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Abstract. Robots often incorporate computational models of visual attention to streamline processing. Even
though the number of visual attention systems employed on robots has increased dramatically in recent years, the
evaluation of these systems has remained primarily qualitative and subjective. We introduce quantitative methods
for evaluating computational models of visual attention by direct comparison with gaze trajectories acquired from
humans. In particular, we focus on the need for metrics based not on distances within the image plane, but that instead
operate at the level of underlying features. We present a framework, based on dimensionality-reduction over the
features of human gaze trajectories, that can simultaneously be used for both optimizing a particular computational
model of visual attention and for evaluating its performance in terms of similarity to human behavior. We use this
framework to evaluate the Itti et al. (1998) model of visual attention, a computational model that serves as the basis
for many robotic visual attention systems.
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1. Introduction

1.1. Motivation

Robots that interact with humans are becoming
increasingly prevalent. For instance, we have robots
that lead tours in museums (Burgard et al., 1998),
robots that act as receptionists (Gockley et al., 2005),
and robots that function as pets (Fujita, 2001). As
robots begin to occupy roles traditionally reserved for
people, the need for robots that are able to interact in
a complex manner with human beings has increased
dramatically. However, as noted by Fong et al. (2003),
robots that strive to emulate meaningful relationships
with humans require the ability to perceive their
environments in a manner consistent with the ways
humans perceive the world (Fig. 1).

For this reason, robots that seek to interact with
human subjects in a general fashion often employ

generalized computational vision systems based on
biological inspirations (e.g. Breazeal and Scassellati,
1999). A key component of many of these vision
systems is a computational model of visual atten-
tion. These computational models are, by necessity,
crude approximations to the human visual attention
system and typically operate by identifying, within
an incoming visual stream, spatial points of interest.
This computational formulation of visual attention
is very limiting, in terms of the capabilities and
complexities of the biological reality, as many models
of visual attention could alternatively be viewed as
models of eye fixation or gaze shifting. However, this
restricted definition reflects the practical and opera-
tional conditions under which robots and generalized
computer vision systems are found. These models
serve to (i) reduce the scene to several points of
particular interest, thus controlling the combinatorial
explosion that results from the consideration of all
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Figure 1. Robot engaging in “the Imitation Game” with a Human.
A robot requires a complex visual system in order to emulate the
behavior of a human subject (Scassellati, 1999).

possible image relationships (Tsotsos, 1988), and to
(ii) emulate the scan-path behavior of human subjects,
thus providing a naturalistic interface to behaviors
such as joint attention (Scassellati, 1999; Nagai et al.,
2002) and non-verbal communication (Imai et al.,
2002).

However, despite the recent explosion of computa-
tional models of visual attention in recent years (half
of all papers on such models have been written in the
past-five years), there exists very little work regarding
their evaluation. One of the difficulties of evaluating
computational models of visual attention lies in the
fact that, since “interesting” points are determined in
a task-dependent fashion, it is difficult for a general-
ized model of visual attention to specify, a priori, what
areas in a visual scene should be selected for evalua-
tion. Three possibilities arise: (i) we could assemble a
collection of scenes associated with various tasks and
evaluate performance over them. This is what is done in
highly-focused research areas such as face and gesture
analysis, where it is clear that the “eyes” or the “hands”
specify the location to which attention should be di-
rected. (ii) By making a series of assumptions regarding
the form and interactions inherent to neurobiological
visual processes, we could create a generalized notion
of what it means to for a particular spatiotemporal lo-
cation in a scene to be “salient”. This is what is done
in computational models of visual attention that invoke
the use of a “saliency map” (Koch and Ullman, 1985),
which is a structure that assigns to each point within that
visual stream some measure of visual prominence as
a function of elementary modalities (e.g. color, spatial
orientation, luminance). (iii) The third possibility is that
we could compare the performance of a computational

attention system to the computational attention system
of humans.

The first possibility, creating specific measures for
comparison and performance evaluation based upon
expectations in specialized tasks is, of course, appro-
priate only for specialized tasks. In more general con-
texts, for example the dynamic environments required
for meaningful social interactions between machines
and human subjects, the formulation of a database
enumerating all possible tasks would be a monstrous,
if not impossible, undertaking. For this reason, spe-
cialized tests do not serve well as a basis for evalu-
ating the visual attention systems of robots fulfilling
some generalized role. The second possibility, build-
ing some coarse approximation to the biological visual
attention circuitry of the human brain, is a popular
approach. However, the use of a biological model
for use in validation must itself be validated for bi-
ological relevance. This leaves us with comparing
computational models of visual attention with human
subjects.

A question arises, however, when comparing the vi-
sual scan patterns of these computational models to
those of human subjects: how human is the generated
eye trajectory in reality? While a particular model may
generate patterns that qualitatively appear human-like,
and subjectively seem to function as a realistic em-
ulation of human objectives as reflected in the scan
trajectory, rigorous empirical methods for measuring
a computational model’s similarity to human perfor-
mance have been lacking, especially for models that
perform in dynamic, naturalistic visual environments.
It is our goal to define such measures of performance
in order to allow the rigorous comparison of visual at-
tention systems against both human subjects and other
computational models.

In this paper we define a general framework for
computational models of visual attention. This model
naturally leads us to evaluative strategies for compar-
ing computational models and human subjects. Though
our framework and methods are applicable generally,
as a demonstration we apply these evaluative strate-
gies specifically to the model of Itti et al. (1998),
one of the most popular computational models serv-
ing as a basis for robotic implementations of visual
attention. It is hoped that our comparison methods can
be used not only to help evaluate robotic attentional
systems, but also to fine-tune them, as we work to-
wards robots that interact with humans by behaving like
humans.
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1.2. Previous Work

In regards to biological and theoretical models of at-
tention a large body of work exists (for specific is-
sues relevant to this work, see Itti et al., 2005a). In
regards specifically to the model of Itti et al. (1998)
(which we will, from this point on, term, hopefully
without offense, the “Itti model”, despite the model
having roots at least as far back as Niebur et al. (1995)),
several quantitative analysis have been accomplished.
Parkhurst et al. (2002) show that the saliency maps of
images, as computed by the Itti model, is higher in
locations fixated upon by human subjects than would
have been expected by chance alone. Ouerhani et al.
(2004) show that the saliency maps generated by the
same computational attention model are correlated to
approximate probability density maps of humans. In Itti
et al. (2003) temporal flicker and a Reichardt model for
motion are added to the Itti model, allowing for anal-
ysis of dynamic scenes. Using this augmented set of
features, Itti (2005b) shows that, in short movie clips,
the salience of this augmented model is higher at the
target of human saccades (rapid, abrupt eye motions
that shift the foveal focus from one spatial location to
another) and that the motion and temporal components
of the model are the strongest predictors of these sac-
cades. Most recently, Carmi and Itti (2006) show that
shortly after jump-cuts, when bottom-up influences are
presumably strongest, these dynamic components have
even greater ties to human saccades.

