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Abstract. Stereoscopic vision is a capability that supports the ability of
robots to interact with visually complex environments. Epipolar geome-
try captures the projective relationship between the cameras in a stereo
vision system, assisting in the reconstruction of three-dimensional infor-
mation. However, a basic problem arises for robots with active vision
systems whose cameras move with respect to each other: the epipolar
geometry changes with this motion. Such problems are especially notice-
able in work with humanoid robots, whose cameras move in order to
emulate human gaze behavior. We develop an epipolar kinematic model
that solves this problem by building a kinematic model based on the
optical properties of a stereo vision system. We show how such a model
can be used in order to update the epipolar geometry for the head of a
humanoid robot.

1 Introduction

While stereo vision provides one of the richest feedback pathways for inferring
such structure from our physical environment, to utilize advanced stereo com-
puter vision techniques that are most relevant to biological perception [1] [2] re-
quires knowledge of the imaging system’s epipolar geometry. However the world
rarely stands still, and on platforms where the cameras can move independently
of one other the epipolar geometry will change with this motion. Here we develop
epipolar kinematic models, or kinematic models that track the motion of opti-
cal properties of the system. The result is that motor data is used to compute
an updated representation of the epipolar geometry. Particular emphasis in this
paper is placed on computing such models for humanoid robotic heads.

Camera calibration is the process of measuring the parameters necessary for
quantitative interaction with the 3D Euclidean world. The intrinsic parameters,
which include focal length, principal point, and a skew factor relating the x and y
axes, describe the camera itself. The extrinsic parameters, position and orienta-
tion, describe its pose in space. Additionally, lens distortion is often modeled. It
has been a heavily researched topic in the computer vision and photogrammetry
communities. [3] and [4] both provide excellent overviews of prior work and are
seminal papers on the topic.
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In a stereo vision system, epipolar geometry describes the projective rela-
tionship between two camera views, and can either be computed from their
calibration [5], or estimated for uncalibrated cameras via methods such as the
8-point algorithm [6]. In the case of calibrated cameras, the epipolar geometry
is described by the essential matrix. In the case of uncalibrated cameras, it is
referred to as the funamental matrix.

An active vision system is a vision system in which either the cameras are
able to move or they are attached to a device that is able to manipulate its
environment. Such systems include cameras mounted on robotic arms, often
referred to as hand cameras, and also in the heads of humanoid robots, such
as our upper-torso humanoid infant, Nico, which is discussed in more depth in
Section 5.1. The desire to calibrate the position of the cameras relative to the
underlying robotic platform has given rise to two tasks, hand-eye and head-eye
calibration, which either describe solving for how a camera is mounted with
respect to a movable platform, usually with known kinematics, or solving for
its position in space with respect to a manipulator, [7][8][9][10][11]. Kinematic
calibration is the process of estimating the kinematics of the underlying system,
[12][13].

Moving cameras present a unique challenge to robotics and vision researchers
who wish to exploit the epipolar geometry of multiple cameras to perform stereo
vision tasks. Such a scenario arises whenever a humanoid robot performs a sac-
cade, a tracking motion, or when the eyes verge upon an attended to object.
In this paper, we discuss the relationship between camera calibration, the esti-
mation of epipolar geometry, and the kinematics of active vision systems. Prior
work on this problem has focused on the use of 3D data to estimate ego-motion
visually [14], tracking points in a stereo pair [15], or developing kinematic models
by detaching the cameras from the head and viewing it using an external vision
system [12][13].

The central contribution of this paper is the notion of an epipolar kinematic
model, which is a kinematic model based on the motion of optical properties of
the projective relationship between the cameras in a stereo active vision system
as the cameras move through space. From this model we can compute current
epipolar geometry using only knowledge of the current angles of the motors. To
demonstrate, we will build such a model for our upper-torso humanoid. This
model will be suitable for use with many. We present results from a preliminary
implementation of the algorithm.

2 Background

2.1 The Pinhole Camera Model

Following standard notation, as found in [5], let X denote the homogeneous
representation of a point in 3-space, and x its image. When discussing a stereo
pair of cameras, determine one of the two cameras to be the first camera. All
properties of the second camera will be marked with a ′. For instance, let x
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represent the image of X in the first camera and x′ the image in the second
camera.

