the first wave file recorded for the first speaker in

I. INTRODUCTION AND RELATED WORK

Il. METHODOLOGY
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TABLE | VALUES ARE OF NO MEANING, HOWEVER
AVERAGE DISTANCES FORSOMS THAT WERE TRAINED ON DATA FROM EIGHT GROUPYFOUR THERE IS A SIGNIFICANT DIFFERENCE
SPEAKERS EACH IN TWO LANGUAGES). FOR EACH SPEAKERLANGUAGE GROUP FOURSOMS BETWEEN THE DISTANCE FOR SPEAKERS
WERE TRAINED, ONE ON EACH WAVE FILE IN THAT GROUR THIS RESULTED IN A TOTAL OF 32 AND THE DISTANCE FOR LANGUAGES
SOMs AND 1024DISTANCES. DISTANCES WERE COMPUTED ACCORDING TGBECTION |I-C. THIS SUGGESTS THATPCA IS ABLE TO
EACH ENTRY IN THIS TABLE IS THE AVERAGE OF ALL 16 DISTANCES COMPUTED FOR THAT CAPTURE SPEAKER DIFFERENCES

PARTICULAR PAIRING. THE STANDARD DEVIATION FOR ALL REPORTED AVERAGES 1< 10%.

English, etc. The index for wave files extends to the otharsing the metric just defined. This means thatminimizes
abbreviations appropriately. the following function:

100

B. Training the Self-Organizing Maps
X ganizing Hap d(N1, N2) = 3 d' (N (i), Na(m(3)
i=1

Recorded wave files were first processed using the Matlab
MFCC library [7]. The library offers tools to convert the
entire wave file into 20-dimensional MFCCs. The signal wag
converted using a Hamming window of size 32 msec and
hop time of 16 msec. For example, a 32 second wave fi )
would result in 2000 MFCCs of size 20. This fine grained 1) d(V1,N2) = 0 and d(Ny,No) = 0 iff Ny = No.
resolution (62.5 Hz) was chosen to account for fast changing 2 EZ(()]?[V'C;\‘;S)') 4Ny, Ny). (Obvious)
phonemes like fricatives. L2v2) = 2,21 X i

All the SOMs trained in this paper are of si2@ x 10 3) d(N1,N3) < d(Ni,Na) + d(No, N3). If mys is the

neurons. Training data sets were chosen from the above optimal match forNy, Ny a”q mas3 IS the optimal
mentioned set of preprocessed wave files according to each match for Nz, N5 then the optimal match foN;, N
experiments specification. During training the entire selected ~ '° at least as good asa3(1mi2).

training data was repeatedly presented as an epoch to the ||| SpeaAKER AND LANGUAGE DEPENDENCIES
SOM being trained (a total of 20 times). We used compet-

itive learning with a Gaussian neighborhood function and a N this section we examine the differences (distances)
learning coefficient that decreased after each epoch. between SOMs that are trained on utterances from differ-

ent speakers and in different languages. We computed the
C. A Distance Measure distances between SOMs trained separately for all 32 wave
files (Sie.i, Sig,ir S2m,ir S2a,i S3e4, S3a,ir Sik,, and
Sap; @ € 1,2,3,4). The process was repeated 5 times to
obtain a good average. However it turned out that the SOMs
) R converge so strongly that the differences across two SOMs
An advantage of this notation is, thatlél x 10 SOM N ¢aineq for the same data-set are negligible and thus with a
can be represented by B0 x 20 matrix in which each \at1ah precision of 4 digits the distances computed for all
row represents one neuron. Define the distance between tWQ,,ns were the same. The results can be seen in Table I.
neurons to be the square of the euclidian distance of their i that the absolute value of each distance does not pro-
weight vectors: vide useful information, because it depends on the number of

neurons used and the representation of the MFCCs. However

Define this optimal match distance to be the distance
tween two SOMs. We see that this distance measure
F}tisfies the three distance axioms:

For each SOMN andi € {1,...,100} let N (i) € R?° be
the weight vector of thé'" neuron ofN. Forj € {1,...,20}
let N (i, ) be thej' entry of theit" weight vector of N.