The Itti model and the interpretations of its results are
not uncontroversial. Turano et al. (2003) shows that the
gaze locations predicted by the static Itti et al. (1998)
model are no better than random, in direct contrast to
the Parkhurst et al. (2002) results. This experiment,
however, uses a different measure of performance,
comparing the unique model predicted gaze location to
the human gaze locations, and also takes a static model
and applies it to a dynamic environment. Tatler et al.
(2005) employ an alternative set of elementary features
as well as a different set of measures for performance
to provide an alternative interpretation of the results
of Parkhurst et al. (2002). Draper and Lionelle (2005)
show that the iLab Neuromorphic Vision Toolkit (iLab,
2006), an implementation of the Itti model, is not scale
or rotation invariant, thus questioning the appropriate-
ness of using the Itti model as the basis of computa-
tional object recognition systems. Finally, Henderson
et al. (in press) show that the Itti model can not account
for human behavior during search tasks.

Though there are similarities between our study and
the aforementioned work, noticeable differences exist.
First, our work employs a new metric for measuring the
distance between the gaze patterns of models and indi-
viduals based on classification performance and dimen-
sionality reduction. This contrasts with studies which
use Euclidean-based measures and is more similar, but
not equivalent to, those studies that employ similarity
based measures. Second, our work is not compatible
with previous works which operate over static images
(Ouerhani et al., 2004; Parkhurst et al., 2002 and sub-
sequent discussions). The addition of a temporal com-
ponent complicates analysis: human scan trajectories
cannot be collapsed across the time dimension when
the underlying substrate of attention, the visual scene, is
time-varying. We will return to this issue in Section 2.2
and Section 3. Third, most studies choose default “mix-
ing parameters” for the contribution of, say, color over
intensity, in the final calculation of the salience map. In
reality, the actual contribution of different modalities
is likely to be neither strictly linear nor strictly equiv-
alent. Computational models of attention can benefit
from some optimization of parameters to match human
gaze patterns, thus revealing statistics regarding the ca-
pacity of a model versus its default performance. In our
work, optimization occurs as a byproduct of viewing
gaze selection as a classification and dimensionality
reduction problem, as we will see in Section 3.3.

We should note that, despite our focus on the Itti
model, there exist many alternative computational
models of visual attention both with and without mo-
tion including the work of Tsotsos et al. (1995), Wolfe
and Gancarz (1996), Breazeal and Scassellati (1999),
Balkenius et al. (2004), and Tsotsos (2005). The analy-
sis of these models is not addressed in this paper due to
space considerations. However, it is the ability to com-
pare multiple such computational models that is one of
the capabilities of the framework presented here.

2. Computational Models of Visual Attention

2.1. A Framework for Visual Attention

Computational models of visual attention take as an
input some representation of the visual field, perform
some processing internally, and return as an output
a location upon which attention should be focused
(Fig. 2). Typically, the internal processing can be bro-
ken up into two broad components: feature extraction
and gaze computation. Feature extraction consists in
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Figure 2. Computational Model of Visual Attention. The spatio-
temporal scene I (s, t), which is a function of a spatial coordinate s
and a temporal coordinate t , is operated upon by feature extraction
to provide the features F(s, t). The gaze computation module then
takes these features and computes a gaze point g(t) representing the
point in the spatio-temporal scene that is most likely to be fixated
upon. Gaze computation is typically broken up into two phases, an
attention model that transforms features into a saliency map, and a
gaze policy, that operates over the saliency map to determine the
actual fixation point.

forming some abstract representation of the raw in-
coming visual stream and can be arbitrarily complex,
ranging from simple filtering methods to systems that
employ a wide range of interactions to model the path-
ways of the human visual system. Gaze computation
consists in using the abstract representations generated
by feature extraction to determine the location to which
attention should be drawn. In many cases, gaze compu-
tation can be further broken up into an attention model
and a gaze policy. The attention model converts the
features generated by feature extraction into an inter-
mediate representation. Often, this intermediate stage
is represented as a saliency map that is proportional to,
for every spatiotemporal point in the scene, the like-
lihood that that point will be fixated. A control strat-
egy, the gaze policy, is then applied to the saliency
map to generate a fixation point. This can be as sim-
ple as choosing the point associated with the highest
salience in the saliency map. Many influential models
of visual attention, such as the biologically-inspired
model of Itti (1998) and the psychophysically-driven
model of Wolfe (1996), as well as implementations
built upon these ideas, such as the context-dependent
social behavioral system of Breazeal and Scassellati
(1999), obey this formulation.

We should note that, though we speak primarily of
bottom-up models of visual attention (i.e. stand-alone
models with predominantly forward-acting pathways
from the visual scene to actual fixation), we are nei-
ther biased towards them nor limited to them in our
framework. Contextual or contingent alterations to the
parameters of visual attention can easily be accom-

modated for by this system by taking into account an
augmented set of features, ones that perhaps are not
associated with the visual field, per se, but instead are
reflections of internal mental state, cross-modal influ-
ences, or some other set of unseen parameters leading
to visually contingent behavior. Top-down behavior at
the elementary level of the features themselves is also
possible, as illustrated by Tsotsos et al. (1995). This
type of feedback-effect between attentional model and
feature extraction is somewhat more difficult to rec-
oncile with the forward directed arrows in our model
(Fig. 2), but can be accommodated for with some addi-
tional complexity. In the interest of clarity and brevity,
we do not focus upon these top-down effects in this
paper, but we will return to this matter in our experi-
mental section (Section 5), where it becomes increas-
ingly apparent that context-dependent top-down ac-
tion does factor significantly in actual human visual
attention.

