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Abstract— The authors present a method by which a robot
can learn the meanings of words from unlabeled correct
examples in context. The “word trees” method consists of
reconstructing the speaker’s decision process in choosinga
word. The facts about an object and its relation to other objects
that maximally reduce the uncertainty (entropy) of word choice
become the decision nodes of this tree. The conjunction of
the choices leading to a word becomes its logical definition.
Definitions thereby become only as complex as is necessary
to distinguish words in the vocabulary, making the method
appear to follow a heuristic that developmental psychologists
call the “Principle of Contrast.” Combined with a method
for inferring word type and reference, the method produces
semantics complete enough to produce or understand full
sentences. The method was implemented on a robot with visual,
auditory, and positional sensors, and succeeded in learning the
differences between “I,” “you,” “he,” “this,” “that,” “abo ve,”
“below,” and “near.”

I. I NTRODUCTION

How is it possible to learn the meanings of words without
negative examples? Young children usually are not corrected
when they misuse words, and when they are corrected, they
appear to ignore the evidence [1]. Moreover, children can
learn language almost entirely without explicit instruction
[2], suggesting that they must learn primarily from correct
examples of word use.

Learning from positive examples alone can be difficult
because an algorithm that conservatively sticks to its ex-
amples, or even distributions about those examples, will
never generalize in a human-like manner. For example, once
something is “hot,” there is no point beyond which increasing
the temperature makes it cease to be called “hot”; a young
learner does not need examples of infinitely hot items to
learn this. If this seems intuitive, recall that many learning
algorithms instead seek to impose normal distributions or
finite boundaries on concepts.

There are more conditions that we might want for a general
word learning system. It should be able to learn definitions
involving conjunctions: “this” is both something that is close
and is an object instead of a person. It should be able
to learn terms ofdeixis, such as “here” or “I,” which are

defined in part by the situation of the speaker. It should
handlepolysemy, or multiple meanings for the same word.
It should be usable both for comprehension and production
of sentences, not just isolated words. If two words exist
for a concept, it should choose the better one. It should
make maximal use of its existing knowledge of grammar and
vocabulary. It should handle misheard statements gracefully,
since noise and error is a problem faced by infants and robots
alike. And finally, it should be able to learn a wide variety
of classes of words: prepositions, nouns, pronouns, verbs.

Below, we shall describe a system that addresses all of
these issues. We propose that the learner’s goal should be
not to learn when words are “right” and “wrong,” but to
reconstruct the decisions that the speaker made in choosing
a word for a particular object. When the time comes for the
learner to choose a word for an object, the learner can follow
the reconstructed decision process to come to the correct
word. To understand a word, the learner can work backwards,
positing the decision outcomes that led to that choice of word.
For example, “he” might imply that the referent is not the
speaker, or else the speaker would have said “I,” and not the
addressee, or the speaker would have chosen “you.”

These principles can be combined with the principles of
formal semantics [3] to create a flexible system for learning
the meanings of words. Simply by observing the experi-
menters describe various situations using full sentences,the
system learned logical definitions for the words “I,” “you,”
“he,” “this,” “that,” “above,” and “below,” in such a way that
they could be used for either production or comprehension.

No previous word learning system has been able to handle
all of the requirements mentioned above. Word learning sys-
tems that incorporated some kind of grounded semantics have
typically restricted their inquiry to a particular part of speech
[4]–[6], restricted concepts to finite regions of the concept
space [4], [7], could not handle deixis or polysemy [4], [7],
had no way to deal with numerical data [8], [9], or could
not understand or produce complete sentences [4]–[9]. In
exchange, these systems have often provided good algorithms
for word segmentation [4], [7], [8] and/or visual classification



Fig. 1. The robot Nico, on which the word learning system was imple-
mented.

[4], [6], [7], two issues that will not be addressed here.

II. ROBOTIC IMPLEMENTATION

Our word learning system is built to be modular, and
function with any robot that can provide its environment
information in predicate form. Nevertheless, we will begin
by presenting the details of the sensory systems of our robot,
Nico (Figure 1). In doing so, we hope to make the abstract
algorithms that follow a bit more concrete.

A. Vision: Faces and gaze direction

The robot’s visual system was used for finding people and
determining the directions they faced. A wide-angle CCD
camera in Nico’s right eye grabbed320 × 240 images at
30 frames per second. These frames were passed to two
separate face detectors using the Viola and Jones object
finding algorithm [10]. One face detector was used to find
profile faces, the other, faces looking directly at the robot.
Output from these two face detectors was combined using
the forward algorithm [11] to give an estimate of whether a
person was more likely to be looking to the side or directly
at the robot at a given time.