The camera projection matrix, Equation 1, represents the projection of a 3D
point, X , by a camera to a 2D point, x.

x = PX (1)

Modeling the camera under the standard pinhole camera model, the camera
calibration matrix, Equation 2 captures the camera’s intrinsic parameters, which
are properties of the camera itself. α and β, express focal length and are generally
equal, and γ, which is the skew factor between the x and y axes, is generally
0. u0 and v0 represent the principal point. Together, they define the camera
calibration matrix

A =

⎡
⎣

α γ u0

0 β v0

0 0 1

⎤
⎦ (2)

The extrinsic parameters, R, the rotation of the camera, and C, the camera
center are combined with the camera calibration matrix as in Equation 3 to yield
the camera projection matrix. These parameters can be retrieved via a number
of standard camera calibration methods[4][3].

P = A[R | − RC] (3)

2.2 Epipolar Geometry

Under the pinhole camera model, image points are represented as rays of light
intersecting the image plane on a line running through the camera center. Given
a pair of cameras, P and P ′, and a point x in camera P , we can constrain the
position of x′, the image of the same three-dimensional point X in P ′ to a line,
l′. The image of one camera’s camera center in the other camera is called an
epipole. This system is called epipolar geometry, because these epipolar lines
must all run through the epipole.

This relationship can be captured by the fundamental matrix, F , Equation 4.

x′T Fx = 0 (4)

Given calibrated cameras, we can express our points as normalized image
coordinates, coordinates corresponding to the same camera, but with A equal
to the identity matrix. We express our coordinate system with in terms of P ,
giving us P = [I|0] and P ′ = [R|−RC]. In this case, our essential matrix can be
expressed as in Equation 5. The relationship between E and F is Equation 6. The
fundamental and essential matrices can be computed using standard techniques
[6][5][16][17].

E = [−RC]×R (5)

F = A′−T EA−1 (6)
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Fig. 1. Setup of the extrinsic parameters in the epipolar geometry problem. We define
our coordinate system with the first camera at the origin. The second camera is rotated
by RT .

3 Epipolar Kinematics

In the case of stereo vision systems in which the cameras remain stationary with
respect to each other, it is enough to estimate the epipolar geometry once, via
the familiar process of matching control points in each image to each other and
computing the projective relationship between them for 8 or more points [5]. For
vision systems such as Nico’s, however, this estimate will become inaccurate the
first time that the robot moves its eyes.

Approaches have been demonstrated that cope with this via purely visual
means, such as optical flow [15][14]. While a number of stereo tasks can still be
performed via algorithms that do not require knowledge of epipolar geometry,
such approaches ignore kinematic information available to the system that can
be used to maintain the estimate in “real time.” Most significantly, there is
evidence that primate visual processing is structured precisely to take advantage
of this [18].

From the formulation in Section 2.1, we can update the essential matrix with
respect to camera motion provided that we know the way that the cameras move
with respect to each other. Note that here we specifically mean the motion of the
camera center and orientation of our pinhole cameras, optical properties that can
be retrieved via standard computer vision techniques. One of the central insights
of this work is that we can estimate our kinematic models based on these optical
properties. This allows us to build our models using only image data processed by
our stereo vision system with its joints turned in several orientations, rather than
requiring for us to preprogram the system’s kinematics or externally calibrate
the kinematics of our visual system [12][13].

4 Epipolar Kinematics for Humanoid

We define this model as a kinematic model over two revolute joints. This is re-
flective of those degrees of freedom relevant to the epipolar geometry of the head
of our our humanoid robot, Nico, as well as those of many other humanoid robots.
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Backlash is not modeled, and should be considered on top of this model if it is
a significant concern. Finally, assume that the camera faces directly away from
the axis of rotation of the joint on which it is mounted. We can easily eliminate
this assumption, but retain it because it reduces the number of measurements
that must be made, resulting in a faster calibration process, and also because
it accurately describes the vision systems on most humanoid robots. We feel
that the community of researchers working with humanoid robots is the most
likely group to incorporate this method into their work. In Section 7, we will
briefly discuss how to eliminate this assumption as well as how to model more
complicated kinematic systems.