) 20 ) since the number of neurons and the MFCC representation
d'(Ni(a), Na(b)) = Y (Ni(a, k) — Na(b, k) chosen are the same for all SOMs, comparing two distances
k=1 is a relevant approach to seek meaning. First we notice

Further define the bijective functiom : 1,...,20 — 1,...,20 that the distance for SOMs trained on the same speaker
to be the optimal match between the neurons of two SOMand the same language are closer to each other then all the



other SOMs. This means that the metric used does captwmere f,.q and fy..., are the firing frequencies of the two
some difference between different speakers and languagksiguages. The further apart the firing frequencies are, the
Note next that the distance between speakers seems tohigher is this value and the brighter the neuron is colored.
larger than the distance between languages. This means tiihat means that bright neurons responded predominantly to
our SOMs characterize speaker dependencies more readilye of the two languages. The two activation maps shown
than language dependencies. However the SOMs are skillve been trained and tested on utterances from speaker 1
capable of capturing the difference between languages f(ifigure 1(a)) and speaker 4 (Figure 1(b)). The activation
one speaker. Thus we decided to use only one speaker whaps for speaker 2 and speaker 3 are not shown because
spoke multiple languages in the balance of the experimentbey show similar properties as Figures 1(a) and 1(b).

IV. LANGUAGE SPECIFICSOM AREAS C. Observations

In this section we attempted to measure and visualize

. ; - Note that the SOM develops the following four types of
differences between SOMs that were trained on utterancesdgurons. P g yp

multiple languages collected from one speaker. In order to be
able to generalize we trained SOMs with data from all four 1) There are a few neurons that respond sparsely to
utterances from either language. For example, neuron

subjects. However a single SOM was always trained with o2 AL

data from only one subject to avoid speaker dependencies. (10;9) in Figure 1(a) and neuroi9, 10) in Figure

Instead of using our previously defined distance measure, 1(b) show very low firing frequencies (For neuron

we now use activation maps (specified in this section) to ~ "umbering, see the caption of Figure 1). These neurons
are most likely a result of the neighborhood-rule, i.e.

visualize similarities for different language inputs. Because : . o
we work only with single SOMs, the distance measure does WO Nneighboring neurons that are far apart "pull’ this
neuron into a space that is not used by the input.

not enter into this part of the study.
P y 2) Most neurons respond in similar ways to utterances

A. Training the SOM in both languages. This is to be expected. Examples
A separate SOM was trained for each speaker. Only the are neurong10,1) and (10,2) in Figure 1(a). These

first two out of four wave files from each language were neurons have a dark background in the figures.

used to train the SOMSs for this experiment. For example, for 3) Some neurons respond almost exclusively to utterances

speaker 1 we use$i g 1, S1k,2, Sig,1 andSig 2 to train the in German (or Polish in the case of speaker 4). One

SOM. Training is described in detail in Section II-B. Note such neuron is neurof®2,10) in Figure 1(a). These

that the rest of this section is based on the one particular neurons have a light background in the figures.

SOM that resulted from such training (speaker 1). However 4) Some neurons respond almost exclusively to utterances
this training process was repeated multiple times for all four in English. One such neuron is neurph 6) in Figure
speakers. While the resulting SOMs had a different spatial ~ 1(a). These neurons also have a light background in
distribution of the neurons, they showed the same properties.  the figures.