For each face detected in the visual scene, a new symbol
perL or perR was added to the logical representation of
the environment, corresponding to whether the person was
detected on the left or ride side of the visual field. (We
assumed there would be at most one person on either side
of the robot to ease audio localization.) For each of these
symbols,person(X) was added to the environment. In
addition, lookingAt(X,Y) (short for “possibly looking
at”) was true for any pairX, Y such thatY was in the half-
space 30 cm away fromX , on the other side of the plane to
which X ’s looking direction was perpendicular.

The robot also always had its own symbol,
nico. The robot assumed person(nico) and
lookingAt(nico,Y) for any Y in its visual field.

B. Sensor networks: Object localization and distance

To find objects and distances between them, we used the
Cricket Indoor Location System [12]. Two objects, a tennis

Fig. 2. The pig toy used in the experiment, attached to the Cricket sensor
the robot used to find it.

ball and a plush toy that looked like a pig were equipped
with Cricket receivers (Figure 2), while the ceiling of our
laboratory was equipped with 9 Cricket beacons arranged
in a 3 × 3 grid, each roughly 1.5 m from its neighbors.
The beacons and receivers communicated via radio signals to
determine distances between each, and the robot performed
a least-squares calculation to determine the location of each
object in 3-dimensional space.

For each sensor-object, a symbolobj1 or obj2 was
added to the environment. The distance in centimeters be-
tween each entity in the environment was then calculated and
added to the environment with thedist(X,Y,V) predicate,
e.g.,dist(perL, obj1, 30.5). For the purpose of this
calculation, the faces described earlier were assumed to be
a fixed distance of 60 cm from the robot, since the vision
system did not have access to visual depth information.

In addition, the absolute height above the ground for each
object could be computed from the Cricket sensors. The dif-
ferenceheight(X) - height(Y) for each object pair
(X, Y ) was encoded as the predicaterelHeight(X,Y,V).

C. Audio: Speaker detection and speech segmentation

A dual-channel microphone was used to determine the
speaker of each utterance. The two microphone heads were
placed 30 cm apart and 50 cm in front of the robot. Within the
Sphinx-4 speech recognition system, whether the speaker was
to the left or right was determined by comparing the average
volume of the two channels over time. The symbol for the
corresponding person,perL or perR, was then bound to the
variableS (for speaker).

For the purpose of speech recognition, we gave Sphinx
a context-free grammar containing only the words in our
experiment. The grammar allowed all pronouns and nouns
to be interchangeable.

D. Other predicates and predefined words

To perform its inferences, the system needed some existing
vocabulary so that it could understand the context of new
words. Five definitions were given to the system. “Pig”



and “ball” were defined asλX.obj1(X) and λX.obj2(X),
and these properties were always true ofobj1 andobj2,
respectively. For symmetry, each other symbol was also given
a predicate of the same name that was true uniquely of
itself. “Is” was defined asλX.ident(X, X), the identity
property; every object held this relation with itself. The word
“got” was defined asλX.λY.got(X, Y ) wheregot(X, Y ) iff
dist(X, Y ) < 30 cm andX 6= Y . The article “the” was
defined as a function that looked for an instance of a noun in
the environment. Thus, at the beginning of the experiment,
the system could understand such sentences as “The pig got
the ball” as meaningdist(obj1, obj2) < 30 cm or
“The pig is the pig” asident(obj1, obj1).

III. W ORD TREES

A. Inferring type from sentence context

Once the robot has recognized an utterance and changed it
into text, it attempts to parse it in Prolog using a simple
discrete clause grammar, adapted from [13]. Our parser
additionally requires that the system can match all the nouns
and pronouns to objects in its environment, and that the verb
is one it has encountered previously.

If this parse fails, the robot then proceeds to search for
a mapping between a word and an object, or a word and
a relation, that will make the sentence parse correctly. We
refer to this process as finding theextensionof the word
[3]. Whether the system searches for an object or a relation
depends on the grammatical role the new word appears to
play in the sentence. For example, if the robot hears “The
pig foo the ball,” and it knows the words “pig” and “ball,”
then it can infer that the overall logical form of the sentence
is foo(X,Y) with “X” bound to the pig in this case and
“Y” bound to the ball. On the other hand, if it hears “The
pig is foo,” it assumes that the unknown word has the logical
form λX. foo(X) with “X” bound to the pig.

