

Abstract—Computational models of development aim to
describe the mechanisms that underlie the acquisition of new
skills or the emergence of new capabilities. The strength of a
model is judged by both its ability to explain the phenomena in
question as well as its ability to generate new hypotheses,
generalize to new situations, and provide a unifying conceptual
framework. Although often constructed using traditional
engineering methodologies, evaluating the performance of a
computational model of development in terms of traditional
perspectives, however, is a flawed approach. This paper
addresses the fundamental issues that confound quantitative
analysis of computational models of developmental systems. In
particular we focus on the following recommendations: 1) don’t
equate the success of a developmental model with its peak
performance at some task; 2) don’t employ purely subjective or
qualitative measures of model fitness; and 3) don’t hide or
reject variation as found in the computational model. Along the
way, we discuss the aspects of computational models of
development that lead to the requirements for specialized
methods of analysis.

I. INTRODUCTION

At first glance, it seems that those who employ
computational models to describe developmental phenomena
belong in the same camp as those who want to build better
computational systems using inspiration from developmental
biology. In both cases, the goal is the creation of a
computational framework, simulation, or mathematical
formulation. In both groups, researchers are intimately
concerned with the fundamental mechanisms driving
developmental processes. However, the aims of these two
groups could not be more dissimilar: one group uses
biological themes to develop better engineering; the other
uses computational techniques to formulate better
descriptions of biological development. This paper focuses
on those who seek to illuminate biological development
through the use of computational modeling, and discusses
the issues that arise when these systems are evaluated in
traditional engineering terms.

Computational models are employed in all areas where
human developmental progression can be tracked. For
instance, computational models of development are used to
model observed patterns of word pronunciation [1], the
development of auto-associative memory [2], the advent of
numerical perception [3], [4], the incorporation of objects

F. Shic is with the Computer Science Department, Yale University, New
haven, CT 06511, USA (phone: 203-432-1227; fax: 203-432-0593; e-mail:
frederick.shic@yale.edu).

B. Scassellati is with the Computer Science Department, Yale
University, New haven, CT 06511, USA (e-mail: scaz@cs.yale.edu).

into categories [5], and the progression of motor skills
necessary for coordinated reaching and pointing [6]. As
varied are the domains in which these computational models
are embedded, the applications to which these models are
wedded, and the techniques they employ, are even more
diverse. Applications include modeling the learning of sets
of skills [7], investigations into the mechanisms underlying
the development of cognitive capabilities [8], and
comparisons of populations involving atypical
developmental progression [9], [10]. These models employ
subsystems and components that range from the most
elementary, as is found in studies that examine the
interaction of simulated neurons in human memory [11], to
the exceedingly complex, as is found in models of social
behavior and reasoning [12].
 Despite their apparent heterogeneity, however,
computational models of developmental systems share
several commonalities. First and foremost, developmental
models generate multiple results that must be matched in a
temporal progression. That is, these models do not operate
along a simple binary axis of “correct” or “not correct”, but
rather progress from milestone to milestone.
 Also, like most models, the utility of a computational
model of development is connected with its ability to
accurately represent the phenomena in question. In contrast
to models found in most pattern-recognition applications,
peak performance of developmental models is not of prime
importance. This is not to say performance is unimportant,
as a model that is intended to represent the development of
some learned skill should ultimately produce measurable
improvements in performance. However, it is the
relationship of learning, the progression of developmental
trends, and the interactions of the components of the model
that are of primary interest.
 Given that pure performance is not the measure by which
a computational developmental model should be evaluated,
the question arises: what should the measure be? This paper
seeks to address this question by providing guidelines as to
how developmental mechanisms may be compared and
quantified. In order to properly phrase our goals, in Section
II, we first discuss the difficulties that arise when we try to
take a conventional engineering metric of performance, such
as a task-based performance measure, and attempt to apply it
to the analysis of a developmental model. We continue, in
Section III, with a discussion on how computational models
of development require rigorous methods for analysis as
compared to subjective or qualitative measures of success.
In Section IV, we show how the variance of computational

How Not to Evaluate a Developmental System
Frederick Shic and Brian Scassellati

models of development, in terms of its emergent behavior, is
actually an advantage, and not a problematic deficit that
needs to be hidden or rejected. We then conclude with a
summary of the main points of this paper, together with a
discussion on the utility, purpose, and ultimate role of
computational models of development in practical
application as well as in theoretical investigation. As we
proceed, we will give simple toy examples that are
illustrative of our major points.

