
 
 

 

  

Abstract—Computational models of development aim to 
describe the mechanisms that underlie the acquisition of new 
skills or the emergence of new capabilities.  The strength of a 
model is judged by both its ability to explain the phenomena in 
question as well as its ability to generate new hypotheses, 
generalize to new situations, and provide a unifying conceptual 
framework.  Although often constructed using traditional 
engineering methodologies, evaluating the performance of a 
computational model of development in terms of traditional 
perspectives, however, is a flawed approach.  This paper 
addresses the fundamental issues that confound quantitative 
analysis of computational models of developmental systems.  In 
particular we focus on the following recommendations: 1) don’t 
equate the success of a developmental model with its peak 
performance at some task; 2) don’t employ purely subjective or 
qualitative measures of model fitness; and 3) don’t hide or 
reject variation as found in the computational model.  Along the 
way, we discuss the aspects of computational models of 
development that lead to the requirements for specialized 
methods of analysis. 
 

I. INTRODUCTION 

At first glance, it seems that those who employ 
computational models to describe developmental phenomena 
belong in the same camp as those who want to build better 
computational systems using inspiration from developmental 
biology.  In both cases, the goal is the creation of a 
computational framework, simulation, or mathematical 
formulation.  In both groups, researchers are intimately 
concerned with the fundamental mechanisms driving 
developmental processes.  However, the aims of these two 
groups could not be more dissimilar: one group uses 
biological themes to develop better engineering; the other 
uses computational techniques to formulate better 
descriptions of biological development.  This paper focuses 
on those who seek to illuminate biological development 
through the use of computational modeling, and discusses 
the issues that arise when these systems are evaluated in 
traditional engineering terms. 

Computational models are employed in all areas where 
human developmental progression can be tracked.  For 
instance, computational models of development are used to 
model observed patterns of word pronunciation [1], the 
development of auto-associative memory [2], the advent of 
numerical perception [3], [4], the incorporation of objects 
 

F. Shic is with the Computer Science Department, Yale University, New 
haven, CT 06511, USA (phone: 203-432-1227; fax: 203-432-0593; e-mail: 
frederick.shic@yale.edu). 

B. Scassellati is with the Computer Science Department, Yale 
University, New haven, CT 06511, USA (e-mail: scaz@cs.yale.edu). 

into categories [5], and the progression of motor skills 
necessary for coordinated reaching and pointing [6].  As 
varied are the domains in which these computational models 
are embedded, the applications to which these models are 
wedded, and the techniques they employ, are even more 
diverse.  Applications include modeling the learning of sets 
of skills [7], investigations into the mechanisms underlying 
the development of cognitive capabilities [8], and 
comparisons of populations involving atypical 
developmental progression [9], [10].  These models employ 
subsystems and components that range from the most 
elementary, as is found in studies that examine the 
interaction of simulated neurons in human memory [11], to 
the exceedingly complex, as is found in models of social 
behavior and reasoning [12]. 
 Despite their apparent heterogeneity, however, 
computational models of developmental systems share 
several commonalities.  First and foremost, developmental 
models generate multiple results that must be matched in a 
temporal progression.  That is, these models do not operate 
along a simple binary axis of “correct” or “not correct”, but 
rather progress from milestone to milestone. 
 Also, like most models, the utility of a computational 
model of development is connected with its ability to 
accurately represent the phenomena in question.  In contrast 
to models found in most pattern-recognition applications, 
peak performance of developmental models is not of prime 
importance.  This is not to say performance is unimportant, 
as a model that is intended to represent the development of 
some learned skill should ultimately produce measurable 
improvements in performance.  However, it is the 
relationship of learning, the progression of developmental 
trends, and the interactions of the components of the model 
that are of primary interest. 
 Given that pure performance is not the measure by which 
a computational developmental model should be evaluated, 
the question arises: what should the measure be?  This paper 
seeks to address this question by providing guidelines as to 
how developmental mechanisms may be compared and 
quantified.  In order to properly phrase our goals, in Section 
II, we first discuss the difficulties that arise when we try to 
take a conventional engineering metric of performance, such 
as a task-based performance measure, and attempt to apply it 
to the analysis of a developmental model.  We continue, in 
Section III, with a discussion on how computational models 
of development require rigorous methods for analysis as 
compared to subjective or qualitative measures of success.  
In Section IV, we show how the variance of computational 
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models of development, in terms of its emergent behavior, is 
actually an advantage, and not a problematic deficit that 
needs to be hidden or rejected.  We then conclude with a 
summary of the main points of this paper, together with a 
discussion on the utility, purpose, and ultimate role of 
computational models of development in practical 
application as well as in theoretical investigation.  As we 
proceed, we will give simple toy examples that are 
illustrative of our major points. 