2.2. Features for Dynamic Environments

Our framework does not depend on any specific choice
of features; in fact, the utility of our framework de-
pends on the fact that various choices of features may
be compared. To guarantee a fair comparison, however,
the features to be compared should all be intended to
operate over the same type of scenes. Since our goal
is to utilize computational models of attention in dy-
namic environments, such as social situations, we can-
not be restricted to static images. Assuming that images
from the visual stream are static suggests that motion
is unimportant to visual salience, which is clearly in-
correct.

Beyond the requirement that features should ac-
knowledge that there exists a temporal dimension in
addition to the spatial dimensions, we do not specify
any definite form for features, except that there should
exist a set of features associated with every spatial and
temporal point of the spatiotemporal scene under anal-
ysis. We are then free to choose techniques for fea-
ture extraction. Sections 2.2.1–2.2.3 are examples of
some of the feature sets we will use in our analysis. For
simplicity, we will assume that there exist only two
spatial dimensions, i.e. our spatiotemporal scenes are
2D-images that change in time.

2.2.1. Features—Raw Image Patches. Raw image
patches (Fig. 3) are the simplest choice of features
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Figure 3. Features—Raw image patches. One of the simplest sets of
features we can employ is to use all the pixels within a spatiotemporal
rectangle centered at some point in the visual stream as features for
that point.

associated with some particular spatiotemporal point
(s0, t0) as:

F(s0, t0)={I(s0+δs, t0+δt)}, ∀ δs ∈ Ns, δt ∈ Nt

where Ns is some set of spatial offsets, Nt is some
set of temporal offsets, and the two sets together
define a spatiotemporal neighborhood in the vicin-
ity of (s0, t0). The use of raw image patches is in-
spired by the design of the eye, which has high
spatial acuity at the fovea, and lower resolution to-
wards the periphery (Tessier-Lavigne, 1991). By draw-
ing δs from some set of offsets that are tightly coupled
with the immediate region surrounding a particular s0,
we coarsely approximate this effect. In essence the
features that draw attention to a particular point are
highly connected to the history of what has transpired
near that point. We choose our spatial neighborhood
around a spatiotemporal point to be a square centered
around the spatial aspect of that particular point, and
causally from several points backwards in time: Ns =
{(δsx , δsy)} ∀δsx ∈ {−L , L}, δsy ∈ {−L , L} for some
characteristic length L .

2.2.2. Features—Gaussian Pyramid. A more satis-
fying alternative is to build a Gaussian pyramid of
the scenes by progressive filtering (Burt and Adelson,
1983) (Fig. 4). The features corresponding to a point
(s0, t0), then, are:

F(s0, t0) = {Ii(s0, t0 + δt)}, ∀i ∈ NL , δt ∈ Nt

Ii(s, t) = I(s, t) ∗ Gi

where G is a Gaussian filter, and Gi represents i convo-
lutions of G. In other words, the features at a particular
point correspond to raw image information at that point,
plus the image information of n +1 blurred versions of

features
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Figure 4. Features—Gaussian pyramid. This simple set of features
associates every spatiotemporal point (s, t) with the image character-
istics I(s, t) and n + 1 blurred out versions of I. In the above figure,
Gi is convolved with itself i times. Several time points are also em-
ployed in building the features fλ,τ , where λ represents the Gaussian
level and τ represents the time index.

the original image, NL = {0 . . . n)}, also at that same
point. As in 2.2.1, a select set of history is retained in
the temporal neighborhood Nt in order to capture the
time-varying nature of the scene.

2.2.3. Features—Biologically Inspired Models.
Currently, the most popular computational models of
visual attention existing on robotic platforms are based
on biological inspiration. The computational models
of visual attention mentioned at the end of Section 2.1
are all biologically-inspired models, differing in their
choices of features, techniques for saliency compu-
tation, and, ultimately, their intended purpose. Of the
models mentioned, the model of Itti et al. (1998) has re-
ceived the greatest attention in application and analysis.
For these reasons, we employ the Itti model exclusively
in our analysis of biologically-inspired models.

2.3. The Itti Model

The Itti Model is a feed-forward bottom-up computa-
tional model of visual attention, employing, at its most
basic level, decompositions into purely preattentive
features. This gives advantages in both speed and trans-
parency. It is a model that is not only simple but also
rigorously and specifically defined, a strong advantage
for implementation, extension, and reproducibility of
results. It is also possible to download the source code
for the Itti model (iLab, 2006), though we, in this study,
implement the Itti model in Matlab directly from Itti
et al. (1998). Note that we use the earlier version of the
Itti model as a base and not the augmented version of Itti
et al. (2003). We have also performed analysis over both
our custom implementation and the publicly available
source, a point which we return to in the discussion.
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The Itti model extracts the preattentive modalities of
color, intensity, and orientation from an image. These
modalities are assembled into a multiscale representa-
tion using Gaussian and Laplacian pyramids. Within
each modality, center-surround operators are applied
in order to generate multiscale feature maps. An ap-
proximation to lateral inhibition is then employed to
transform these multiscale feature maps into conspicu-
ity maps, which represent the saliency of each modality.
Finally, conspicuity maps are linearly combined to de-
termine the saliency of the scene. These operations are
summarized in Fig. 5.

The original Itti Model (Itti et al., 1998) did not
include a modality for motion. This was rectified by
later work (Yee and Walther, 2002; Itti et al., 2003).
However, there seems to be a mismatch between the
theoretical concerns of the model and the implemen-
tation (especially see Itti et al., 2003). The reasons
for this discrepancy are not clear. In this work, we
use a different formulation for motion saliency (see
Appendix A) which resulted in better empirical perfor-
mance. The differences between this formulation (the
addition of which will lead to the Extended Itti Model)
and previous work are subtle. However, our experience
with our own implementation, including use on a
humanoid robot, has shown the formulation presented
in Appendix A to be both reasonable and robust.