II. THE PROBLEM WITH PEAK TASK PERFORMANCE
In many pattern recognition and machine learning
applications we are interested in training a computational
model to best perform some specific task. For instance, a
face recognition system used in biometric authentication can
be evaluated solely on its ability to accurately recognize
specific faces. However, the developmental time course of
face recognition, as recorded by psychological and
psychophysical experiments in neonates, infants, children,
and adults, is much more complex than the mere fact that
recognition can occur at some maximal accuracy. Evaluating
a computational model of a developmental system in terms
of peak task performance misses all the complexities of the
underlying developmental process.
 This brings us to our first problem with employing peak
task performance as the single measure of how well a
developmental model performs: it neglects the time-varying
aspects of development. For instance, for a developmental
model of syllable phoneme segmentation, we are not
interested in how many phonemes a computational model
can discriminate after being trained with an extensive corpus
of examples, but whether the number of phonemes
recognizable as a function of training time resembles, say, a
logistic growth function, thereby having the capacity to
mimic the developmental function as found in human
children [13].

A second problem is that choosing a specific task as
representative of a developmental process neglects other
related milestones and events that may be of even greater
interest. In the human developmental time course of face
recognition, for example, the increasing accuracy of
recognition as a function of exposure to faces is only one
aspect of the phenomenon. A computational developmental
model of face recognition should explain not only how
accuracy improves with age, but also should remark upon
how face processing skills progress from a general sensitivity
to face-like configurations found shortly after birth [14]-
[15], to a preference for the mother’s face at 1 month of age
[16], to the ability to discriminate between familiar and
unfamiliar individuals by 3 months [17], and so on, up
towards adult levels of face recognition performance.
Choosing one particular measure of performance binds us to
one particular interpretation of success; this, in turn, blinds
us to deficits of omission.

A third problem is that the assumption of a specific task

neglects the complexity of the real-world environment. This
leads to at least three specific problems: 1) a defined task
measure fails to represent domains where the task is
generated internally, or is implicitly defined; 2) it also
provides no motivation for learning and no grounding for the
developmental system 3) it drastically underestimates the
difficulty of the domain. By framing the problem within
traditional machine learning paradigms, we assume that the
problem is self-contained, or contained within a small,
compact, controllable domain. Nothing could be farther
from the truth: human development occurs far from a
vacuum and a positive trend in the analysis of models of
development is the use of computational agents that are
explicitly embedded in a complex environment [18]. If we
limit ourselves to measures of performance that are tightly
coupled to a particular representation of the problem, we
limit the generalizability of our results and the power of our
implications. If we instead link the task to some
representation of the world, we ground the developmental
process in question to some concrete foundation. This, in
turn, allows for a direct investigation of the interplay that
occurs between an individual and his environment. In
addition, functional considerations, such as performance
degradation in the presence of noise, under varying
environmental conditions, and under increasing demands
are, in traditional applications, typically secondary to the
question: how well does it work? However, in developmental
models, such consideration are vital, as they describe how
the emergence of new skills can arise in a robust fashion—a
requirement for computational models of development that
are biologically-relevant, as opposed to those that are simply
biologically-inspired.

A. Example – Face Recognition
As a simple toy example highlighting the aforementioned

problems we train a small face recognition system to show
how developmental milestones within a computational trend
may be isolated. We are interested in this system because
the developmental progression of infant face recognition is
particular well studied. Our network learns to recognize
faces specifically (i.e. identifying the individuals as a
particular individual), faces generally (i.e. as belonging to
the general class of faces, but not corresponding to a known
individual (e.g. a stranger)), and non-faces (drawn from
various locations in a scene containing no people).

We take from the UMIST face database [19] a selection of
6 cropped faces in black-and-white, with each face presented
from 19 different viewpoints. These face images are filtered
with a Laplacian-of-��������� ���	
�� �
� � ���
���� � �����
�� 	� ��

square dimensions, and downsampled by nearest neighbor
interpolation to a 10x10 grid of intensities. Similarly, we
take one scene from the Caltech Office Database [20] and
extract 100 random square regions within this scene (side
length randomly drawn from a range 16 pixels to 160 pixels).
These regions are converted to black and white, and then

filtered and downsampled in the same manner as the faces
are.

Three individuals are selected as faces to be recognized
specifically, three faces are selected to comprise the general
face class, and the non-face class is populated by random
sampling from the office scene.
 A simple two-layer neural network (one input layer, one
hidden layer, and one output layer) is created which takes the
downsampled image pixels as input, in a manner similar to
[21]. The input layer is fully connected to a hidden layer
consisting of 3 hidden tansig nodes. This hidden layer is
connected to the output layer which consists of 4 logsig
nodes, one for each of three face targets, and one for the
general class of faces.