These properties are presented in the following subsections.The occurrence of neurons that respond only to utterances
B. Activation Maps in one language is a sign that the SOM does develop

language-specific regions. The similarity in response patterns
to training-set and test-set data shows that these regions are
not entirely training-set dependant. As can be expected the

The newly trained SOM was used fo classily the In'OuFesponse frequencies are not identical, however the predom-

VﬁCtorS' For each input tvgctoEr trrlle.Euctlldear; dlstanc;ah ‘Rance of certain similarities supports the hypothesis that
all neurons was computed. £ach Input vector was thefq),q develop language specific neurons. In the example

assigned the number of the neuron with the smallest Eliustrated in Figure 1(a) we can see that the upper right

qlldean distance to this Input vector (That means this NeUrmer is German-dominated and that the center of the
fired for that particular input vector). A count was ke

) Plsom is English-dominated. The left bottom corner responds
how often each neuron would respond to the input daﬁ?equently for both languages. As we shall see later it
stream. A separate counter was kept for each of the fo%rresponds to silence (i.e., a pause) between words

data streamg English, German} x {training,test}. The o '
activation counts were then visualized in activation maps thg§. A Closer Look at Single Neurons

are shown in Figure 1. In these maps the height of the bars in

each neuron corresponds to the firing frequency for a giver|1 To |IIu§_trate thz ogcurren((:iet of ﬁaCQhOft The four ngurona(\jl i
data stream. These streams are (from left to rigi$)z 1, classes discussed above and to show that fanguage dependan

Simats {Sima Sipat {S16.1, Sicz ), ANA{S1c.3, S1c:4)- neurons emerged during training, we have singled out the

English and German (Polish in case of speaker 4) are coIB?rts of the wave files that activate certain neurons that are

coded red and green respectively. A neuron’s shade intensﬁ domln'ant in one or in both I'anguages, as the case may
corresponds to . We give the total response time of neurons to utterances

in different languages. The total response time for a neuron
brightness = ||log( fred/ fgreen)|| is calculated by multiplying the number of input vectors to

After training the SOM the remaining four wave files
Sie,3, S1E.4, S1G,3, andSi¢ 4 were processed into MFCCs.
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(a) Speaker 1: English (red) & German (green). (b) Speaker 4: English (red) & Polish (green).
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Fig. 1. TheseSOM activation mapsdisplay the response frequency of eachl0fx 10 neurons to utterances in both languages spoken by each speaker.
For every neuron four bars represent the response frequency of that neuron to utterances from the following data sets (from left to right): [language
training set], [language 1, test set], [language 2, training set], [language 1, test set]. The taller a bar, the more a neuron responded to utterances from
associated data set. Languages are color coded (first language in green, second language in red). The background shade of each neuron corresponds t
language specific a neuron is. Dark shaded neurons fire equally often in response to data from both languages. Light shaded neurons fire predominai
in response to utterances in one of the two languages and fire only infrequently in response to utterance in the other language. For each SOM the neur
are numbered lexicographically in row/column order.