Input

Modality Extraction & Pyramid Creation

Modality
Pyramids

Center-surround differences

Feature
Maps

Multiscale Combination / Normalization

Conspicuity
Maps

Saliency Map

Linear Combination

Figure 5. Itti Model general architecture (adapted from Itti et al.
(1998)). Modalities such as color, intensity, and orientation are ex-
tracted and operated on over several stages in order to produce the
saliency map associated with the input.

2.4. The Computation of Fixation from Features

The gaze computation process takes, as an input, ex-
tracted features, and returns, as an output, a point of
fixation. As mentioned earlier, this process can be bro-
ken up into two modules: an attention model and a gaze
policy.

2.4.1. Attention Model. The attention model trans-
forms features associated with a particular spatiotem-
poral point into a single value that is representative of
how likely that point is to be focused upon. In other
words, if the original spatiotemporal scene is a color
movie with three channels, and this scene is analyzed at
the region level to extract D features at every point, the
mapping that occurs for each spatiotemporal point is
R2 × R+ → RD → R1. The last level in this transfor-
mation is the saliency map, a notion originally formu-
lated by Koch and Ullman (1985). We note that though
there appears to be some evidence for the coding of an
explicit saliency map in the brain (e.g. in the superior
colliculus, Kustov and Robinson, 1996; in the lateral
geniculate nucleus, Koch, 1984; in V1, Li, 2002; in
V1 and V2, Lee et al., 1999; in the pulvinar, Petersen
et al., 1987; Robinson and Petersen, 1992; in V4, Mazer
and Gallant, 2003; in the parietal cortex Gottlieb et al.,
1998; general discussion, Treue, 2003), the question of
whether or not saliency maps are actually present physi-
ologically has not been answered definitively. Here, we
use the saliency map purely as a computational conve-
nience, and where we do not denote saliency as “com-
putational saliency”, we hope that it is understood that
our work primarily refers to the computational repre-
sentation of saliency which may or may not have some
biological correlate. Without loss of generality, how-
ever, we can employ saliency maps as an intermedi-
ate step since any computational model that generates
some specific point corresponding to a point of fix-
ation has at least one saliency map that, under some
fixed gaze policy, returns the equivalent point. For ex-
ample, a saliency map that is zero everywhere except
at the point of fixation, where it is positive, will return
the correct point under arg max.

2.4.2. Gaze Policy. One of the simplest gaze policies
we can employ is one that simply indexes the location
in the saliency map corresponding to highest peak. In
other words:

g(t) = arg max
s

(S(s, t))
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However, there exist many possibilities for the con-
trol strategy. For instance, if the saliency map corre-
sponds to a probability distribution, sampling could
result in non-deterministic behavior. Additional struc-
ture, such as inhibition-of-return (as is implemented in
Itti et al. (1998)), can yield much more complex time-
varying behavior. In any case, the ability to obtain a
single point from a computational model of attention
allows us to build methods for comparing gaze patterns
directly.

3. Metrics for Modeling Visual Attention

To compare computational models of visual attention
and human subjects, we need to define some metric
over which some notion of similarity can be made. An
obvious choice for such a metric is gaze fixation dis-
tance. We can say that a particular gaze process Ga is
close to another gaze process Gb if the points of fixation
chosen by Ga and Gb are spatially close for all points
in time. However, the major problem with distance
measures is highlighted in Fig. 6. Essentially, em-
ploying distance as the sole measure of similarity re-
sults in questionable results since gaze patterns are
dependent on the underlying scene. Note that this
is true whether we employ distance directly or use
some nonlinear variant that is dependent upon distance,

Figure 6. Problems with Fixation Distance Metrics for Measuring
Similarity. In the case on the left, if some model picks point A and
another model picks point B, we could safely say that these two
models are dissimilar. Conversely, if one model picks A and another
model picks C, we could say that the models are similar. In this case,
a distance metric based on distance between fixations makes sense.
In the case on the right, if one model picks A’ and another model
picks B’, we can still say that these two models are similar. However,
if one model picks A’ and another model picks C’, the distance is
roughly equivalent to the case of A’-B’. However, the underlying
features at these points are very similar. In this case, using a fixation
distance metric does not make sense. By employing distance metrics
between points of fixation, we ignore the underlying substrate of
visual attention: that of features of the scene itself.

such as overlap of Gaussians centered at fixation
points.

An alternative to using distances for comparison is
to use some index of saliency as the measure. This is
the method employed in both Parkhurst et al. (2002)
and Ouerhani et al. (2004). Notably, both groups use
the locations that human subjects fixate upon to index
into the saliency map, and show that the saliency at the
locations attended to by humans is greater than what
would be expected by a random process. Since saliency
is assembled from features, and since features change
in a time-varying fashion, the technique of collapsing
eye movements across time, as done by Ouerhani, is not
applicable to our environment. For instance, if, on the
right image of Fig. 6, we were to show only one face,
and after some short time, cover that face and display
the other face for a time period equal to the first face
display, and if a process Ga focused on faces in both
situations, but a process Gb focused on the conjugate
empty space in the same situations, we would have
identically collapsed probability functions, but a very
different underlying gaze strategy.

Another alternative is to aggregate the looking points
of a large number of human subjects for each point in
time. On static images it is easy to obtain 10 seconds of
looking time at 60 eye recordings a second for a total of
600 eye fixations over an image for a single individual.
For time-varying images, however, we require either a
large number of subjects or a set of strong assumptions
about the probability fields associated with each eye
fixation (such as a Gaussian region centered about each
gaze fixation), to obtain the same level of sampling.
Using a large sample of individuals, of course, does
provide a great deal of information. However, in the
interest of a generalized computational framework for
visual attention, we desire a technique that, while still
being able to benefit from multiple sources of data,
is not completely dependent on the sampling size of
human data.

