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Abstract- We present a method far allowing a humanoid 
robot to recognize its o m  motion in its visual field, thus 
enabling it to distinguish itself from other agents in the 
vicinity. Our approach consists of learning a characteristic 
time window between the initiation of motor movement 
and the perception of arm motions. The method has been 
implemented and evaluated on an infant humanoid platform. 
Our results demonstrate the ellectiveness of using the delayed 
temporal contingency in the action-perception loop BS a 
basis for simple self-other discrimination. We conclude by 
suggesting potential applications in social robtics and in 
generating forward models of motion. 

I. INTKOLXJCTION 
When deciding whether a primate is self-aware, evolu- 

tionary psychologists employ a controversial experiment 
called the mirror test [4]. When confronted with a mirror, 
a rhesus or stumptailed monkey will treat its reflection 
as another monkey, displaying signs of aggqssion. Chim- 
panzees, on the other hand, will quickly begin to use the 
mirror Io preen themselves and pick at their teeth. They 
realize that their mirror reflection is associated with their 
own physical self and begin to exhibit seif-directed behav- 
ior. While the chimpanzees leam quickly, the other species 
of monkey never become aware of this correspondence. 
Thus, the chimpanzees are considered self-aware, hut the 
other monkeys are not. The minor test not only plays a 
crucial role in the study of animal behavior [ 5 ] ,  it also 
reveals insight into the development of self-awareness in 
humans. When confronted with an image of its body that is 
temporally contingent with its movement, sucb as a mirror 
reflection, a human infant exhibits signs of self-exploratory 
behavior from 3 months of age onwards. As early as at 
four months of age, hahies display some measure of social 
self-awareness. showing more interest in experimenters 
imitating them than in their own reflections [71. 

Most would agree that it is premature to lahel a robot 
that can identify its reflection in a mirror self-aware. We 
would probably expect self-aware robotic agents to possess 
introspection and reflection abilities leading to a far more 
complex sense of self than that afforded by simple visual 
self-identification. However, even if passing the mirror test 
is not a sufficient condition for self-awareness, it is still 
useful for a humanoid robot to he able to identify itself 
under a wide variety of circumstances [3]. Identification 
of which objects in the visual field are 'self' can serve 
as a foundation for a more complicated kinematic model, 
with expected trajectories for the results of self-movement. 

Furthermore, self-recognition provides a framework for 
grounding language concepts such as 'I' and 'myself' in 
perceptual experience. In social robotics, distinguishing 
self from other can aid in identifying social cues [21 and 
in mapping another agent's actions onto the self, thereby 
establishing a joint meaning of observed agent behavior. 
It has been argued that a sensory-motor approach to self- 
recognition may constitute a promising step towards basic 
self-awareness in robotic systems [l]. At the same time, it 
can inform models of self-awareness in evolutionary and 
developmental psychology, perhaps reopening debate on 
the significance of the mirror test. 

Given these potential applications, there has been sur- 
prisingly little experimental work done on the subject of 
robotic self-recognition. In [I] ,  the authors went only so 
far as to suggest simulating a robot that could recognize 
itself in a mirror, explaining that actually implementing 
such a system would be too difficult. Moreover, they 
did not suggest a specific mechanism for how the robot 
might begin to recognize itself. While work is underway 
at the University of Minnesota on building a robot that can 
identify scene motion caused by its own camera pan and 
tilt [61, it is not clear how their method will generalize 
to motion that is not over the robot's entire visual field. 
Motion caused by camera tilt has a much more predictable 
effect on the visual input than the motion of an ann, as the 
motor encodings at each joint do not correlate well with 
any specific properties of the image. 

We have implemented a simple method for self- 
recognition on Nico, an infant-like humanoid robot cur- 
rently in development at Yale. Nico learns through experi- 
mentation to expect motion in its visual field within a cer- 
tain time window after initiating an arm motor movement. 
Once a representation of this characteristic time delay is 
present, motion regions in the visual field that appear 
within the leamed time frame are labeled as 'self', with 
that label persisting for regions of motion in subsequent 
frames that are sufficiently similar. Note that this method 
intentionally avoids using kinematic models. This allows 
the robot to recognize itself under a wide variety of 
transformations to its physical structure or appearance in 
the scene. It also allows the robot to recognize its own 
motion in a mirror. 
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Pig. 1. Line drawin. 01 the rohat’s currcnl mechanical design. 

11. METHODOLOGY 

A. The Robor Platform 

Our robot, Nico, is an upper-torso humanoid designed to 
resemble a one-year-old infant in both physical appearance 
and cognitive abilities. Still in development, it will serve 
as a robotic test-bed for theories of human social learning. 
Fig. 1 shows an outline of the current physical design. 