The network is trained by adaptive gradient descent and
the resultant learning curve, as a function of mean squared
error of target outputs, is shown in Fig. 1. Fig. 1. also
highlights some developmental milestones in the course of
network learning. These milestones are judged to have
occurred when network performance on the corresponding
test dataset has a sensitivity and specificity of over 70%, and
does drop below this bar for the remainder of the learning.

0 200 400 600 800 1000

10
-2

10
-1

training time

m
ea

n
sq

ua
re

d
er

ro
r

Fig. 1. Training curve of a neural network learning to simultaneously
recognize the class of faces (faces vs non faces) as well as 3 specific
individual faces (face1, face2, and face3). The network is a 3-hidden node
two-layer feedforward backpropogation (by adaptive gradient descent)
neural network. The x-axis is the number of training rounds, whereas the y-
axis is the mean-squared error of the recognition tasks. Milestones, as
evidenced by behavior on a separate testing dataset, occur at various points
on the recognition learning curve. Whereas a traditional engineering task
would only be interested in the end point of development (diamond, marked
“end of training”), a developmental model is interested in the entire curve,
including milestones along the developmental path.

 If we were to view this task as a pure engineering
problem, i.e. a recognition problem with a clearly defined
accuracy metric, we would in essence be following the route
of large scale studies such as [22], [23]. We would only be
interested in the end point of development. With a
developmental model we are interested not only in the shape
of the learning process, but also with milestones that

corresponding to activity on the learning curve. A purely
engineering approach misses the underlying complexity of
the developmental process.

III. CHOOSING THE RIGHT QUANTITATIVE MEASURE
In order to be able to compare a computational model with
the developmental reality, we need to find some appropriate
metric for measuring the distance between the predicted
phenomena and the biological progression. In many cases,
this entails characterizing behavior. This is often difficult
because behavior is itself often an emergent property of the
underlying physical or neurophysiological scaffolding: it
does not lie on the measurable axes of the system, it lies on
top. Because of this, specific measures that pinpoint the
phenomena in question must be developed, tested, and
deployed. This process of finding the best set of
measurements and metrics is be plagued with many potential
pitfalls. These pitfalls include an over-attachment to trivial
computational effects and the over-reliance upon subjective
or qualitative measures.

When building a computational model of development, it
is often far too easy to develop a simple representation of
some particular phenomenon, grab the quickest and nearest
pattern recognition system, train the system, and present the
resultant learning curves as evidence for a developmental
trend. The fundamental problem caused by building
developmental models this way is that it transforms the rich,
complex tapestry of human development into a dull, one-
dimensional string that is almost trivial.

The most basic aspect of all machine learning systems is
that they learn, adapt, and specialize. If we are interested in
how humans learn to discriminate between images of oranges
from images of apples, and we frame this problem as an
error-minimization task, we should not be surprised that our
ability to identify oranges increases as we apply non-linear
gradient descent. Similarly, if we frame object recognition
as a constrained clustering problem operating over silhouette
histogram statistics, we should not be surprised that objects
that cast the same shadow also gravitate towards the same
clusters. A temporal progression leading to greater
efficiency is the most basic aspect of developmental
processes; its presence in a computational model of
development is the lowest bar that must be reached for
suitable discourse to begin. In other words, computational
learning as a mechanism leading to a temporal progression
mimicking development is only interesting in its own right
when the observed effects are non-trivial.

A related trap that often turns a computational model of a
developmental system into a trivial experiment is caused by
under-constraining the parameters of the developmental
model. For example, the complexity of even the simplest
models of cognitive processes can be staggering: a basic
model of visual attention (e.g. [24]) uses hundreds of
potential parameters. In these cases, it is easy to step back
and explain any resultant discrepancies between a

faces vs non faces
face1

face2
face3

end of
training

computational model and physiological reality by a hand-
waving argument involving the adjustment of any number of
possible parameters. Unfortunately, the same argument that
makes a model theoretically match a particular observed
effect is also the same argument that makes a model
theoretically match any observed effect, or nothing at all. It
is far more productive to start a model with reasonable
parameters, adjust these parameters sparingly, and discuss
how the parameters interact.

In addition, it is possible to over-constrain a simple
computational model by linking together modules that are
tightly coupled in the interface between effect and
prerequisite. Such systems are in effect large scale cause-
and-effect chains, which only serve to highlight the
inevitable conclusion unless the mechanisms underlying the
predicate expansions are transparent and become the true
subject of investigation.