Finally, for non-biologically-inspired models, salie-
ncy is not necessarily a cleanly defined concept. Since
we want to compare models to models as well as
models to humans, it is in our interest to develop
some strategy that makes saliency somehow compara-
ble across various selections of features. The method
we employ in this work is to define distance at the
feature-level. That is, we say that two spatiotemporal
locations are “close” if their underlying features are
close. The particular implementation of this distance
measure is the subject of the next section.
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4. A Classification Strategy for Computational
Saliency

We desire a method for forming saliency from fea-
tures (ignoring task knowledge and other top-down
effects which definitely play a role in biological vi-
sual saliency, a point to which we will return later).
The method that we employ in this work is to divide
spatiotemporal scenes into two classes: (i) locations
attended-to and (ii) locations not attended-to. We de-
fine saliency as some function that is related to the
probability that a particular location, based solely on
its associated features, is likely to be fixated upon by
a human observer. By defining saliency in this man-
ner we achieve several goals: (i) we obtain a mapping
from features to saliency that corresponds to a struc-
tured and intuitive measure of distance in feature space;
(ii) we obtain a method that makes saliencies for differ-
ent choices of features comparable, since they represent
an underlying likelihood of fixation; and (iii) since fea-
tures are translated directly into saliencies, which, in
turn represent, in some fashion, probabilities, we do
not need to optimize an individual model to match a
human’s gaze pattern—such an effect is incorporated
implicitly in the mapping.

4.1. Bayesian Classification Strategy for Attention

We know that, for some feature vector f and class ci :

p(ci | f ) = p ( f | ci ) p (ci )

p( f )

If we were to use a Bayesian classifier, we would, for
two classes c0 = attended-to and c1 = not attended-to
= ¬c0, choose class c0 if p(c0| f ) > � p(c1 | f ) for
some threshold θ , and would choose class c1 otherwise.
We could thus define saliency to be:

ϕ( f ) = p( f | c0)

p( f | ¬c0)

However, ϕ can be arbitrarily large, due to the term in
the denominator. More problematic is that p( f | c) must
be estimated. This tends to be quite difficult in high di-
mensional spaces, and, even in low dimensions, may
require more complicated approximation techniques
such as mixture-of-Gaussians. Note that this formu-
lation is similar to work by Torralba (2003) and Itti and
Baldi (2006a), both of whom take a Bayesian approach
towards aligning scene features with points of regard.

4.2. Fisher’s Linear Discrimiant Strategy

Though useful as an intuitive conceptualization of the
visual attention process, it is not necessary to explicitly
form a probability map representing the likelihood of
attending to each spatiotemporal location. Attention
is directed towards some “interesting” point. In some
ways, it does not matter if the function governing the
decision to attend to some location is twice or three
times the value of some other, less likely to be attended-
to, point, only that it be greater. For this reason we can
relax the ideal that saliency should correlate directly
with a probability, and use forms of dimensionality
reduction to aid in the computation of salience. Many
dimensionality reduction schemes exist, with varying
abilities to adapt to non-linear relationships, and with
varying levels of biologically plausibility. The method
that we employ here is one of the oldest, and simplest,
techniques: Fisher’s linear discriminant.

By using this model, we do not presuppose the exis-
tence of any biological or psychophysical effect, and,
furthermore, only need to specify that we expect some
difference exists between the locations that are attended
to and the locations that are not. With the two classes,
c0 and c1, corresponding to points in the spatial tempo-
ral scene where gaze is fixated and points where gaze
is not fixated, respectively, maximization of the Fisher
criterion function:

J (w) = wt SBw

wt SW w

yields the solution:

w = S−1
W (m1 − m2) (1)

where

mi = 1

|ci |
∑
x∈Ci

x

and

SW = S1 + S2

with

Si =
∑
x∈Ci

(x − mi )(x − mi )
t = (|ci | − 1)

∑
i

= ki

∑
i

(2)
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(Duda and Hart, 2001). The projection matrix w is used
to project a location’s features to one dimension, and it
is this projection that serves to approximate saliency.

Of particular concern, however, is the fact that there
is a large asymmetry in the sizes of the populations of
classes. At any particular point in time, there are a large
number of regions corresponding to points not fixated
upon, but only one region corresponding to that point
upon which gaze is fixated. If we were to take Eq. (2)
verbatim, then we would end up with a projection pre-
dominantly shaped by the covariance of patches that
gaze is not fixated upon, and this, in turn, would be
similar to the general properties of the spatiotemporal
scenes in the data set we choose. Thus the hypothe-
sized difference in covariance structure between gaze-
fixated points and non-gaze-fixated points would tend
to be washed away. For this reason, we instead assume
that the factors ki in Eq. (2) are equal across classes.
This assumption leads to greater discrimination ability
between fixated and non-fixated points, as measured
empirically.

4.3. Rank Ordering

The measure from Eq. (2), a value for saliency at ev-
ery point, is a projection not in metric proportion. For
example, if application of our weight matrix to some
map of features were to yield a particular value at one
point, and half that value at a second point, we should
not interpret this to imply that the second point was
half as likely to be focused upon. We could reason-
ably assume, however, that the second point was less
likely to be focused upon. For this reason, instead of
using the value of saliency directly, we examine our
samples in terms of their ordering at a given point in
time. In other words, we assume that, for a given time
t , the saliency at any spatial location s can be com-
pared with the saliency of other spatial locations via
ranking. We do not assume that saliency computations
at different points of time can be directly compared,
as this would imply that our saliency measure in some
way represented some global metric with global impli-
cations rather than a local metric over local features.

It is important to note that many alternative strategies
exist for normalizing saliency. We could, for instance,
require the saliency map span a range of values from
0 to 1, or that the energy of the saliency map be nor-
malized. These normalization strategies require differ-
ent sets of assumptions. Our choice of attention model
will greatly impact these relationships. For instance,

the Bayesian strategy presented in Section 4.1, for-
mulated as a ratio, and the Fisher discriminant strat-
egy presented in 4.2, formulated as a projection, result
in two very different distributions. Since maintaining
comparability despite changes in the underlying atten-
tion model or feature extraction process is one of the
goals of this work, we employ a final measure that is
independent of monotonic transformations on saliency.