The search continues until the reference provided creates a
meaning that the robot can match with its sensory knowledge.
For example, if the robot hears “Foo got the ball” and only
one person has a ball, the extension of “foo” will be assumed
to be the person who has the ball. In this way, even if the
speaker is neither looking nor pointing at the referent, the
robot can use sentence context to determine the reference of
the unknown word.

For further implementation details, we refer the reader
to our forthcoming AAAI paper on the TWIG system for
inferring extension and type [14]. The important result for
the current paper is that the word tree algorithm receives the
new word, whether it is binary or unary, and the symbols for
the particular objects to which the word refers.

B. Interpreting word trees

New to this paper is the concept of aword tree for
determining meaning. Word trees can be interpreted as rep-
resenting the decisions a speaker faces in choosing a word.

Then, to understand a word, the system can trace a path from
a word back to the root to generate its meaning. Word trees
are a kind of decision tree [15], but to our knowledge, this
is the first time decision trees have been built for use in the
“reverse direction” to create logical formulas.

The reader may consult Figures 3 and 4 for examples of
word trees. At the leaves of the tree are the words, while
the interior nodes represent decisions about aspects of the
referent. Each decision consists of attempting to satisfy a
logical predicate with at most one real number, such as
dist(S,X, V), indicating the distance between objects
S and X is V , and a threshold on the predicate’s value,
such asV ≤ 30. (We will sometimes use the shorthand
dist(X,Y) <= V, or omit mention of the threshold en-
tirely if the attribute is boolean, assuming it to be≥ 1.) In
choosing a word to describe the relationship between objects
S andX , the system would decide whetherS andX satisfy
this predicate and threshold. If the predicate is satisfied,the
path on the left is followed; if they do not, the path on the
right. This process continues until a leaf is reached, at which
point the most common word at the leaf would be chosen.

The variables in a word tree have a special meaning, be-
cause they relate back to the semantics of the word. In formal
semantics, nouns and intransitive verbs are represented by
lambda functions of the formλX.word(X), while verbs
and prepositions tend to have the formλX.λY word(X, Y ).
These correspond to the notion that nouns are fundamen-
tally “unary,” referring to one thing, while transitive verbs
and prepositions are “binary,” referring to relations between
things. The variablesX andY in the word tree correspond
to these variables, which can be bound using partial parses of
the sentence. Thus, if the system hears “The dogfoo the cat,”
and only lacks a meaning forfoo, it will make its decisions
with X bound to its dog symbol andY bound to its cat
symbol. Trees for unary words and trees for binary words
must be kept separate, lest the tree refer toY when it is
undefined in the unary case. In addition to bindingX and
possiblyY , the variableS is always bound to the speaker.

To look up the meaning of a word, the system finds
a leaf that corresponds to the word, and then rebuilds
the meaning of the word by following the path back to
the root. The meaning of the word is the conjunction of
the predicates encountered on the way back to the root,
with the predicate negated if the branch used to reach the
node is a right (unsatisfied) branch. For example, in the
word tree shown in Figure 3c, the meaning of “this” is
λX.λS.¬person(X) & dist(S,X) <= 28.8cm, in-
dicating that “this” is something that is not a person, but
is no more than 28.8 cm away from the speaker.

It is thus straightforward to compile an arbitrary word
tree into a Prolog file of logical word definitions, which can
then be added to the robot’s existing vocabulary for parsing,
understanding, and producing utterances.



C. Learning word trees

Since we wish the robot to be able to learn by observing
other conversations, the algorithm for learning word treesis
unsupervised. The tree is built recursively by accumulating
evidence from the world at each leaf, then “splitting” a node
into an interior node and two leaves when there is sufficient
statistical evidence to do so. The methods used here to decide
when to split are from Quinlan’s ID3 system [15].

The tree begins as a single leaf node with no associated
meaning. On hearing a word in reference to an object, the
word, object, speaker, and the state of the environment are
stored at this leaf node together. The word is stored as
text, the object and speaker are represented by their symbols
in the predicate logic, and the state of the environment is
represented as a list of predicates generated by the robot atthe
time of the utterance. We shall refer below to this collection
of word, object, speaker, and environment as a single piece
of “evidence.”

On receiving a new piece of evidence, the node also gener-
ates “splitters” based on the evidence: a list of predicatesand
thresholds that could be used to split all the overall examples
seen so far into two groups. These predicates can only refer to
the variablesX , S, V (for the floating point value), and possi-
bly Y if the tree includes words with “binary” semantics. The
thresholds are chosen to be the same values as are present in
the evidence itself, with a splitter generated for both the “less
than or equal to” and “greater than or equal to” case for each
value seen in the evidence. For instance, with the bindings
X = i and Y = j, then dist(i, j, 30.0) would
result in the splittersdist(X, Y, V) & V >=30.0
anddist(Y, X, V) & V <= 30.0, among others. The
splitters implied by the new evidence are added to an existing
pool of splitters generated by previous pieces of evidence.