Sweeping generalizations and qualitative statements are,
of course, not limited to computational models of
development: they can infect any computational model used
for behavioral analysis or reproduction of biological action.
The prominence of purely qualitative results is partly due to
the fact that our brains are well-prepared to
anthropomorphize even simple geometric shapes [25] by
extension, our minds will readily ascribe a label of
“biologically related” to a large class of complex stimuli. In
other words, we are ready to see what we expect to see.
However, the mere impression of some biological relevancy
does us little good. For a computational model to be useful,
it must be able to generate predictions or further some
particular hypothesis. For a developmental computational
model to find relevancy, there must exist some quantifiable
means of comparing the behavior of the model to the
behavioral reality.

It is a natural reaction to believe that a computational
model matches biological reality when some measurable
surface characteristic of the computational model behaves in
some biologically plausible fashion. The difficulty,
however, is that many such comparisons can be highly
superficial. For instance, consider the development of fine
motor skills necessary to accomplish some task. A
computational hypothesis on the development of these skills
could be that a child is basically an adult with sub-adult
accuracy. One approach to building a computational model
of increasingly accurate motor control would be
reinforcement learning. Suppose we are able to train such a
model, obtain a desired motor behavior, and subsequently
are interested in presenting our reinforcement strategy as a
good model of motor development. First, we show that the
final task performance is good; however this, as mentioned
in the previous section, is expected. Next, we show that
performance increases over time; but this too is also only a
minimum requirement and not in itself sufficient to warrant
adjudicating a developmental model successful. We are
left, then, with comparing our computational motion

trajectories with the motion trajectories of human subjects.
However, a simple measure based on the distances between
joints or end-effectors ends up with a definition of proximity
that is too strict: it overestimates the “distance” between two
trajectories when the Euclidean distance at some point in
time is large, but the distance in terms of intent, mechanism,
or encapsulated behavior, is small.

A measure of the applicability of some developmental or
biological model to reality should factor in the key
components and factors that affect the process in question.
This is necessary because otherwise any trends that do match
physical evidence will match only phenomenologically. If
we are only interested in the surface characteristics, we don’t
actually need a computational model at all. It is more useful
to incorporate, in some manner, the major forces that are
known to be biologically or psychologically significant, and
to thereby be able to investigate the relationship of these
forces in framing the actual development or behavior, than it
is have a model that accurately characterizes a trend over a
time-frame, but has no basis in deeper mechanism.

A. Example – Comparing Eye Fixations
As an example, consider the comparison of eye movements
in Fig. 2. The left image of Fig. 2 is the actual eye trajectory
of a human subject while viewing a dynamic scene. If we
take this eye trajectory and use it to build a probability map
by placing a Gaussian at every fixation point, we can take the
resultant probability function and use it to generate a
sequence of predicted eye movements (shown in the right
image of Fig. 2). The total Euclidean distance between the
human gaze trajectory and that predicted by a computational
model is arbitrary large, since the computational model’s
position is simply drawn randomly from the underlying
probability distribution. In addition, the computational
model is terrible at representing many other characteristics of
the human eye trajectory, and notably lacks fixations and
saccades.

Fig. 2. Human gaze data (left) and a trajectory drawn probabilistically from
an approximation to the underlying density (right). Note that whereas
saccades and fixations are identifiable in the left image, these properties do
not exist in the right image.

The major weakness of the above model is not that the
distance between computed fixation points and real fixation
points is large, nor is the problem that the computational
model so blatantly does not produce coherent time-varying
action. The major weakness is that it ignores the fact that the
fixations of an individual will depend highly on the scene
itself. Employing Euclidean distance as a sole measure of

the similarity of two gaze trajectories completely misses this
point. Similarly, the use of a probability density function is
also inappropriate, as it implicitly incorporates Euclidean
distance as the basis for its comparison. Fig. 3 illustrates this
point further. In very simple cases where there is only one
single salient region, distance makes sense as a measure of
how close a fixation is with another fixation (Fig. 3, left).
However, in a more realistic case, employing Euclidean
distance as the basis of fixation similarity would fail
completely (Fig. 3, right). That is, if the implicit goal of the
observer is to look at the eyes of individuals in the scene,
focusing on the eye of the left face or the right face is equally
valid, yet the distance between the eyes of the two faces
could be arbitrarily distant.