II. THE PROBLEM WITH PEAK TASK PERFORMANCE 
In many pattern recognition and machine learning 
applications we are interested in training a computational 
model to best perform some specific task.  For instance, a 
face recognition system used in biometric authentication can 
be evaluated solely on its ability to accurately recognize 
specific faces.  However, the developmental time course of 
face recognition, as recorded by psychological and 
psychophysical experiments in neonates, infants, children, 
and adults, is much more complex than the mere fact that 
recognition can occur at some maximal accuracy.  Evaluating 
a computational model of a developmental system in terms 
of peak task performance misses all the complexities of the 
underlying developmental process. 
 This brings us to our first problem with employing peak 
task performance as the single measure of how well a 
developmental model performs: it neglects the time-varying 
aspects of development.  For instance, for a developmental 
model of syllable phoneme segmentation, we are not 
interested in how many phonemes a computational model 
can discriminate after being trained with an extensive corpus 
of examples, but whether the number of phonemes 
recognizable as a function of training time resembles, say, a 
logistic growth function, thereby having the capacity to 
mimic the developmental function as found in human 
children [13].  

A second problem is that choosing a specific task as 
representative of a developmental process neglects other 
related milestones and events that may be of even greater 
interest.  In the human developmental time course of face 
recognition, for example, the increasing accuracy of 
recognition as a function of exposure to faces is only one 
aspect of the phenomenon.  A computational developmental 
model of face recognition should explain not only how 
accuracy improves with age, but also should remark upon 
how face processing skills progress from a general sensitivity 
to face-like configurations found shortly after birth [14]- 
[15], to a preference for the mother’s face at 1 month of age 
[16], to the ability to discriminate between familiar and 
unfamiliar individuals by 3 months [17], and so on, up 
towards adult levels of face recognition performance.  
Choosing one particular measure of performance binds us to 
one particular interpretation of success; this, in turn, blinds 
us to deficits of omission. 

A third problem is that the assumption of a specific task 

neglects the complexity of the real-world environment.  This 
leads to at least three specific problems: 1) a defined task 
measure fails to represent domains where the task is 
generated internally, or is implicitly defined; 2) it also 
provides no motivation for learning and no grounding for the 
developmental system 3) it drastically underestimates the 
difficulty of the domain.  By framing the problem within 
traditional machine learning paradigms, we assume that the 
problem is self-contained, or contained within a small, 
compact, controllable domain.  Nothing could be farther 
from the truth: human development occurs far from a 
vacuum and a positive trend in the analysis of models of 
development is the use of computational agents that are 
explicitly embedded in a complex environment [18].  If we 
limit ourselves to measures of performance that are tightly 
coupled to a particular representation of the problem, we 
limit the generalizability of our results and the power of our 
implications.  If we instead link the task to some 
representation of the world, we ground the developmental 
process in question to some concrete foundation.  This, in 
turn, allows for a direct investigation of the interplay that 
occurs between an individual and his environment.  In 
addition, functional considerations, such as performance 
degradation in the presence of noise, under varying 
environmental conditions, and under increasing demands  
are, in traditional applications, typically secondary to the 
question: how well does it work? However, in developmental 
models, such consideration are vital, as they describe how 
the emergence of new skills can arise in a robust fashion—a 
requirement for computational models of development that 
are biologically-relevant, as opposed to those that are simply 
biologically-inspired.   