Next, the algorithm must decide which of these splitters (if
any) it will use to split the evidence. This is done by finding
the splitter which maximizes theinformation gainprovided
by the splitter. LetW be the set of all wordswi at the branch,
and letwi ∈ WS if it was used under circumstances when
splitter S was satisfied, andwi ∈ W¬S otherwise. Then

Gain(S) = H(W ) −
|WS |

|W |
H(WS) −

|W¬S |

|W |
H(W¬S) (1)

where

H(W ) =
∑

i:wi∈W

−
|wi|

|W |
log

|wi|

|W |
(2)

Readers may recognizeH(W ) as the entropy of W ,
characterizing the average amount of information in a single
word. Gain(S) is the expected reduction in entropy on
learning the truth or falsity ofS. The splitter with the most
information gain is thus the fact about the referent that
maximally reduces the “surprise” about the choice of word.

The split is only made final if it is also significant (p <

0.001) by the standards of Yates’ continuity-corrected chi-
square test [16] performed on a2×n table of splitter truth vs.
word choice. If the split is both informative and significant,
the evidence is then divided between the two new children
of the node; otherwise, the current node becomes a leaf,
with the word it represents determined by simple majority
among the evidence stored there. (Using maximal statistical
significance alone as a splitting criterion tends to produce
trees with a plethora of almost-synonymous definitions for
each word when the data set gets large. Distinctions can be
highly significant without being terribly informative.)

The tree can be updated online without reconstructing the
whole tree. When a new piece of evidence is added to an
existing tree, it updates the tables containing the information
gain and significance data for the existing splitters at the root,
and adds its own splitters to the pool. If this leaves the best
splitter unchanged, the root remains the same and the piece
of evidence recursively updates the branch of the tree that
it satisfies. Thus, the new evidence only needs to update the
nodes that it satisfies. However, if the new evidence results
in a new best splitter for an interior node, the whole subtree
of that node must be remade. Even in this worst case, the
running time remains polynomial: each update is linear in
the number of pieces of evidence, the number of predicates,
the size of the new vocabulary, and the number of thresholds
on each predicate. (This last parameter is currently linearin
the number of pieces of evidence, but thresholds could be
sampled to bound it by a constant.)

If there is a tie for information gain between a boolean
predicate and a rational-valued predicate, it is broken in favor
of the boolean predicate, on the assumption that these tend
to be more “informative” in a broader sense.

IV. EXPERIMENT: I, YOU, HE, THIS, THAT, ABOVE,
BELOW, AND NEAR

A. Setup

For 200 utterances, the experimenters moved the stuffed
pig and ball to different locations in the room, and then spoke
one of the following utterances ([noun] should be understood
to be “ball” or “pig”): This is a [noun]; That is a [noun]; I
got the [noun]; You got the [noun]; He got the [noun]; The
[noun] is above the [noun]; The [noun] is below the [noun];
The [noun] is near the [noun].

The locations for the items included next to the robot, on
the steps of a ladder, in the hands of one of the experimenters,
on various tables situated about the room, and underneath
those tables. The experimenters remained roughly 60 cm in
front of the robot and 50–70 cm away from each other, and
took care to face the appropriate individual (or robot) when
saying “you” or “he.”



(a) (b) (c)

ident(S, X)

this thatI

person(X)person(X) person(X)

dist(S,X) <= 28.8cm

you he

lookingAt(S,X)

dist(S,X) >= 27.3cm

thisthat

IthisI

Fig. 3. The word tree that the robot created for pronouns at the (a) 27th, (b) 40th, and (c) final update to the tree.S refers to the speaker, andX to the
word’s referent; left branches indicate that the logical predicate is satisfied. “ident” indicates the two terms are equal.

B. Results

Many utterances were incorrectly recognized by Sphinx: at
least 46%, based on our review of the system’s transcripts.
But because these false recognitions typically either included
too many unknown words (e.g., “He is near the pig”) or
resulted in tautologies (e.g., “That is that”), the system made
no inferences from them, and so the errors usually did not
affect tree development.