Fig. 3. Problems with Fixation Distance Metrics for Measuring Similarity.
In the case on the left, if some model picks point A and another model
picks point B, we could safely say that these two models are dissimilar.
Conversely, if one model picks A and another model picks C, we could say
that the models are similar. In this case, a distance metric based on
distance between fixations makes sense. In the case on the right, if one
model picks A’ and another model picks B’, we can still say that these two
models are similar. However, if one model picks A’ and another model
picks C’, the distance is roughly equivalent to the case of A’-B’. However,
the underlying features at these points are very similar. In this case, using a
fixation distance metric does not make sense. By employing distance
metrics between points of fixation, we ignore the underlying substrate of
visual attention: that of features of the scene itself.

 The myriad ways of looking at the similarity between a
computational model and the physiological gold standard
(for eye gaze: as Euclidean distances, as a density function,
as a series of saccades and fixations, and as an operation
over underlying features) point towards the need to obtain a
relevant measure of how a computational model is
performing. If some aspect of the developmental model is of
interest, a measure must be explicitly assigned. On the
bright side, if the aspect is able to be tracked accurately, and
if the measures are chosen appropriately, we are able to
obtain statistics regarding the performance of a model that
are meaningful to development.

For the eye gaze comparison example, we can not measure
our success by the end-point of behavior by calculating
Euclidean distances between fixations. This measure is a
reflection of a process, and it is this process, not its
realization, in which we are interested. Likewise, we can not
measure our success by the input to our system, the entirety
of the visual scene, because this interpretation precedes any
interesting processing. Our metric for similarity must lie
someplace between these two extremes. For example, we
could assume that the proper level of comparison is at the
level of the local features centered at the points

corresponding to fixations. Our measures can neither be too
loose, where they degenerate to hand-waving, nor can they
be too tight, where they bring us the inevitably expected
goal: in either case we are doomed to succeed.

Similarly, our models can not be so vague that they can
incorporate any effect, leading us to the unsatisfying but
inevitable qualitative statement that the desired trend could
be shown if only some variables were constrained. Such
models can, in fact, be fit with some effort; they perform
randomly when presented with new data. Our models can
not be so specific, so completely integrated with the
environment, that all the conclusions fall down like a line of
dominos. Often in these situations it is instructive to return
to basics and ask: can this experiment fail? If the answer is
no, then there is no experiment.

Judging whether a developmental model has failed, of
course, is its own problem. Just as individuals are found
along a wide range of physical and personal characteristics,
so too can their developmental progression vary. However,
in contrast to the almost useless fact that developmental
systems improve, the notion that developmental systems vary
turns out to be crucial in the evaluation of a computational
model of a developmental system.

IV. RETAINING VARIATION
In most applications variation of performance is seen as a
negative factor, often being viewed as system unreliability or
instability. But for computational models of developmental
systems, retaining and employing variation is both positive
and practical. Developmental milestones rarely happen with
clockwork precision. For example, children begin babbling
between 3 and 8 months of age, begin using single words at
around 12 months, develop a small vocabulary of single
words between the ages of 15 months and 18 months, and
begin using simple phrases between 18 and 24 months [26].
Children who do not follow this progression are at risk for
problems such as developmental or language delay.
However, a great deal of variation occurs in practice, since,
as language acquisition is a combination of both innate
capability and environmental exposure [27], its emergence as
a distinct capability in children reflects the interaction of
multiple cognitive and muscular subsystems [28].
 The key point is that, for the progression of skills on the
time-course of human development, some variation is
expected. This leads to some greater flexibility in
computational modeling, as events are not bound by some
strict schedule. However, this also leads to greater demands,
as the source of the variations must be explained in a way
that is rigorous. For developmental milestones we are not as
interested in exact times of appearance as we are in
preserving a certain order of skill emergence. While some
skills are bounded naturally (for instance the ability to speak
simple phrases can not occur before the ability to speak
simple words), other skills are not, especially when
comparing across modalities (e.g. speech capability versus
motor coordination). We can then explore the interaction of

A

B

C A’

B’

C’