5. Experiments

We want to compare different computational models
of visual attention against human subjects. However,
since we are comparing multiple models, we must also
control for multiple sources of variation, such as the
inherent dimensionality and spatiotemporal extent of
the underlying features. By comparing a wide range
of parameters on our computational models, and by
choosing good controls for our human subjects, it is
hoped that these sources of variation can be controlled.

5.1. Data and Subjects

The human subjects in this experiment consist of 10
individuals drawn from a population of adolescents
and young adults that are intended to serve as age and
verbal-IQ matched controls for a different study, one
which compares these controls versus individuals with
autism (Klin et al., 2002). While this group is predom-
inantly considered normal, some of the individuals of
the population fall in a range that labels them as mildly
mentally retarded. It is our intent to conduct this exper-
iment over subjects that are slightly varied in mental
capability, as we do not expect our technique to hinge
on a notion of a “typical” human subject.

The gaze patterns for these human subjects are
obtained via a head mounted eye-tracker (ISCAN
Inc, Burlington, Massachusetts) under controlled
conditions as the subjects watch two different, ap-
proximately 1 minute long, clips of the 1966 black
and white movie “Who’s Afraid of Virgnia Woolf”.
The eye tracker employs dark pupil-corneal reflection
video-oculography and has accuracy within ±0.3o

over a horizontal and vertical range of ±20o, with a
sampling rate of 60 Hz. The subjects sat 63.5 cm from
the 48.3 cm screen on which the movie was shown at
a resolution of 640 × 480 pixels.

All gaze data, except for locations which were in-
valid due to technical or experimental issues, were
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used in subsequent analysis. That is, the results were
generated from gaze points that were not segregated
into saccades and fixations. The use of a simple veloc-
ity threshold criteria for saccade-fixation segregation
(Salvucci and Goldberg, 2000) with the cut-off set to
30 degrees sec−1 and subsequently labeled saccades
removed from study did not change our basic findings,
but did improve results across the board for human sub-
jects. Though the effect was small, this finding is con-
sistent with the theory that visual processing does not
occur during saccades. Since the use of a saccade iden-
tification scheme did not impact our results, in this work
we omit consideration of saccade identification reasons
of economy, with the understanding that the use of an
appropriate fixation and saccade identification scheme
is both relevant and important to a computational model
that seeks to describe human gaze patterns.

To assess the performance of human subjects ver-
sus chance, it is necessary to define comparative data
sets that are basically uncorrelated to human subjects.
However, we believe that it is not sufficient to simply
sample random points, or to compute statistics over the
entire saliency map, to generate our control data. Our
set of synthetic data consists of several different types
of random gaze strategies:

(1) random filters (RF) – these correspond to a random
weight matrix (Section 4.2). These are projections
that are completely uncorrelated with any events in
the visual scene.

(2) random saccades (RS) – these scan paths are cre-
ated by an algorithm that waits at a given spatial
location for some time and intermittently jumps to
new locations. The decision to jump is assessed
probabilistically, and the distance and angle of
jump are generated from uniform distributions ran-
domly.

(3) random physiological (RP) – these scan paths are
created algorithmically from physiological gaze
measurements using a probabilistic model. The
spatial gaze location of the RP scanpath as a func-
tion of the current movie frame number t is g(t),
with g(0) = s0 where s0 is the center of the screen.
At each new frame the gaze location is updated ac-
cording to g(t + 1) = g(t) + �(d(t)), where � is
a function that takes a step as determined by the
distance traveled d(t) = ||g(t) − g(t − 1)||. � is
spatial update in a polar frame, � = (dr cos(dα),
dr sin(dα)), where dr = d(t + 1), and dα is the
change in angle |α(t + 1)− α(t)|. dr is calculated

by a heuristic that samples from the distribution
p(d(t + 1)|d(t)), the dependence of the current ve-
locity on previous velocity. This incorporates the
idea that when velocity is high (as in a saccade),
it is more likely that movement will continue to
be high, and when velocity is low (as in microsac-
cades during a fixation), it is more likely that move-
ment will continue to be low. The heuristic used
is a spill search followed by random sampling:
we first locate all time points in the physiolog-
ical samples where the distance traveled during
a given frame was closest to d(t) plus or minus
some spill fraction (e.g. 5% of all indices, centered
at d(t)). We then sample randomly from this col-
lection to get dr. Similarly, the change in angle
dα is calculated by sampling from the distribution
p(dα(t + 1)|d(t + 1), d(t)), where joint proximity
to d(t + 1) and d(t) is calculated in the Euclidean
sense. The dependence of dα on both previous and
current distance reflects the interaction between de-
flection and velocity in gaze patterns.

The parameters of this synthetic control data are varied
in order to span a space of random behavior, and N =
5 synthetic sets are generated for each random gaze
category.

5.2. Methods

The modified Itti Model with motion, which we employ
in our analysis, computes its output on a specific sized
image. Since we want our results to be comparable
spatially, we first begin by downsampling our input
stream so that all saliency maps will match the final size
of the Itti model. That is, for raw pixel and Gaussian
pyramid techniques, we downsample each image in the
stream from 640 × 480 pixels to 40 × 30 pixels. This
results in a fairly coarse spatial resolution, implying
a not inconsequential degree of blurring. However, we
have found, with all other parameters held constant, that
this blurring increases the performance of our models,
likely due to two reasons: (i) it effectively eliminates
error due to the inherent inaccuracy of the eye tracking
technology used, and (ii) downsampling increases the
spatial span of our features. The tradeoff between the
information lost and spatial range gained is an issue
that we hope to address in future work.

Next we apply our various computational models of
visual attention to generate features associated with
every spatiotemporal point in the visual scene. For
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every model, the features will be drawn from two
time points: {−100 ms, −300 ms}. In other words,
the features associated with a spatiotemporal point
consist of features extracted from the history of that
spatiotemporal point, since gaze fixation is not an in-
stantaneous operation, but instead occurs shortly after
some salient event or feature is detected. Though we
will vary the parameters of our computational mod-
els, we will adopt some standards for each model we
employ:

(1) raw image patch features – patches are always cen-
tered on some pixel, are always square, and con-
tain an odd number of rows and columns. Since
our input stream is black-and-white, there is only
one dimension associated with each spatiotempo-
ral point: intensity. Each raw image patch is then
(length × width × point dimensions × temporal
dimensions) = N × N ×1×2 = 2N 2 dimensions.