which this neuron responded by the stepping size that wadotal of 0.05 sec for German and 3.15 sec for English in the
used to calculate the input vectors (16 msec). training set and 0.05 sec for German and 3.15 sec for English
To see how well our SOM responded to single phonemei) the test set. Here is a list of some of the words during
we used it to classify recordings of single vowels spoken byhich neuron(4,6) fired. Each word is accompanied by
speaker 1. A single and unique neuron responded to eaghpronunciation transcription as presented by the Merriam-
utterance. The corresponding neurons are shown in Figu/éebster Online Dictionary [8].
2(d). This shows that the SOM is very well capable of « thirty ['th&r-tE ]
distinguishing single phonemes. o traverse fr&-'v&rs ]
Then we examined neuron numkéo, 1) which was very o effort [e-f&rt ]
frequently activated for both data streams. We found that this e computer k&m-"py\ u-t&r”]
neuron responded to MFCCs that represented silence. For service [S&r-v&s ]
the training set this neuron responded for a total of 7.6 sece aircraft [er-\ kraft’]
for German and 5.75 sec for English. For the test set the The neuron responded in particular to the [&r], which is
total response time was 12.3 sec for German and 7.75 s@@nounced like the ur/er in further.
for English. This suggests that when speaking German, ourNeuron(7, 7) was also examined. It shows a much stronger
speaker paused longer between words. However pauses migbtivation for the German utterances. It responded for a
also have been classified by neighboring neurons. Singstal of 4.7 sec for German and 0.45 sec for English for
pauses occur frequently between words in both languagele training set and 4.65 sec for German and 1.0 sec for
the neurons corresponding to pauses were predominantBaglish for the test set. This neuron corresponded to the
all activation maps. In Figure 1(b) for example, neutdénl) nasal [n] sound as in 'nice’ which occurs less frequently in
represented silence. To demonstrate this effect further FiguReaglish then it does in German. Figure 2(c) shows neurons
2(a) shows neurons that responded to recorded sileneRat responded to recordings of only the [n] sound spoken
Although in the case of this particular SOM there are &y speaker 1.
neurons that respond to silence, they are all clustered togetheSimilarly to neuron(7,7), neuron(2, 10) responded more
and still allow for an easy recognition of silence. frequently to German than to English. It represented the [sh]
For further analysis we examined a neuron that exhibitesbund as in 'shoe’. It responded for a total of 4.0 sec for
a strong response only for MFCCs created from EnglisBerman and 2.05 sec for English for the training set and 4.5
utterances. Neurofi, 6) is predominantly red and respondedsec for German and 2.9 sec for English for the test set.
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Fig. 2. Activation maps for a bilingual SOM trained on utterances from speaker 1 (English and German). The SOM used to create these activation mar
is also displayed in Figure 1(ag-c: These activation maps show neuron response frequencies to several different utterances. The shade of the neuro
corresponds to the firing frequency with a darker shade corresponding to a higher firing freguiéeyrons that respond to the vowels [a, e, i, o, u] are
marked.

We also examined the [th] phoneme that does not occitach table gives the average distances for this particular
in the German language but frequently occurs in English iprincipal component between languages and speakers. We
words like 'this’ and 'that’. A small test file that contained found that the first component represented the distances
only the words 'this’ and 'that’ was recorded and the rebetween speakers well as can be seen in Table Il. However
sulting MFCCs were classified with our bilingual SOM. Thenone of the components seemed to represent differences in
result is shown in figure 2. Multiple neurons responded to thisnguage.
input and we identify neurofb, 5) to be one of the neurons In a second analysis we used PCA to reduce the input
that responded to [th]. Neurof5,5) responded for a total space for our SOM training algorithm. For this the MFCC
of 0.8 sec for German and 2.35 seconds for English for theansformed filesS:z 1, S1¢,1, S2E,1, and Sa¢,1 were con-
training set and 1.45 sec for German and 3.6 sec for Englisiatenated and PCA was applied to the resulting data stream.
for the test set. Neuroii8,5) also responded to [th] and This time the representation in principal components was
showed similar total response times as neuf@r’). While input to the SOM as input. The results were similar to those
both neurons responded far more frequently to English them Section V.
to German it is still surprising that these neurons respondedHowever we found the following problem in utilizing
to German at all, since the [th] sound does not occur in tHeCA together with SOMs. PCA generates different principal
German language. We see two possible reasons for this: components for different input files as shown in Table II.

1) The most likely reason is that the speaker recordelfis results in the problem that if we transform two files
was a native German speaker whose pronunciation Ve?;parately then their representation in their respective princi-
likely biased the result. pal components are of no value to the SOM, because they are

2) The resolution of the SOM might cause two Sc,undgwdep_endent o_f e_ach other. We tried to represent_a_dditional
to be classified by the same neurons. Thus the sarfl@t@ in the principal component space of the training data
neurons might respond to similar sounds like [v]. ~ Put only with marginal results.