Our epipolar kinematic calibration algorithm is agnostic to the methods used
for camera calibration and estimation of epipolar geometry. As such, we present
this as a framework into which preferred methods for these two processes can
be plugged in. By turning the linkage on which the camera is mounted and
observing the relationship of this view to the view before turning the camera we
can deduce the kinematics of the system. If that system has the constraint that
the camera faces directly away from the center of rotation, as it does on Nico,
then we are able to uncover the kinematics of that linkage by observing as few
as two views.

4.1 Calibration Algorithm

Initial measurement. Proceed by choosing two angles for each of the eye
motors to be calibrated. Denote the first camera in the first orientation, Cam1,1,
in the second orientation, Cam1,2, the second camera in the first orientation

Fig. 2. Camera orientations and variables used in this process
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Cam2,1, and so forth for all parameters of the system, as in Figure 2. Let E1,1;1,2

be the essential matrix between the Cam1,1 and Cam1,2, E2,1;1,2 between Cam1,1

and Cam2,1 and so forth. As is standard, in the below discussion we will treat
the first orientation in each essential matrix having its rotation matrix equal to
the identity matrix and its camera center at the origin.

Calibrate the cameras and solve for E1,1;1,2, E2,1;2,2, and E1,1;2,1.1 Use any
preferred method for both processes.2

Kinematic rotation axis and angle. Let R1,1;1,2 be the rotation matrix found
by decomposing E1,1;1,2. If V1,1;1,2 is the corresponding rotation vector, found
by Rodrigues’ Rotation Formula [19], then Θ1,1;1,2 is the magnitude of V1,1;1,2,
Equation 7.

Θ = ||V || (7)

Dividing by Θ yields a unit axis of rotation, S, Equation 8.

S =
V

Θ
=

V

||V || (8)

Kinematic link length. The camera centers for a camera before and after
motion, such as C1,1 and C1,2, and the center of rotation of the epipolar kinematic
linkage form an isosceles triangle. Therefore, the length of the linkage is given
by Equation 9.

L1 =

||C1,2||
2

sin(
Θ1,1;1,2

2
)

(9)

Finding the center of rotation. Per our assumption that the camera faces
directly away from the axis of rotation, compute the center of rotation via Equa-
tion 10, where D1 is the center of rotation for for the first camera. D2 is computed
analogously.

D1 = C1,1 − [0 0 L1] (10)

Algorithm. Our entire calibration algorithm is summarized in Algorithm 1.
This algorithm need be performed only once, at startup. The update rule to
estimate the updated essential matrix is presented in Section 4.2.

1 The purpose of the essential matrices is to ground the coordinate system with respect
to the first camera orientation in each. If the calibration method places all of the
extrinsic parameters in the same coordinate system, this step can be ignored, and
the epipolar kinematic calibration process modified accordingly.

2 The reader who is familiar with these processes will note that this might yield mul-
tiple values for A for the same physical camera, hopefully remarkably close to one
another. In our implementation, we calibrate the cameras once using OpenCV.
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Algorithm 1. Estimation of system parameters
1. Calibrate the two cameras in the stereo active vision system, Cam1 and Cam2

2. Choose 4 camera orientations, two for each camera, Cam1,1, Cam1,2, Cam2,1,
Cam2,2

3. Estimate the essential matrix in each orientation
4. Factor E1,1;1,2, E2,1;2,2, E1,1;2,1 per Equation 5
5. Compute V1,1;1,2 and V2,1;2,2 from R1,1;1,2, R2,1;2,2 via Rodrigues’ Rotation Formula
6. Compute Θ1,1;1,2 and Θ2,1;2,2, per Equation 7
7. Compute S1 and S2 per Equation 8
8. Compute L1 and L2 per Equation 9
9. Compute D1, D2 per Equation 10

4.2 Updating the Essential Matrix

At runtime, we update our essential matrix to reflect the new position and
orientation of the cameras each time they move with respect to each other. This
means updating every time the motors move, changing this relationship.