(2) Gaussian pyramid features – we will always em-
ploy 3 total levels in our pyramid. If we need to vary
the dimensions of this model, we use data from the
pyramids in adjacent locations, as we do for raw
image patch features. Each pyramid patch is then
N × N × 3 × 2 = 6N 2 dimensions.

(3) Extended Itti Model features – We use modali-
ties of intensity, orientation, and motion. We omit
the color modality since the images are black
and white. As with the other features, if we need
to extend the dimensionality of the Extended Itti
Model we use features from spatially adjacent cells.
Each feature associated with some spatiotemporal
point as computed by this Extended Itti Model is
N × N × 3 × 2 = 6N 2 dimensions.

After we obtain our features, we compute for human
and synthetic data sets the optimal filters (as described
in Section 4.2) for each individual, where an individual
is represented by some gaze trajectory over the spa-
tiotemporal scenes. Naturally, we exclude random fil-
ters from this process. We begin by assembling the set
of attended-to features by indexing the features found
at each spatiotemporal location that a particular indi-
vidual’s gaze is directed. Next we obtain the set of
not attended-to features by indexing the features not
found at the gaze locations of that particular individual
(Fig. 7). We do this by randomly sampling locations
that are drawn from the pool of points some minimum
distance away from the attended-to location (this dis-
tance is, in this work, 31.25% of the number of rows).
The minimum distance requirement helps to make the

Figure 7. Extracting features for attended-to and not attended-to
locations. The rightmost box (marked with A) is centered at the
attended-to location. The boxes found to the left (unmarked) of the
rightmost box are randomly sampled points that are used to generate
the not attended-to pool.

two distributions distinct, as it is known that image
patches in natural images are correlated to their dis-
tance. 15 not attended-to locations are sampled for ev-
ery attended-to location. Together these sets of features
enable us to compute a filter for each individual by find-
ing the optimal projection as given by Eq. (1).

By taking these filters and applying them to the un-
derlying features found at each point in the visual scene,
we can obtain saliency maps tuned to each individual as
they watch some particular movie clip. As discussed in
Section 4.3, we rank order the saliency maps spatially
for every time point to obtain rank-ordered saliency
maps, and use this as our comparative function. In other
words, given an optimal weight Wu computed for some
individual u’s gaze pattern, we can calculate the time-
varying saliency map Su(s, t) tuned to that individual
u:

Su(s, t) = Wu ∗ F(s, t)

We then compute, for each frame in the movie, the rank
percentile of v’s gaze fixation on Su . That is we find:

su,v(t) = Su(gv(t), t)

r (x, thr) =
{

0, x ≥ thr

1, otherwise

Ru,v(t) =
∑

i∈I r (Su(i, t), su,v(t))

|I |

where gv(t) is the spatial gaze location fixated upon by
user v at time t , I is the set of valid spatial locations
in the spatiotemporal scene, and Ru,v(t) is the rank
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percentile score at time t of v’s gaze fixation on the
saliency map as trained by user u.

Since we are interested in comparing overall perfor-
mance and group effects, we then generate a receiver
operator characteristic (ROC) curve for Ru,v(t) as a
function of response percentile rp. That is, in order
to compute the overall goodness of fit of u’s model
on v’s data, we sort all the frames corresponding to
Ru,v(t) and sample the sorted list at various response
percentiles rp.

Finally, this information is aggregated into groups
and compared. We are interested in both individual ef-
fects as well as group effects, and can obtain these
measures by utilizing the filters of one individual on
other individuals (i.e. u and v in the above formulation
do not have to be the same). For instance, we examine
the performance of a human individual’s filter on the
individual himself (“matched” datasets, group n ma
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Figure 8. ROC curves for the one variation of the Extended Itti Model. This model extracts 3 modalities (orientation, intensity, and motion)
over a 3 × 3 patch that extends across 2 time points. The various curves represent different training/testing variations. For instance, the upper
right image are statistics for individuals trained on a movie clip A and tested on a different clip B. The y-axis in all graphs is the average saliency
rank percentile reported for a particular individual’s gaze trajectory. The x-axis is the percentile of all frames that fall beneath the corresponding
saliency rank percentile. The categories are: n ma = human subjects trained on themselves and tested on themselves; n un = human subjects
trained on themselves and tested on all other human subjects; r f/n, rs/n, r p/n = randomly generated filters, synthetic saccades, synthetic
random physiological simulations, respectively, each applied to human subjects. These graphs show that the synthetic trajectories, when trained
and applied to human subjects, perform basically at chance level, in comparison to human trajectories trained and tested on other human subjects.
The results also show that tuning is tied to particular spatiotemporal scenes and does not transfer across data sets.

in figures and tables), as well as the performance of
a human individual’s filter on other individuals (“un-
matched” datasets, group n un in figures and tables).
We also examine the filters of the synthetically gen-
erated random filters, random saccades, and random
physiological simulations, when applied to human in-
dividuals (rf/n, rs/n, and rp/n, respectively). We train on
every other frame of only one particular movie. This al-
lows us to test upon the frames not trained upon as well
as on a separate movie that does not overlap temporally.

5.3. Results

By tuning our models to each individual human subject
as well as all synthetic data, we are able to generate
ROC curves as shown in Fig. 8. We are able to compute
cross statistics over different training/testing pairs (i.e.
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Table 1. Median gaze saliency rank percentiles for variations of
computational models of visual attention. Each table represents a
single testing/training pairing (e.g. A on B implies that the table
represents models trained on data set A and tested on data set B).
The columns L is the spatial length (in pixels), and ND is the num-
ber of dimensions associated with that particular model’s features.
The categories are the same as those used in Fig. 8, and the values
are reported in mean percentages with standard deviations.