Nico’s artive vision head accomodates two miniature 
CCD cameras for each eye, providing both wide and 
nmow fields of view, thus approximating foveate stereo 
vision in humans. For the evaluation purposes of this paper, 
we used the wide field of view cameras, although our 
approach is independent of the particular camera or lens 
characeristics. Overall, the head-neck assembly (shown in 
Fig. 2) bas seven deogees of freedom (DOFs). Both eyes 
are equally affected by all head and neck movement, except 
for an additional degree of yaw that can be independently 
specified for each eye, implementing eye vergence. 

Nico’s six DOF arm is driven by miniature DC motors 
and can be maneuvered through the entirety of the robot’s 
field of view and beyond. For our experiments, all arm joint 
movement was constrained to a set of angles that forced 
the arm to remain in the field of view at all times. 

All vision processing and motor control is accomplished 
by a cluster of 16 processors running the QNX Neutrino 
RTOS connected by a lOOMbit switch. Communication 
and data transfer between nodes proceeds through a port- 

. based interface, essentially implementing concurrency-safe 
shared memory between processors. Four frame grabbers 
acquire 320x240 pixel frames at 30Hz from the cameras. 
Subsequent vision processing takes place at 15Hz. 

Fig. 2. 
syslcm and providing a total of 7 DOPs. 

T%~he rohol’s head-neck aswnhly, housing a four camax vision 

B. Vision & Anention Processing 

Scene data captured by the cameras passes several stages 
of visual and attentive processing before it can act as 
input to the motion delay learning module. Fig. 3 gives 
an overview. 

First, the intrinsic and extrinsic camera parameters are 
used to undistort the camera image to yield a straight view 
of the scene. The calibration process needs to be executed 
only once after the cameras are fixed to their mounts and 
involves moving and tilting a checkerboard pattern around 
in front of the robot. Afterwards, a look-up table is used 
to undistort the incoming video stream on-the-fly. 

A motion module performs image differencing on sub- 
sequent frames of the undistorted image stream to deter- 
mine areas of motion. Incoming images are stored in a 
ring of three buffers: one for the current image Io, one 
for the previous image I,, and one for receiving new 
input, The module calculates a thresholded absolute value 
of the difference between the grayscale values in each 
image (I,,, = 7(/10 - 111)). It thus computes a raw 
monochromatic motion saliency map, with brighter pixels 
corresponding to more perceived motion. 

The saliency map is passed to a module implementing a 
model of pre-attentive vision (PAV) in humans. It identilies 
regions of interest from saliency maps computed by a range 
of vision processors including color, face, skin and motion 
detectors. PAV computes an overall saliency map from the 
weighted sum of the individual maps, with weights being 
determined by the robot’s current attentive configuration. 
In our experiments, the motion module was the sole 
contributor to the final saliency map. PAV tags the pixels of 
each individual region of interest with a unique identifier 
and places them within a bounding box. This process is 
repeated for each frame. 

The final stage of processing consists of a memory mod- 
ule implementing simple object permanence. It associates 
bounded regions of motion across subsequent frames by 
comparing their shape and location. If two regions are 
sufficiently similar, they are considered as corresponding 
to the same moving object and given the same object 
identifier. 



Frame 
Grabber 

Pig. 3. Visual and slcnlive processing preceding the dday l cming stage. A sepmtc pcc%ing  Row is associaLed wiih cach eye. 

The ultimate output of vision and attention processing 
thus consists of a set of moving objects, defined by 
bounding boxes with associated information such as extents 
and centroid. Each possesses a numerical identifier that can 
be used to keep track of the object as the motion proceeds. 

C. Self-Recognitio~t 

Our implementation of self-recognition conceptually 
consists of two components. The core module incremen- 
tally learns the characteristic time delay inherent in the 
action-perception loop from a sequence of random arm 
motions within the visual field. A separate classification 
module uses the learned delay model to identify newly 
occurring moving objects that satisfy the delay window 
(thus conceptually belonging to the self) and highlights 
their salient pixels in the video stream. 

To learn the characteristic time delay, a set of random 
arm poses is first assembled, constrained in a way such 
that all of them lie in the robot's field of view. Motor 
commands for each joint are then generated that move the 
arm through the sequence of random poses. Just before 
each set of commands is sent to the motors, we take a 
timestamp using Q N X s  real-time clock, which provides 
close to nanosecond accuracy. As the arm moves, we wait 
for the first time that a moving object is detected by the 
processing stage described above, taking another timestamp 
as soon as this happens. The temporal difference between 
those timestamps, t l ,  is our current estimate of the time 
delay in the action-perception loop. Note that we only rely 
on generated poses for experimentation purposes. Motor 
commands may as well have been generated by any other 
program currently controlling the robot, The delay learning 
algorithm then simply bases its measurements on those 
movements. 