A. Example – Face Recognition 
As a simple toy example highlighting the aforementioned 

problems we train a small face recognition system to show 
how developmental milestones within a computational trend 
may be isolated.  We are interested in this system because 
the developmental progression of infant face recognition is 
particular well studied.  Our network learns to recognize 
faces specifically (i.e. identifying the individuals as a 
particular individual), faces generally (i.e. as belonging to 
the general class of faces, but not corresponding to a known 
individual (e.g. a stranger)), and non-faces (drawn from 
various locations in a scene containing no people).   

We take from the UMIST face database [19] a selection of 
6 cropped faces in black-and-white, with each face presented 
from 19 different viewpoints.  These face images are filtered 
with a Laplacian-of-��������� ���	
�� � 
� � ���
���� � �����
�� 	� ��

square dimensions, and downsampled by nearest neighbor 
interpolation to a 10x10 grid of intensities.  Similarly, we 
take one scene from the Caltech Office Database [20] and 
extract 100 random square regions within this scene (side 
length randomly drawn from a range 16 pixels to 160 pixels).  
These regions are converted to black and white, and then 



 
 

 

filtered and downsampled in the same manner as the faces 
are. 

Three individuals are selected as faces to be recognized 
specifically, three faces are selected to comprise the general 
face class, and the non-face class is populated by random 
sampling from the office scene. 
 A simple two-layer neural network (one input layer, one 
hidden layer, and one output layer) is created which takes the 
downsampled image pixels as input, in a manner similar to 
[21].  The input layer is fully connected to a hidden layer 
consisting of 3 hidden tansig nodes.  This hidden layer is 
connected to the output layer which consists of 4 logsig 
nodes, one for each of three face targets, and one for the 
general class of faces.   

The network is trained by adaptive gradient descent and 
the resultant learning curve, as a function of mean squared 
error of target outputs, is shown in Fig. 1.  Fig. 1. also 
highlights some developmental milestones in the course of 
network learning.  These milestones are judged to have 
occurred when network performance on the corresponding 
test dataset has a sensitivity and specificity of over 70%, and 
does drop below this bar for the remainder of the learning.  
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Fig. 1.  Training curve of a neural network learning to simultaneously 
recognize the class of faces (faces vs non faces) as well as 3 specific 
individual faces (face1, face2, and face3).  The network is a 3-hidden node 
two-layer feedforward backpropogation (by adaptive gradient descent) 
neural network.  The x-axis is the number of training rounds, whereas the y-
axis is the mean-squared error of the recognition tasks.  Milestones, as 
evidenced by behavior on a separate testing dataset, occur at various points 
on the recognition learning curve.  Whereas a traditional engineering task 
would only be interested in the end point of development (diamond, marked 
“end of training”), a developmental model is interested in the entire curve, 
including milestones along the developmental path.   
 
 If we were to view this task as a pure engineering 
problem, i.e. a recognition problem with a clearly defined 
accuracy metric, we would in essence be following the route 
of large scale studies such as [22], [23].  We would only be 
interested in the end point of development.  With a 
developmental model we are interested not only in the shape 
of the learning process, but also with milestones that 

corresponding to activity on the learning curve.  A purely 
engineering approach misses the underlying complexity of 
the developmental process. 

III. CHOOSING THE RIGHT QUANTITATIVE MEASURE 
In order to be able to compare a computational model with 
the developmental reality, we need to find some appropriate 
metric for measuring the distance between the predicted 
phenomena and the biological progression.   In many cases, 
this entails characterizing behavior.  This is often difficult 
because behavior is itself often an emergent property of the 
underlying physical or neurophysiological scaffolding: it 
does not lie on the measurable axes of the system, it lies on 
top.  Because of this, specific measures that pinpoint the 
phenomena in question must be developed, tested, and 
deployed.  This process of finding the best set of 
measurements and metrics is be plagued with many potential 
pitfalls.  These pitfalls include an over-attachment to trivial 
computational effects and the over-reliance upon subjective 
or qualitative measures. 