Let Θ1,Enc be the difference between the Θ indicated by the encoder at Cam1,1

and the current encoder reading for that camera’s associated motor. Let Θ2,Enc

be the analogous value for the second camera. All variables subscripted Enc will
be with respect to the current encoder reading. Compute updated V1,Enc, V2,Enc

by Equation 11.
V1,Enc = Θ1,Enc ∗ S1 (11)

Update R1,Enc and R2,Enc via Rodrigues’ Rotation Formula. We’ll denote
variables reflective of the current position and rotation of the second camera with
respect to the current position and rotation of the first camera by subscripting
them CurSys. Let RCurSys is given by Equation 12.

RCurSys = RT
1,Enc ∗ R2,Enc ∗ R1,1;2,1 (12)

Find the updated camera centers, C1,Enc and C2,Enc via Equation 13.

C1,Enc = RT
1,Enc[0 0 L1] − D1 (13)

Find the updated camera center in the second view with respect to the first
view, CCurSys, Equation 14. Remember that C1,Enc and C2,Enc do not share the
same world coordinate system.

CCurSys = C2,1 − C1,Enc + C2,Enc (14)

Compute the updated essential matrix, Equation 15.

ECurSys = A′−T
2 [−RCurSys ∗ CCurSys]×RCurSysA

−1
1 (15)

Our entire update algorithm is summarized in Algorithm 2. Since this algo-
rithm involves only constant-time matrix computations, it can be used to update
the epipolar geometry in real-time.
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Algorithm 2. Essential matrix update
1. Compute V1,Enc, V2,Enc per Equation 11. Compute updated R1,Enc, R2,Enc from

V1,Enc, V2,Enc via Rodrigues’ Rotation Formula
2. Compute RCurSys via Equation 12
3. Compute C1,Enc, C2,Enc via Equation 13
4. Compute CCurSys via Equation 14
5. Compute ECurSys via Equation 15

5 Tests

5.1 Platform

Nico, Figure 3, is an upper-torso humanoid robot that has been modeled after
the the kinematic structure of a fiftieth percentile 12-month-old male infant.
It has 23 mechanical degrees of freedom, including seven in each arm and two
in its recently-added hand. Its head has six degrees of freedom and employs a
foveated vision system consisting of four NTSC color cameras mounted in two
anthropomorphic eyes. The eyes have mechanically coupled pitch and indepen-
dent yaw degrees of freedom. Nico’s compute platform includes a 20-node cluster
running the QNX real-time operating system. Nodes are connected via 100 Mbit
Ethernet to each other and to a number of Linux and Windows machines whose
configurations change from experiment to experiment. This architecture allows

Fig. 3. Nico, an upper-torso humanoid infant
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us to easily integrate software packages on multiple platforms into Nico’s control
system, as well as to remotely operate Nico via the Internet.

5.2 Test Setup

In order to test our system we took 3 sets of images of chessboards. Imaging pro-
ceeded as follows. The cameras were first to −10 degrees, then to 0 degrees, 5
degrees, and 10 degrees. A chessboard was placed in front of the robot and it was
visually confirmed that the robot could locate all of the interior corners of the
chessboard in both cameras in the last 3 of these orientations. The first orienta-
tion was then returned to in order to assure that any backlash was worked out of
the system. It is expected that this, combined with the fact that the system uses
zero-backlash motors worked out most of the backlash. Several images were taken
in each position for each orientation of the chessboard in order to generate a set
of images for both camera calibration and the estimation of epipolar geometry.

Using these images, the cameras were calibrated using OpenCV [20], and the
essential matrices between the 0 and 10 degree views for each motor, and the 0
degree views for both motors were computed using a third-party tool, Gandalf.3

Tests were performed on the images shot at 5 degrees. For comparison, we
computed the essential matrix both using the epipolar kinematics algorithms
and directly from the images.

6 Results

The results included in this section should be regarded as preliminary, as the
accuracy in our essential matrix estimates does not match the sub-pixel reso-
lution expected from state of the art algorithms. Updated results will be made
available in a future publication.