In a similar manner, we measure the delay between phys- 
ical completion of an arm movement and the time when no 
more moving objects are registered by the processing stage. 
During movement. the current position of every arm motor 
is compared to the desired target position for the current 
pose. Once the final arm position is reached, we take a 
timestamp and wait for the processing stream to assert 
that no more motion is present, taking another timestamp. 
The difference between the two timestamps, t z ,  provides 
another delay measure of the action-perception loop, A 
timeline for the measurement process is given in Fig. 4. 

Fig. 5. Ourpui lrom Ihc scll-malion clussikr. overlaid onto the visual 
input from one eye. All saliea pixels from a moving ohjea idenlified ar 
'sell' are hizhlighted (colored hrjght grceen). 

The sequence of delay measurements fort ,  and t2  allows 
us to iteratively refine the hounds on a characteristic time 
window within which we expect to visually perceive mo- 
tion after having started an arm movement. These bounds, 
[ t l - ," ,  t lmaz]  and [ t z  ,,,,. 8,t2, , .07],  are initialized to define 
an overly restrictive time window which is then gradually 
expanded to accomodate training data as it becomes avail- 
able. 

Our self-motion classifier takes as input the bounds t ~ - < "  
and tlw,ez on the characteristic delay output by the learning 
module together with the start time of the last movement. 
It labels moving objects that first occur within the time 
window as belonging to the self. The object permanence 
implemented by the memory module then allows us to keep 
labeling these objects over the lifetime of the movement, 
resulting in highlighted (bright green) regions being tracked 
through the video stream. These correspond to the parts of 
the visual field recognized as 'self'. Our current classifier 
principally makes use of the bounds on t i ,  disregarding 
t 2 - < .  and t?,,,, the bounds on the delay between the arm 
reaching its final position and the motion subsiding in the 
visual field. Preliminaq results show that incorporating the 
bounds on t2  can seme to reduce the rate of false positives. 
We expect to use those measurements in future work to 
provide a posteriori reassurance that a movement was 
correctly labeled. The result of a classification is shown 
in Fig. 5. 
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111. EVALUATION 

A. Learning Rate 

We first aimed to gain a quantitative understanding 
of the characteristic delay in the action-perception loop 
and bow it varies over time as training data is acquired. 
Training proceeded under ideal conditions, with the robot 
arm constituting the sole source of motion in the scene. 
In more general scenarios, the leaning module disregards 
delay measurements for which there is conflicting motion 
present in the scene at the time the motor commands are 
issued. To relax this condition, a simple outlier rejection 
mechanism can be used, allowing the learning module to 
handle a number of skewed measurements. 

Fig. 6(a) shows that measured time delays for t l  fluctuate 
about a mean of close to 500ms, a reasonable amount of 
time given the significant preprocessing taking place and 
the hardware involved. The fluctuations can he explained 
by the fact that cenain arm movements cause more promi- 
nent motion than others, whicb is detected more quickly. 
Changes in processing load on the system over time also 
account for some of the variability. 

Fig. 6(b) shows how the leamed hounds on the char- 
acteristic time delay evolve as training data is acquired. 
The lime window defined by the bounds gradually expands, 
changing only minimally after around 20 delay measure- 
ments. We found that after approximately 2 minutes of 
training, further changes in the leamed delay bounds were 
negligible, hardly improving recognition accuracy. 

E. Recognition Accuracy 

The best-case recognition accuracy for different amounts 
of available training data was established next by determin- 
ing the percentage of previously unseen arm movements 
correctly labeled as self-motion by the classifier module. 
During classification. the robot arm was again the sole 
source of motion in the visual field. 

For a training set of 5 examples, 16 out of 50 movements 
were correctly classified, an accuracy of 32%. Given 10 
training examples, 34 out of 50 movements, or 6870, were 
identified as self-motion correctly. Finally, for 25 training 
examples, the robot correctly labeled all 50 arm movements 
as self-motion. 

Under these ideal conditions, a leaning period of just 
over 2 minutes suffices to achieve very high recognition 
accuracy. 