previously developed capabilities in providing a scaffold for
new abilities.
 One particular aspect of the developmental progression
that should be defined and quantified, however, is the
sources of developmental variation. Factors leading to
variability in skill onset should be phrased in terms of
intrinsic stochastic mechanisms in cognitive development,
such as neurogenesis, the growth of dendritic branches, or
inherent cortical plasticity, or in terms of extrinsic
environmental variability, such as limited exposure to, say
English vocabulary words in a Spanish-speaking household.
In addition, the interactions between these factors, which are
often the cornerstone of a particular computational
investigation, should be formulated in such a way that the
cascading effects of variability of intrinsic and extrinsic
factors on the stochastic schedule of skill emergence can be
examined.
 In line with having a variable basis, computational models
of development are not always expected to work. This is not
to say that a model should produce gibberish or nonsensical
results, but that the failure of a model to maintain some
typically developing structure is possibly useful. One of the
most fruitful uses of computational modeling in
developmental psychology is in the analysis of
developmental pathology or atypical development. This is
why apparent failures in a computational model of a
developmental system should neither be ignored nor swept
under the rug: an apparent failure signals either a true flaw in
the model, which must be addressed, or a possible
mechanism for arrested or abnormal development. Likewise,
this is why the parameters on which a computational model
of development is built should varied, and why the systems
should be stressed.
 Another form of variation that may appear is the incidental
milestone: sometimes a developmental effect emerges as the
result of the particular computational model employed.
Typically employed as an interesting aside, the emergence of
behaviors that are unexpected from a computational model,
and not related to any explicit encoding, are the best
evidence that a particular implementation or developmental
simulation achieves a level of performance exceeding
expectation. Unexpected behaviors that do not correlate
with biologically observed phenomena should also be
reported. These are indications that remaining work needs to
be accomplished, either in the form of the reassessment of
assumptions and formulations, or in the form of further
investigations and experiments.
 Finally, one of advantages of having a computational
model is that the model should be executable multiple times.
The aggregation of a series of simulations should be able to
lead to statistics regarding the frequency, ordering, and
distributions of emergent skills. By integrating across
multiple runs, we can examine the variability in onset of one
particular skill versus another, and all computational
attributes against the true biological ground truth. In this

manner, the aspects of behavioral comparisons seen
previously as confounds to analysis and quantification, can
be brought into line with rigorous metrics.

A. Example – Locomotive Development
Conventional wisdom holds fast to the cliché: you must
crawl before you walk. However, this is not actually true;
roughly five percent of infants begin walking without any
previous crawling [29]. A computational model that aims to
describe the developmental progression of locomotion from
birth should be able to characterize this variation as well as
the general time course of emergent behavior. As an
example we will consider a simple dynamical systems model
of locomotion. Note that this example serves purely in a
didactic capacity and is not necessarily intended to be
representative of any serious investigation.
 We begin by assuming that the development of
locomotion can be described by two variables that range
from: arm locomotion (a) and leg locomotion (g). These two
motor capabilities represent the abstract concept of a
maturing musculoskeletal system and a developing
neurological motor coordinating capability. These variables
define a vector field:

)3236640(
3
1

1
3
284

23 ++−=

+−−=

ppp
dt
dg

appa
dt
da

 (1)

The developmental progression of a single individual is a
discrete random walk (100 steps) over this field. da/dt and
dg/dt together define the center angle �c and corresponding
magnitude rc. The actual movement at each time step is a
step of size 0.018rc in a random direction drawn from a
normal distribution centered at �c with standard deviation
equal to 45°/rc. This gives us a trajectory across arm and leg
locomotion space (Fig. 4).
 Since locomotive development of each individual is
determined by probability, each run of the model will
generate slightly different results. As in the true biological
reality, variation occurs. This variation, however, is stable:
all trajectories start at the point where locomotive capability
is completely undeveloped and stop in a basin of attraction
where development ends. This global behavior is reliable
and reproducible, even though the individual path is not.
Consistent with evolutionary theory, those behaviors and
biological components that are vital to the fitness of an
organism must contain stabilizing machinery.
 Furthermore, we can take this model and apply to it a
second level of analysis. We add a single Boolean variable,
s, which governs the expression of locomotion. No
locomotion is observable unless s is true. s begins as false,
and, once it switches on, it remains in that state for the
remainder of the experiment. The decision to switch on is
determined stochastically with a probability of 7% at each

time step. This process represents the idea held by some that
though developmental progress is being made internally, and
that though the capability to move exists, the first initiation
of motion is essentially a stochastic decision process. In Fig.
4, the dotted points on the trajectory represent the points
where locomotion is expressed.
 We can further divide the space of locomotion into
subregions, with each subregion corresponding to a
particular behavior. For example, in Fig. 4, the bottom left
region marked in hatching represents the area of precrawling,
which includes crawling where the belly remains on the
floor; the surrounding left part of the space represents the
area where arm motion and leg motion contribute equally to
locomotive efforts, leading to true crawling (with the belly
off the floor); the remaining right side of the space is when
leg action begins to dominate and walking occurs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

leg locomotion

ar
m

 lo
co

m
ot

io
n

Fig. 4. A dynamical system as a developmental model of locomotion.
Current development, in terms of legs and arms, are points in the figure
(e.g. (0,0) corresponds to the point where no part of locomotion is
developed, (1,0) corresponds to the point where only the legs are
developed). An individual’s developmental progression is represented as a
curve emanating from the origin. Dots on the trajectory represent locations
where expression of locomotion actually occurs (see text). The arrows
represent the most likely direction in which development will proceed at
any given time, with the magnitude corresponding to the relative speed of
the transition. The locomotion space is separated into discrete behaviors,
with the small hatched region in the lower left the precrawling behavior, the
left side of the space the crawling behavior, and the right side of the space
walking.