When building a computational model of development, it 
is often far too easy to develop a simple representation of 
some particular phenomenon, grab the quickest and nearest 
pattern recognition system, train the system, and present the 
resultant learning curves as evidence for a developmental 
trend.  The fundamental problem caused by building 
developmental models this way is that it transforms the rich, 
complex tapestry of human development into a dull, one-
dimensional string that is almost trivial. 

The most basic aspect of all machine learning systems is 
that they learn, adapt, and specialize.  If we are interested in 
how humans learn to discriminate between images of oranges 
from images of apples, and we frame this problem as an 
error-minimization task, we should not be surprised that our 
ability to identify oranges increases as we apply non-linear 
gradient descent.  Similarly, if we frame object recognition 
as a constrained clustering problem operating over silhouette 
histogram statistics, we should not be surprised that objects 
that cast the same shadow also gravitate towards the same 
clusters.  A temporal progression leading to greater 
efficiency is the most basic aspect of developmental 
processes; its presence in a computational model of 
development is the lowest bar that must be reached for 
suitable discourse to begin.  In other words, computational 
learning as a mechanism leading to a temporal progression 
mimicking development is only interesting in its own right 
when the observed effects are non-trivial. 

A related trap that often turns a computational model of a 
developmental system into a trivial experiment is caused by 
under-constraining the parameters of the developmental 
model.  For example, the complexity of even the simplest 
models of cognitive processes can be staggering: a basic 
model of visual attention (e.g. [24]) uses hundreds of 
potential parameters.  In these cases, it is easy to step back 
and explain any resultant discrepancies between a 
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computational model and physiological reality by a hand-
waving argument involving the adjustment of any number of 
possible parameters.  Unfortunately, the same argument that 
makes a model theoretically match a particular observed 
effect is also the same argument that makes a model 
theoretically match any observed effect, or nothing at all.  It 
is far more productive to start a model with reasonable 
parameters, adjust these parameters sparingly, and discuss 
how the parameters interact.   

In addition, it is possible to over-constrain a simple 
computational model by linking together modules that are 
tightly coupled in the interface between effect and 
prerequisite.  Such systems are in effect large scale cause-
and-effect chains, which only serve to highlight the 
inevitable conclusion unless the mechanisms underlying the 
predicate expansions are transparent and become the true 
subject of investigation.   

Sweeping generalizations and qualitative statements are, 
of course, not limited to computational models of 
development: they can infect any computational model used 
for behavioral analysis or reproduction of biological action.  
The prominence of purely qualitative results is partly due to 
the fact that our brains are well-prepared to 
anthropomorphize even simple geometric shapes [25] by 
extension, our minds will readily ascribe a label of 
“biologically related” to a large class of complex stimuli.  In 
other words, we are ready to see what we expect to see.  
However, the mere impression of some biological relevancy 
does us little good.  For a computational model to be useful, 
it must be able to generate predictions or further some 
particular hypothesis.  For a developmental computational 
model to find relevancy, there must exist some quantifiable 
means of comparing the behavior of the model to the 
behavioral reality.   

It is a natural reaction to believe that a computational 
model matches biological reality when some measurable 
surface characteristic of the computational model behaves in 
some biologically plausible fashion.  The difficulty, 
however, is that many such comparisons can be highly 
superficial.  For instance, consider the development of fine 
motor skills necessary to accomplish some task.  A 
computational hypothesis on the development of these skills 
could be that a child is basically an adult with sub-adult 
accuracy.  One approach to building a computational model 
of increasingly accurate motor control would be 
reinforcement learning.  Suppose we are able to train such a 
model, obtain a desired motor behavior, and subsequently 
are interested in presenting our reinforcement strategy as a 
good model of motor development.  First, we show that the 
final task performance is good; however this, as mentioned 
in the previous section, is expected.  Next, we show that 
performance increases over time; but this too is also only a 
minimum requirement and not in itself sufficient to warrant 
adjudicating a developmental model successful.   We are 
left, then, with comparing our computational motion 

trajectories with the motion trajectories of human subjects.  
However, a simple measure based on the distances between 
joints or end-effectors ends up with a definition of proximity 
that is too strict: it overestimates the “distance” between two 
trajectories when the Euclidean distance at some point in 
time is large, but the distance in terms of intent, mechanism, 
or encapsulated behavior, is small. 