VI. SUMMARY OF RESULTS

We demonstrated that training SOMs on MFCCs results in

We also investigated the use of Principal Componer8OMs that are both, speaker and language dependant. This
Analysis (PCA) to recognize speaker or language depende®sult was obtained by comparing the SOMs with a specified
cies. PCA is a good candidate because it both extracts theetric. This suggests that SOMs can be used to differentiate
most significant components and allows for a dimensionalityetween languages and between speakers.
reduction of the data. We hoped that we could identify We further demonstrated that SOMs do capture differences
components that would help identify the speaker or thbetween languages that can be easily made discernable. In
language. particular we demonstrated that if an SOM is trained with

We used the filesSig,i, S2g,i Seci @ € 1,2,3,4). two languages then some neurons represent sounds that are
We applied PCA to each of the MFCC data streams anghique or predominant in one of the languages. An additional
saved the principal components (20 components for each filesult was that independently of the language used, the SOM
each component of size 20). For each principal componeh&s certain neurons that correspond to silence (a pause) and
and each pair of files we computed the Euclidian distancre activated more frequently than other neurons in the same
giving a total of 12 x 12 = 144 distances. The distancesSOM.
were then averaged over comparisons between files from theWe demonstrated that PCA might be able to extract
same group (there are three groupsz, S2p, and Sai).  speaker differences but most likely is not suitable to ex-
This resulted in 20 tables, one for each principal componerttact language differences. Further we explained that it is

V. PRINCIPAL COMPONENTANALYSIS



not possible to use PCA to preprocess the input to thgovide only a small sample of training data. Further study
SOM training algorithm because PCA will generate differenvill show whether the principal components will tend to
principal components for two separate input samples. Thgsabilize for large bodies of data (multiple hours of recordings
representing each sample in the principal component spaite each speaker / language combination). If such fixed points
does not allow for a good comparison of two differentexist they might prove useful for preprocessing the speech
samples. signal.
Future work should include a more detailed analysis of
VI DISCUS_S.ION the exhibited behaviors. The results obtained in this study
The results suggest that training an SOM on unlabelegie pased on a relatively small data-set. We believe that a
spegch d'ata can result in the forma}tlon of a phoneme clasgrge scale study employing data from many subjects might
fier in which groups of neurons or single neurons correspondyea| additional features and allow testing of the interaction
to different phonemes. Although these phonemes are ngiwveen different languages and speakers. The reason that
labeled they seem to represent the phoneme space of Spo{ﬂ_%"'used only one speaker for each SOM in the second part
languages well and correspond to phoneme classes foundyinihe study is that currently there is no good method for
the International Phonetic Alphabet. These SOMs help tgyiracting speaker independent feature vectors from speech.
further reduce the dimensionality of the input and could b§yrcc sill captures the base frequency and possibly other
of use for further classification and speech recognition ta5k§peaker dependent features and thus does not allow for
The advantage over existing work is that our system USgicient comparison of languages across speakers. Current
unsupervised learning and thus needs no feedback. work on speaker independent phoneme classification usually
We have found that the SOMs capture speaker as well gsins classifiers on a large body of subjects [11]. While
language differences and can adapt to speakers on a relativgf¥se classifiers learn to generalize across different subjects,
small data set. This suggests that an SOM might be Usgghy are still presented with speaker-dependent input such as
for speaker |der_1t|f|cat|on or to adjust speech rec_:og_nltlomFCCS_ A similar approach might be used in combination
systems to particular speakers. An analog of this is thgiih the methods presented here. Naturally this would require
preferential response of infants to their mother's voice ag large body of data.
found by Mehler et al. [10]. In addition SOMs might show \ye have shown that the unsupervised learning of SOMs
useful in developmental systems that first learn to disceffiin as few as 100 neurons enables extraction of speaker
phonemes from one speaker and then gradually develgpq janguage differences. We showed that some can extract
speaker independence. additional useful information such as word boundaries. Thus
The language differences captured suggest that an SQhys are well suited for use in unsupervised learning
adapts to a certain language and its phonemes. This is al§astems for word grounding (learning the meaning of words)
similar to findings in infants who habituate themselves tg g language recognition. We have also shown that SOM

a particular set of phonemes and tend to attenuate NQflisneme recognizers show learning and recognition behavior
native phonemes during adv.ance'd Iang.uage learning [Ymilar to that of human infants.
Further we have shown that if trained with two languages
at once an SOM can learn both phoneme sets and even REFERENCES
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