Figure 3 shows the state of the unary tree at the 27th,
40th, and final updates to the tree. Theperson(X) distinc-
tion remained the most informative attribute throughout the
experiment, as it served to classify the two pronoun types into
two broad categories. The proximal/distal distinction of “this”
versus “that” was the next to be discovered by the system.
The difference between “I,” “you,” and “he” remained unclear
to the system for much of the experiment, because they relied
on two unreliable systems: the sound localization system
and the facing classifier, which had exhibited error rates of
roughly 10% and 15%, respectively.

The final definitions learned by the tree can be rendered
into English as follows: “I” is the person that is the speaker.
“You” is a person whom the speaker is looking at. “He” is a
person who is not the speaker, and whom the speaker is not
looking at. “This” is a non-person closer than 30 cm, and
“that” is anything else.

The words “above,” “below,” and “near” were stored in a
separate tree, because the grammar determined that they were
binary relations instead of unary descriptions. Unfortunately,
phrases including these words were longer than the others,
and particularly vulnerable to speech recognition error; by
the end of the 200 utterances, Sphinx had recognized only
four sentences including “near,” and the word tree had yet
to split it from “below.” However, providing the system with
one more example of “near” produced the word tree shown
in Figure 4. “Above” and “below” were defined in terms

above relHeight(X,Y) >= −50.3cm

near below

relHeight(X,Y) >= 70.6cm

Fig. 4. The tree the system created to define prepositions.

of relative height, while “near” described an object neither
particularly higher nor lower than the other. Though “near”
could not be defined specifically in the absence of “far,” the
system had at least learned when “above” or “below” would
be more informative.

V. D ISCUSSION

Word trees solve several conundrums in the automated
learning of semantics. They avoid the problem of “negative
evidence,” because they make the target problem a matter
of choice among alternatives, some of which are simply
better than others. They allow the learning of concepts that
include conjunction (through consecutive positive branches),
disjunction (through words appearing at different leaves),
and negation (via the negative branches). The algorithm can
also learn multiple meanings for the same word, because
the same word can appear at different leaves with radically
different meanings. Finally, the algorithm does not remain
too conservative in its definitions from positive examples
because the tree partitions the space of objects completely,
and because items that exceed the threshold for a numerical
property continue to satisfy the relevant property. Our robot
has never seen an object a mile away, but it would still know
to call it “that,” not “this.”



The ability to learn logical conjunctions is especially
important, because it allows definitions that are more complex
than the predicates which the system begins with. When the
system is extended to learn concrete nouns, this capability
should allow the system to chain simple, low-level visual
properties into complex representations of shape.

Some of the definitions implied by Figure 3c may seem
too simple, but they must be understood in the context of
the robot’s conceptual and sensory capacities. “I” has more
connotations to a human than it does to Nico, but Nico’s
definition is sufficient to interpret nearby speakers’ sentences
or produce its own. The definitions of “this” and “that” are
not as general as one might like, since they cannot capture
reference to abstractions (“this idea”) or take into account
relativity of scale (“this great country”), but they do capture
some interesting subtleties, such as the fact that “this” should
not refer to the addressee even if he is close to the speaker.

The addition of the speaker variableS may have seemed
an ad hoc solution to the problem of deixis, but it should
prove useful even for words that aren’t deictic pronouns. For
example, it can allow the learner to take a speaker’s attitude
toward a referent into account: one can imagine a system
in which likes(S,X) distinguishes the words “good” and
“bad.” The case of interjections is also interesting, because
they have no extension at all; yet every language has words
that conveyangry(S).

The information-theoretic decisions used in word trees
may provide a parsimonious explanation for several different
heuristics observed among children. For example, young
word learners cease to overextend particular words when they
learn more apt ones, a heuristic known as the Principle of
Contrast [17]. Similarly, young children reject perfectlygood
descriptions of objects if there are more appropriate words,
a heuristic known as the Principle of Mutual Exclusivity
[18]. The act of reasoning backwards about why a particular
word was used is sometimes categorized as “theory of mind”
[19]. Word choice based on maximal informativeness obeys
Grice’s Maxim of Quantity [20].

Word tree development can be treated as a model of
human word learning, but only if one takes into account
grammatical, conceptual, and perceptual development. To be
used as a predictive model, word trees would need to be
presented with realistic word and property frequencies, with
certain properties becoming available to the system only at
certain developmental milestones. The order in which words,
concepts, and situations are encountered plays a large rolein
determining order of acquisition.

There are still many questions that remain to be explored
with this system. How would the system work with raw
audio, instead of text from a speech recognizer? What chal-
lenges await in learning concrete nouns from visual data?
And can the “one unknown word” restriction be removed, so
that the system can learn phrases before understanding their

parts? These are all exciting avenues for future work.
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