A measure of the applicability of some developmental or 
biological model to reality should factor in the key 
components and factors that affect the process in question.  
This is necessary because otherwise any trends that do match 
physical evidence will match only phenomenologically.  If 
we are only interested in the surface characteristics, we don’t 
actually need a computational model at all.  It is more useful 
to incorporate, in some manner, the major forces that are 
known to be biologically or psychologically significant, and 
to thereby be able to investigate the relationship of these 
forces in framing the actual development or behavior, than it 
is have a model that accurately characterizes a trend over a 
time-frame, but has no basis in deeper mechanism. 

A. Example – Comparing Eye Fixations 
As an example, consider the comparison of eye movements 
in Fig. 2.  The left image of Fig. 2 is the actual eye trajectory 
of a human subject while viewing a dynamic scene.  If we 
take this eye trajectory and use it to build a probability map 
by placing a Gaussian at every fixation point, we can take the 
resultant probability function and use it to generate a 
sequence of predicted eye movements (shown in the right 
image of Fig. 2).  The total Euclidean distance between the 
human gaze trajectory and that predicted by a computational 
model is arbitrary large, since the computational model’s 
position is simply drawn randomly from the underlying 
probability distribution.  In addition, the computational 
model is terrible at representing many other characteristics of 
the human eye trajectory, and notably lacks fixations and 
saccades.   

 

  
Fig. 2.  Human gaze data (left) and a trajectory drawn probabilistically from 
an approximation to the underlying density (right).  Note that whereas 
saccades and fixations are identifiable in the left image, these properties do 
not exist in the right image. 
 

The major weakness of the above model is not that the 
distance between computed fixation points and real fixation 
points is large, nor is the problem that the computational 
model so blatantly does not produce coherent time-varying 
action.  The major weakness is that it ignores the fact that the 
fixations of an individual will depend highly on the scene 
itself.  Employing Euclidean distance as a sole measure of 



 
 

 

the similarity of two gaze trajectories completely misses this 
point.  Similarly, the use of a probability density function is 
also inappropriate, as it implicitly incorporates Euclidean 
distance as the basis for its comparison.  Fig. 3 illustrates this 
point further.  In very simple cases where there is only one 
single salient region, distance makes sense as a measure of 
how close a fixation is with another fixation (Fig. 3, left).   
However, in a more realistic case, employing Euclidean 
distance as the basis of fixation similarity would fail 
completely (Fig. 3, right).  That is, if the implicit goal of the 
observer is to look at the eyes of individuals in the scene, 
focusing on the eye of the left face or the right face is equally 
valid, yet the distance between the eyes of the two faces 
could be arbitrarily distant. 
 

 
Fig. 3.  Problems with Fixation Distance Metrics for Measuring Similarity.  
In the case on the left, if some model picks point A and another model 
picks point B, we could safely say that these two models are dissimilar.  
Conversely, if one model picks A and another model picks C, we could say 
that the models are similar.  In this case, a distance metric based on 
distance between fixations makes sense.  In the case on the right, if one 
model picks A’ and another model picks B’, we can still say that these two 
models are similar.  However, if one model picks A’ and another model 
picks C’, the distance is roughly equivalent to the case of A’-B’.  However, 
the underlying features at these points are very similar.  In this case, using a 
fixation distance metric does not make sense.  By employing distance 
metrics between points of fixation, we ignore the underlying substrate of 
visual attention: that of features of the scene itself.  
 