C. Self-Other Discrimination 
To evaluate recognition accuracy in the presence of 

human-induced motion in the visual scene, one of the 
authors moved his hand withiin Nico's field of view as soon 
as the robot successfully labeled an arm movement as self- 
motion. Essentially, the hand acted as a distractor for the 
object permanence module, which might group the human 
motion together with the robot motion and classify both as 
'self'. Out of 75 random movements with the distractor, 
the hand's motion was mislabeled as self-motion 17 times, 
yielding 77.3% accuracy. Fig. 7 shows one trial, 

Recognition accuracy dropped significantly when the 
distractor began to move in anticipation of the robot's 
motion. Out of 60 examples, the distractor's motion was 
falsely labeled as 'self' 33 limes, yielding a false positive 
rate of 55%. Using the bounds on t~ as an additional 
check, we were able to reduce the false positive rate to 
20%. However, using both t l  and t2 also bad the adverse 
effect of reducing Nico's self-recognition rate to a mere 
66%. We are currently working on determining whether 
this tendency IO mislabel nearly simultaneous movement is 
caused by excessive variability in the robot's mechanical 
response times, or if it instead implies that additional 
kinematic information is necessary to avoid mislabeling 
a human that is interacting with the robot. The problem 
might also be alleviated with a self-label that is attributed 
with confidence over t i e ,  rather than basing the decision 
solely on immediate input from pre-attentive vision. 

D. Shape Independence / The Mirror Test 
To demonstrate the benefits of using motion time delay 

as the sole basis for a self-recognition algorithm, we drasti- 
cally changed the shape of the robot arm by covering it with 
a glove during recognition trials as shown in Fig. 8, having 
previously trained on an uncovered arm. Even though glove 
motion is actually less visually salient than motion caused 
by the arm alone, the recognition performance was not 
affected, as all 50 gloved movements were correctly labeled 
as self-motion. 

Finally, we attempted a rudimentary mirror-test on h'ico, 
placing the robot about 2 feet from a large mobile mirror. 
At this distance, the classifier treated motion caused by the 
robot's body and its reflection as equivalent, successfully 
labeling the mirror reflection as 'self' whenever the arm 
movement satisfied the leamed delay, as seen in Fig. 9. 
As the distance between robot and mirror is increased, 
accuracy gradually drops due to the decreasing area of 
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(a) Delay tl measured ovm a trial mn of IW arm movcments. 
p = 0.506599s. o = 0.0660767s. 

(h) Bounds an the delay over a Vial run of 30 arm movtments. 

Fig. 6. McaSur"nls illusrraling the Ieamcd chamcreristic lime delay. 

(a) I'irsl pcnon view oflhc tesl condition with thc 
dislnictor. Only the rohoi'r motion is labeled m 
'SdT'. 

(h) Motion madule output under Ihc same con& 
lions. Bolh the human hand and Ihe robot am are 
movin& hut only Ihc rabot's motion salirfics lhc 
lcamcd lime delay (rob1 arm hiehlighlcd green. 
hand remains while). 

Iig. 7. 
am movsmem. 

Simple self-olher diwriminulion. A human distractor anempis lo cause Ihe cla$sificr 10 falsely mak his motion &s rcsuldnp fmm Ihc robot's 

Fig. 8. Nico's glovcd hand concclly k i n g  lahcled as 'self'. fig. 9. Nieo recapnizcs rclr-molion in a minor. 

IV. CONCLUSION 

Our results suggest that using a learned time delay is a 
promising method for identifying extensions of the self in 
the visual field. It has the advantages of versatility and 

pixel disparity between subsequent frames that the motion 
module can detect. 
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conceptual simplicity, extending naturally to identifying 
reflections as well. 

As a model for the self-awareness displayed in human 
infants, the learned time delay model is of course incum- 
plete. Infants have been shown to also expect a direction for 
their self-motion, and they are surprised if their reflections 
are reversed [8]-[101. We intend to augment our approach 
with a mechanism for leaning exactly such an expecta- 
tion, using the detection of self-motion as a primitive in 
leaning a more complex forward model. Again, such a 
method would identify reflected self-motion as well, since 
a reflected am's overall motion vector roughly coincides 
with that of the physical arm. To the extent that such a 
forward model succeeded, the robot would likely be able 
to display the same qualitative performance in mirror tests 
as a 4-month-old infant. 

We expect that a robust method of visually recognizing 
the robot's own physical presence will play a signifi- 
cant role in providing the humanoid with a perceptually 
grounded meaning of linguistic concepts such as 'I,, 'my- 
self' or, inversely, 'you, the robot' and 'Nico'. These form 
a crucial part in describing manipulation tasks a human 
might want the robot to learn from interaction, which 
constitutes a future area of our research. 

One final application of learned time delays could be in 
identifying other social agents that are interacting with the 
robot. By associating a second characteristic time window 
with humans' reactions to his movements, for example dur- 
ing an imitation-based interaction, Nico could distinguish 
between individuals in the room who are actively engaging 
him socially and those who are not. Such information 
would be useful in directing anention in social Situations, 
and might serve as a primitive in leaning the social 
concepts of 'self' and 'other'. Furthermore, the ability to 
recognize socially responsive agents might allow the robot 
to attribute intents, beliefs and goals to the agent's actions, 
thus providing a first crucial step towards a robotic theory 
of mind. 
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