 By aggregating the results of 10,000 independent trials,
we can examine the statistics regarding when certain
behaviors arise. These results are shown in Fig. 5 for true
crawling (26.0±5.9 weeks) and walking (45.1±5.9 weeks).
The incidence of walking without prior crawling is 7.8%.
These values are in line with evidence from child
development and psychology [26]. Though this example is
obviously a very simple toy example, the analyses performed
highlight the potential types of information that can be
collected in a computational model of a developmental
system, turning the inherent variance of the system into
another statistic for analysis.

0 10 20 30 40 50 60 70
0

5

10

15

20

25
walking

time (weeks)

%
 o

cc
ur

re
nc

e

0 10 20 30 40 50 60 70
0

5

10

15

20

25
true crawling

time (weeks)

%
 o

cc
ur

re
nc

e

Fig. 5. Extracting developmental implications of a computational model.
These two charts show the percentage of times that a behavior arose at a
particular point in time in individuals in our trials. The top chart represents
the emergence of the walking behavior (45.1±5.9 weeks); the bottom chart
represents the emergence of the true crawling behavior (26.0±5.9 weeks).

V. DISCUSSION
Computational models of developmental systems are
powerful tools in the analysis of not only typical cycles of
maturation, but also of alternate pathways leading to
abnormal development. The specific purposes of models of
development also lead to specific prerequisites for
interpretable results. In this paper we have discussed how
traditional methods for evaluating machine learning systems
are not wholly applicable to developmental systems in three
ways. (1) Pure task-based measure of performance fail to
capture the hallmark of a developmental process: the
developmental time-course. We have also shown how
binding our performance evaluation to a specific task leads
to ignoring other interesting subtasks and related
developmental milestones, as well as the interaction between
the subject being modeled and enclosing context of the
environment. (2) Finding the correct quantitative measures
for the evaluating the performance of a developmental model
is critical for generating relevant results. We have shown
that employing the wrong measure leads to subjective or
qualitative measures of performance and that these types of
measures are ultimately harmful to the power of conclusions
that can be drawn for a computational model. Furthermore,
we have shown that in order to avoid triviality, a
computational model must provide greater insight than the
zero-order measure of task performance (i.e. the model
learns to perform the task reasonably well), but also the first-
order measure of learning (i.e. performance changes during
training). (3) Variation is the strength of a developmental
model. The errors of a computational model can be an
advantage for evaluating developmental trends. And, though

this paper has been presented in the negative, as methods and
techniques and approaches that should not be employed in
building computational models of developmental systems,
we hope that it has illuminated also the way these systems
should be examined.

REFERENCES
[1] M. S. Seidenberg and J. L. McClelland, “A distributed, developmental

model of word recognition and naming,” Psychological Review, vol.
96, no. 4, pp. 523-568, 1989.

[2] D. S. Rizzuto and M. J. Kahana, “An Autoassociative Neural Network
Model of Paired-Associate Learning,” Neural Comp., vol. 13, pp.
2075-2092, 2001.

[3] S. A. Peterson and T. J. Simon, “Computational Evidence for the
Subitizing Phenomenon as an Emergent Property of the Human
Cognitive Architecture,” Cognitive Science: A Multidisciplinary
Journal, vol. 24, no. 1, pp. 93-122, 2000.

[4] T. J. Simon, “Computational evidence for the foundations of
numerical competence,” Developmental Science, vol. 1, no. 1, pp. 71-
78, 1998.

[5] D. Mareschal, R. M. French, and P. C. Quinn, “A connectionist
account of asymmetric category learning in early infancy,” Dev
Psychol., vol. 36, no. 5, pp. 635-45, September 2000.

[6] M. Schlesinger, D. Parisi, and J. Langer, “Learning to reach by
constraining the movement search space,” Developmental Science,
vol. 3, no. 1, pp. 67-80, 2000.

[7] R. Sun, E. Merrill, and T. Peterson, “From implicit skills to explicit
knowledge: a bottom-up model of skill learning,” Cognitive Science:
A Multidisciplinary Journal, vol. 25, no. 2, pp. 203-244, 2001.