 The myriad ways of looking at the similarity between a 
computational model and the physiological gold standard 
(for eye gaze: as Euclidean distances, as a density function, 
as a series of saccades and fixations, and as an operation 
over underlying features) point towards the need to obtain a 
relevant measure of how a computational model is 
performing.  If some aspect of the developmental model is of 
interest, a measure must be explicitly assigned.  On the 
bright side, if the aspect is able to be tracked accurately, and 
if the measures are chosen appropriately, we are able to 
obtain statistics regarding the performance of a model that 
are meaningful to development.  

For the eye gaze comparison example, we can not measure 
our success by the end-point of behavior by calculating 
Euclidean distances between fixations.  This measure is a 
reflection of a process, and it is this process, not its 
realization, in which we are interested.  Likewise, we can not 
measure our success by the input to our system, the entirety 
of the visual scene, because this interpretation precedes any 
interesting processing.  Our metric for similarity must lie 
someplace between these two extremes.  For example, we 
could assume that the proper level of comparison is at the 
level of the local features centered at the points 

corresponding to fixations.  Our measures can neither be too 
loose, where they degenerate to hand-waving, nor can they 
be too tight, where they bring us the inevitably expected 
goal: in either case we are doomed to succeed. 

Similarly, our models can not be so vague that they can 
incorporate any effect, leading us to the unsatisfying but 
inevitable qualitative statement that the desired trend could 
be shown if only some variables were constrained.  Such 
models can, in fact, be fit with some effort; they perform 
randomly when presented with new data.  Our models can 
not be so specific, so completely integrated with the 
environment, that all the conclusions fall down like a line of 
dominos.  Often in these situations it is instructive to return 
to basics and ask: can this experiment fail?  If the answer is 
no, then there is no experiment. 

Judging whether a developmental model has failed, of 
course, is its own problem.  Just as individuals are found 
along a wide range of physical and personal characteristics, 
so too can their developmental progression vary.  However, 
in contrast to the almost useless fact that developmental 
systems improve, the notion that developmental systems vary 
turns out to be crucial in the evaluation of a computational 
model of a developmental system.  

IV. RETAINING VARIATION 
In most applications variation of performance is seen as a 
negative factor, often being viewed as system unreliability or 
instability.  But for computational models of developmental 
systems, retaining and employing variation is both positive 
and practical.  Developmental milestones rarely happen with 
clockwork precision.  For example, children begin babbling 
between 3 and 8 months of age, begin using single words at 
around 12 months, develop a small vocabulary of single 
words between the ages of 15 months and 18 months, and 
begin using simple phrases between 18 and 24 months [26].  
Children who do not follow this progression are at risk for 
problems such as developmental or language delay.  
However, a great deal of variation occurs in practice, since, 
as language acquisition is a combination of both innate 
capability and environmental exposure [27], its emergence as 
a distinct capability in children reflects the interaction of 
multiple cognitive and muscular subsystems [28].   
 The key point is that, for the progression of skills on the 
time-course of human development, some variation is 
expected.  This leads to some greater flexibility in 
computational modeling, as events are not bound by some 
strict schedule.  However, this also leads to greater demands, 
as the source of the variations must be explained in a way 
that is rigorous.  For developmental milestones we are not as 
interested in exact times of appearance as we are in 
preserving a certain order of skill emergence.  While some 
skills are bounded naturally (for instance the ability to speak 
simple phrases can not occur before the ability to speak 
simple words), other skills are not, especially when 
comparing across modalities (e.g. speech capability versus 
motor coordination).  We can then explore the interaction of 
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previously developed capabilities in providing a scaffold for 
new abilities. 
 One particular aspect of the developmental progression 
that should be defined and quantified, however, is the 
sources of developmental variation.  Factors leading to 
variability in skill onset should be phrased in terms of 
intrinsic stochastic mechanisms in cognitive development, 
such as neurogenesis, the growth of dendritic branches, or 
inherent cortical plasticity, or in terms of extrinsic 
environmental variability, such as limited exposure to, say 
English vocabulary words in a Spanish-speaking household.  
In addition, the interactions between these factors, which are 
often the cornerstone of a particular computational 
investigation, should be formulated in such a way that the 
cascading effects of variability of intrinsic and extrinsic 
factors on the stochastic schedule of skill emergence can be 
examined. 
 In line with having a variable basis, computational models 
of development are not always expected to work.  This is not 
to say that a model should produce gibberish or nonsensical 
results, but that the failure of a model to maintain some 
typically developing structure is possibly useful.  One of the 
most fruitful uses of computational modeling in 
developmental psychology is in the analysis of 
developmental pathology or atypical development.  This is 
why apparent failures in a computational model of a 
developmental system should neither be ignored nor swept 
under the rug: an apparent failure signals either a true flaw in 
the model, which must be addressed, or a possible 
mechanism for arrested or abnormal development.  Likewise, 
this is why the parameters on which a computational model 
of development is built should varied, and why the systems 
should be stressed.   
 Another form of variation that may appear is the incidental 
milestone: sometimes a developmental effect emerges as the 
result of the particular computational model employed.  
Typically employed as an interesting aside, the emergence of 
behaviors that are unexpected from a computational model, 
and not related to any explicit encoding, are the best 
evidence that a particular implementation or developmental 
simulation achieves a level of performance exceeding 
expectation.   Unexpected behaviors that do not correlate 
with biologically observed phenomena should also be 
reported.  These are indications that remaining work needs to 
be accomplished, either in the form of the reassessment of 
assumptions and formulations, or in the form of further 
investigations and experiments. 
 Finally, one of advantages of having a computational 
model is that the model should be executable multiple times.  
The aggregation of a series of simulations should be able to 
lead to statistics regarding the frequency, ordering, and 
distributions of emergent skills.  By integrating across 
multiple runs, we can examine the variability in onset of one 
particular skill versus another, and all computational 
attributes against the true biological ground truth.  In this 