Upon testing, we found that the software package we used to estimate the
essential matrix, Gandalf, exhibits a degree of numerical instability that is quite
common in software that is used to estimate epipolar geometry [21]. In order to
work around this instability, we built a software package that processed all possi-
ble subsets of image pairs for each essential matrix to Gandalf. As an error metric,
we adopted the mean distance in pixels between an epipolar line and its corre-
sponding point. We computed the epipolar lines in the right image corresponding
to chessboard corners in the left image and measured the distance to the corre-
sponding image point. We chose each essential matrix as the one corresponding
to the lowest mean distance for each matrix required to compute the epipolar
kinematic model, as well as for the essential matrix computed directly from the
test images. See Table 2 for the mean distance corresponding to each matrix.

The redundancy of the Θ yielded by both checking the encoder readings and
the computation of the essential matrix gives us the opportunity to check our
robot’s physical readings against those estimated by the vision algorithm. Results
of this comparison are listed in Table 1. As we can see, there is significant
3 http://gandalf-library.sourceforge.net/
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(a) Left camera image. (b) Right camera image, with epipolar
lines estimated directly from the images.

(c) Right camera image, with epipolar
lines estimated using the essential ma-
trix update algorithm.

Fig. 4. Number of intersections from epipolar line to corresponding point plotted
against line thickness in pixels. There are 49 test points.

disagreement between the vision algorithm and the motors. Potential sources of
this error include backlash in the motors and gears, and error in the estimates
of the essential matrix or camera calibration.
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Table 1. Θ’s estimated by essential matrix computation

Θa Θb Θc

Estimated from E 0.17412 0.0479997 0.0109251

Turned to - 10 10

Table 2. Mean distance from a given epipolar line to its corresponding point

Essential Matrix Mean distance from point to epipolar line

Input to the epipolar kinematic model

E1,1;1,2 1.11736

E2,1;2,2 0.638143

E1,1;2,1 2.38185

Results

Directly Computed From Images 18.7897

Epipolar Kinematic Model 11.0749

The epipolar lines yielded by these computations appear in Figures 4(a), 4(b),
and 4(c). As we can see, the positioning of the epipole in the two images is not
the same. As a test of the relative quality of the two algorithms, we took the
mean distance from the epipolar line computed from the chessboard corners
in the first image to the corresponding point in the second image using both
an essential matrix estimated directly from imaged points and one estimated
using an epipolar kinematic model. Results can be seen in Table 2. Another
rough estimate of the quality of the essential matrix is the number of epipolar
lines that intersect with their corresponding image points. We compare the two
matrices in Figure 4.

7 Conclusion

The primary insight offered in this paper is that we can build epipolar kinematic
systems, kinematic systems built directly off of the optical properties of a stereo
vision system, in order to track these properties as the system moves. This
allows us to keep a consistent view of the epipolar geometry of the system as it
undergoes motion.

To demonstrate this technique, we showed how to compute the epipolar kine-
matics of the degrees of freedom of the active vision head on our humanoid
robot, Nico, for those degrees of freedom effecting the system’s epipolar geome-
try. The algorithms in this paper are suitable for the active vision heads of many
humanoid robots. In this exploration we can clearly see that the estimation of
epipolar kinematics is built on top of the existing suite of techniques available
to the tasks of camera calibration and estimation of epipolar geometry.

Though a version of this algorithm that uses two orientations per camera
is presented in this paper, it is possible to update this algorithm to use three
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orientations per camera in order to lift the assumption that the cameras face
straight forward from center of rotation. In this case, we are able to estimate
the circle defining the rotation from the three camera centers, found during
the estimation of epipolar geometry, per camera, leaving us only to solve for
the rotation of the camera with respect to the endpoint of the linkage. Such
an algorithm is equivalent to solving head/hand-eye calibration and kinematic
calibration simultaneously. Building on this process, we can estimate the epipolar
kinematics of systems where more than one linkage can control the orientation
of the camera. The same mathematics can equivalently be used to solve for the
kinematics of a manipulator, or other kinematic linkage visible in the visual field,
and its relationship to the coordinate system of the visual system. This is all
deferred to future work in which the robot learns about its self in terms of its
kinematics and its sensors.
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