[8] Y. Munakata, “Computational cognitive neuroscience of early
memory development,” Developmental Review, vol. 24, no. 1, pp.
133-153, March 2004.

[9] C. O'Laughlin and P. Thagard, “Autism and Coherence: A
Computational Model,” Mind and Language, vol. 15, no. 4, pp. 375-
392, 2000.

[10] E. Carlson and J. Triesch, “A Computational Model of the Emergence
of Gaze Following,” J. Progress in Neural Processing, vol. 15, pp.
105-114, 2004.

[11] J. J. Hopfield, “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities,” PNAS, vol. 79, pp. 2554-2558.

[12] N. J. Vriend, “An Illustration of the Essential Difference between
Individual and Social Learning, and its Consequences for
Computational Analyses,” Journal of economic dynamics & control,
vol. 24, no. 1, pp. 1-19, 2000.

[13] B. Fox and D. K. Routh, “Analyzing spoken language into words,
syllables, and phonomes: A developmental study,” Journal of
Psycholinguistic Research, vol. 4, no. 4, pp. 331 – 342, October
1975.

[14] E. Valenza, F. Simion, V. M. Cassia, and C. Umilta, “Face Preference
at Birth,” Journal of Experimental Psychology Human Perception
and Performance, vol. 22, no. 4, pp. 892-904, 1996.

[15] F. Simion, V. M. Cassia, C. Turati, and E. Valenza, “The Origins of
Face Perception: Specific versus Non-Specific Mechanisms,” Infant
and Child Development, vol. 10, no. 1, pp. 59-66, 2001.

[16] J. Bartrip, J. Morton, and S. De Schonen, “Responses to mother's face
in 3-week to 5-month-old infants,” British Journal of Developmental
Psychology, vol. 19, no. 2, pp. 219-232, June 2001.

[17] M. de Haan, M. H. Johnson, D. Maurer, and D. I. Perrett,
“Recognition of individual faces and average face prototypes by 1-
and 3-month-old infants,” Cognitive Development, vol. 16, no. 2, pp.
659-678, 2001.

[18] M. Schlesinger and D. Parisi, “The agent-based approach: A new
direction for computational models of development,” Developmental
Review, vol. 21, pp. 121-146, 2001.

[19] D. B. Graham and N. M. Allinson, “Characterizing Virtual
Eigensignatures for General Purpose Face Recognition,” in Face
Recognition: From Theory to Applications, NATO ASI Series F,
Computer and Systems Sciences, Vol. 163. H. Wechsler, P. J.

Phillips, V. Bruce, F. Fogelman-Soulie and T. S. Huang (eds), pp
446-456, 1998.

[20] M. Fink, “The Full Images for Natural Knowledge Caltech Office
DB,” California Institute of Technology, Pasadena, CA, Technical
Report [CaltechCSTR:2003.008a], 2003

[21] H. A. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based
Face Detection,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 1996, pp. 203-208.

[22] P. J. Phillips, P. Grother, R. Micheals, D. M. Blackburn, E. Tabassi,
and M. Bone, “Face Recognition Vendor Test 2002: Evaluation
Report”, in IEEE International Workshop on Analysis and Modeling
of Faces and Gestures, 2003, pp. 44.

[23] J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K.
Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the Face
Recognition Grand Challenge,” to appear in: IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

[24] L. Itti, C. Koch, and E. Niebur, “Model of Saliency-Based Visual
Attention for Rapid Scene Analysis”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254-1259,
1998.

[25] F. Heider and M. Simmel, “An Experimental Study of Apparent
Behavior,” The American Journal of Psychology, vol. 57, no. 2, pp.
243-259, April 1944.

[26] S. P. Shelov and R. E. Hannemann (eds). Caring for Your Baby and
Young Child: Birth to Age 5. American Academy of Pediatrics. New
York: Bantam, 1993.

[27] E. Bates, P. Dale, and D. Thal, “Individual differences and their
implications for theories of language development,” in Handbook of
child language, P. Fletcher & B. MacWhinney, Eds., Oxford: Basil
Blackwell, 1995, pp. 96–151..

[28] E. Bates, “Plasticity, localization and language development,” in The
changing nervous system: Neuro-behavioral consequences of early
brain disorders, S. Broman & J.M. Fletcher, Eds., New York: Oxford
University Press, 1999, pp. 214-253.

[29] “Crawling”, [Online document], [2006 Feb 15], Available at HTTP:
http://www.healthofchildren.com/C/Crawling.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