manner, the aspects of behavioral comparisons seen 
previously as confounds to analysis and quantification, can 
be brought into line with rigorous metrics.  

A. Example – Locomotive Development 
Conventional wisdom holds fast to the cliché: you must 
crawl before you walk.  However, this is not actually true; 
roughly five percent of infants begin walking without any 
previous crawling [29].  A computational model that aims to 
describe the developmental progression of locomotion from 
birth should be able to characterize this variation as well as 
the general time course of emergent behavior.  As an 
example we will consider a simple dynamical systems model 
of locomotion.  Note that this example serves purely in a 
didactic capacity and is not necessarily intended to be 
representative of any serious investigation. 
 We begin by assuming that the development of 
locomotion can be described by two variables that range 
from: arm locomotion (a) and leg locomotion (g).  These two 
motor capabilities represent the abstract concept of a 
maturing musculoskeletal system and a developing 
neurological motor coordinating capability.  These variables 
define a vector field: 
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The developmental progression of a single individual is a 
discrete random walk (100 steps) over this field.  da/dt and 
dg/dt together define the center angle �c and corresponding 
magnitude rc.  The actual movement at each time step is a 
step of size 0.018rc in a random direction drawn from a 
normal distribution centered at �c with standard deviation 
equal to 45°/rc.  This gives us a trajectory across arm and leg 
locomotion space (Fig. 4). 
 Since locomotive development of each individual is 
determined by probability, each run of the model will 
generate slightly different results.  As in the true biological 
reality, variation occurs.  This variation, however, is stable: 
all trajectories start at the point where locomotive capability 
is completely undeveloped and stop in a basin of attraction 
where development ends.  This global behavior is reliable 
and reproducible, even though the individual path is not.  
Consistent with evolutionary theory, those behaviors and 
biological components that are vital to the fitness of an 
organism must contain stabilizing machinery.  
 Furthermore, we can take this model and apply to it a 
second level of analysis.  We add a single Boolean variable, 
s, which governs the expression of locomotion.  No 
locomotion is observable unless s is true.  s begins as false, 
and, once it switches on, it remains in that state for the 
remainder of the experiment.  The decision to switch on is 
determined stochastically with a probability of 7% at each 



 
 

 

time step.  This process represents the idea held by some that 
though developmental progress is being made internally, and 
that though the capability to move exists, the first initiation 
of motion is essentially a stochastic decision process.  In Fig. 
4, the dotted points on the trajectory represent the points 
where locomotion is expressed. 
 We can further divide the space of locomotion into 
subregions, with each subregion corresponding to a 
particular behavior.  For example, in Fig. 4, the bottom left 
region marked in hatching represents the area of precrawling, 
which includes crawling where the belly remains on the 
floor; the surrounding left part of the space represents the 
area where arm motion and leg motion contribute equally to 
locomotive efforts, leading to true crawling (with the belly 
off the floor); the remaining right side of the space is when 
leg action begins to dominate and walking occurs. 
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Fig. 4.  A dynamical system as a developmental model of locomotion.  
Current development, in terms of legs and arms, are points in the figure 
(e.g. (0,0) corresponds to the point where no part of locomotion is 
developed, (1,0) corresponds to the point where only the legs are 
developed).  An individual’s developmental progression is represented as a 
curve emanating from the origin.  Dots on the trajectory represent locations 
where expression of locomotion actually occurs (see text).  The arrows 
represent the most likely direction in which development will proceed at 
any given time, with the magnitude corresponding to the relative speed of 
the transition.   The locomotion space is separated into discrete behaviors, 
with the small hatched region in the lower left the precrawling behavior, the 
left side of the space the crawling behavior, and the right side of the space 
walking.   
 
 By aggregating the results of 10,000 independent trials, 
we can examine the statistics regarding when certain 
behaviors arise.  These results are shown in Fig. 5 for true 
crawling (26.0±5.9 weeks) and walking (45.1±5.9 weeks).  
The incidence of walking without prior crawling is 7.8%.  
These values are in line with evidence from child 
development and psychology [26].  Though this example is 
obviously a very simple toy example, the analyses performed 
highlight the potential types of information that can be 
collected in a computational model of a developmental 
system, turning the inherent variance of the system into 
another statistic for analysis.   
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Fig. 5.  Extracting developmental implications of a computational model.  
These two charts show the percentage of times that a behavior arose at a 
particular point in time in individuals in our trials.  The top chart represents 
the emergence of the walking behavior (45.1±5.9 weeks); the bottom chart 
represents the emergence of the true crawling behavior (26.0±5.9 weeks).   
 

V. DISCUSSION 
Computational models of developmental systems are 
powerful tools in the analysis of not only typical cycles of 
maturation, but also of alternate pathways leading to 
abnormal development.  The specific purposes of models of 
development also lead to specific prerequisites for 
interpretable results.  In this paper we have discussed how 
traditional methods for evaluating machine learning systems 
are not wholly applicable to developmental systems in three 
ways.  (1) Pure task-based measure of performance fail to 
capture the hallmark of a developmental process: the 
developmental time-course.  We have also shown how 
binding our performance evaluation to a specific task leads 
to ignoring other interesting subtasks and related 
developmental milestones, as well as the interaction between 
the subject being modeled and enclosing context of the 
environment.  (2) Finding the correct quantitative measures 
for the evaluating the performance of a developmental model 
is critical for generating relevant results.  We have shown 
that employing the wrong measure leads to subjective or 
qualitative measures of performance and that these types of 
measures are ultimately harmful to the power of conclusions 
that can be drawn for a computational model.  Furthermore, 
we have shown that in order to avoid triviality, a 
computational model must provide greater insight than the 
zero-order measure of task performance (i.e. the model 
learns to perform the task reasonably well), but also the first-
order measure of learning (i.e. performance changes during 
training).  (3) Variation is the strength of a developmental 
model.  The errors of a computational model can be an 
advantage for evaluating developmental trends.  And, though 



 
 

 

this paper has been presented in the negative, as methods and 
techniques and approaches that should not be employed in 
building computational models of developmental systems, 
we hope that it has illuminated also the way these systems 
should be examined.  
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