A on A L ND n ma n un rf/n rs/n rp/n

Raw 1 2 74 ± 5 74 ± 5 66 ± 11 50 ± 20 54 ± 23

Raw 5 50 86 ± 3 80 ± 4 53 ± 15 50 ± 10 51 ± 18

Pyramid 1 6 82 ± 3 81 ± 3 47 ± 24 52 ± 19 53 ± 23

Pyramid 3 54 87 ± 2 80 ± 4 52 ± 23 52 ± 9 52 ± 17

Itti 1 6 79 ± 4 79 ± 3 45 ± 24 63 ± 14 58 ± 25

Itti 3 54 86 ± 2 80 ± 4 56 ± 16 44 ± 10 46 ± 14

A on B L ND n ma n un rf/n rs/n rp/n

Raw 1 2 77 ± 6 77 ± 6 69 ± 12 51 ± 24 55 ± 27

Raw 5 50 86 ± 3 85 ± 4 55 ± 17 53 ± 9 46 ± 22

Pyramid 1 6 87 ± 3 87 ± 4 47 ± 27 56 ± 22 48 ± 29

Pyramid 3 54 86 ± 3 85 ± 4 48 ± 24 55 ± 9 45 ± 21

Itti 1 6 78 ± 4 77 ± 3 48 ± 22 60 ± 18 58 ± 23

Itti 3 54 78 ± 4 78 ± 5 55 ± 15 43 ± 13 46 ± 17

B on A L ND n ma n un rf/n rs/n rp/n

Raw 1 2 74 ± 5 74 ± 5 45 ± 24 45 ± 22 55 ± 23

Raw 5 50 81 ± 3 80 ± 3 47 ± 17 49 ± 7 55 ± 8

Pyramid 1 6 80 ± 4 80 ± 4 46 ± 26 44 ± 19 67 ± 15

Pyramid 3 54 80 ± 3 80 ± 3 62 ± 18 47 ± 9 54 ± 9

Itti 1 6 80 ± 4 80 ± 3 66 ± 11 44 ± 17 51 ± 19

Itti 3 54 80 ± 4 79 ± 4 58 ± 22 43 ± 8 48 ± 13

B on B L ND n ma n un rf/n rs/n rp/n

Raw 1 2 77 ± 6 77 ± 6 45 ± 28 44 ± 26 56 ± 27

Raw 5 50 91 ± 2 87 ± 3 51 ± 21 51 ± 11 51 ± 13

Pyramid 1 6 88 ± 3 87 ± 3 45 ± 31 43 ± 25 67 ± 21

Pyramid 3 54 91 ± 2 88 ± 4 65 ± 23 47 ± 9 49 ± 16

Itti 1 6 81 ± 5 79 ± 5 65 ± 11 47 ± 17 52 ± 18

Itti 3 54 89 ± 2 84 ± 4 54 ± 25 49 ± 11 45 ± 13

training on one movie, testing on another), as well as
over different groupings of human and synthetic data
(Table 1). This reveals several findings.

First, human subject tuning is better than random
even for the largest reported synthetic result (p <

0.05). In other words, chance, or some general arti-
fact of our processing technique, can not account for
the performance of any model of visual attention that
is tuned to human subjects.

Second, if we examine the matched versus un-
matched human performance across models, we see
that, for models trained and tested on the same movie
clip, differences appear only as the number of dimen-
sions of the models increase. This suggests that our
computational models of visual attention are being
tuned to general, rather than specific, strategies at low
dimensions. For instance, if we look at the data with
the lowest number of dimensions in Table 1, that of raw
patches of length 1, we can see that matched perfor-
mance is equivalent to unmatched performance for all
cases. This implies that, in this case, tuning the model to
a particular individual does not provide greater speci-
ficity. When we boost the dimensionality of our features
to around 50, however, we see that, for models tuned to
particular individuals and tested within the same data
set, greater specialization is achieved.

This brings us to the third point: when we apply tuned
models to gaze trajectories obtained over different data
sets, all differences between matched and unmatched
subjects disappear. This suggests that tuning is specific
to the spatiotemporal scene over which the model is
trained, and that the effects of tuning, when they are
apparent, disappear as we move further from the train-
ing source (Fig. 9). At some basic level, this implies
that the actual parameters of these computational mod-
els of visual attention are time-varying, suggesting that
top-down or contextual effects upon visual attention are
observable and significant. In Fig. 10 we can see this
more clearly. When the focus of a human individual
shifts from the person who is talking to the person who
is being talked to, the model can not readily adapt. In
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Figure 9. Change in model performance as function of distance
from the training scene. This model, a raw patch model of high
dimensionality (L = 11), is trained on subsets of scene A. We take A
and divide it into three segments and train on segment 1. The highest
matched performance occurs in segment 1, as expected. We note
that as we move our testing segment away from segment 1, matched
performance decreases with little change to unmatched performance.
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Figure 10. Effects of Context on Models. The top graph represents
the time varying gaze saliency rank percentile computed for a human
subject (under the 3 × 3 × 3 × 2 Itti Model) applied to his own
trajectory. The arrows point to the actual visual scene shown at the
associated point in time. The crosses represent the locations where
the human subject was actually looking at those times. Note that the
model is high-scoring at first, implying that it is well matched to the
situation where the blonde rightmost female character is speaking.
When the focus of attention of the human subject shifts to the left
female character, the model is unable to account for this change.

some sense, knowing who is being talked to represents
a complex social phenomenon: a truly high-level top-
down effect. Our framework thus provides for mecha-
nisms where the weaknesses in a particular visual at-
tention model can be pinpointed and investigated.

Finally, we note that, within our framework, the more
complicated Extended Itti Model does not necessarily
perform any better, after tuning, than much simpler
feature extraction methods. In some ways, this is not
unexpected, since biologically-inspired models are not
necessarily models that seek to replicate human gaze
patterns, but rather are often intended to provide some
didactic or theoretical role. Still, it is surprising how
well a simple method, such as a set of Gaussian pyra-
mid features, can perform even at low dimensionalities
(Table 1, A on B, 4th row).

6. Discussion

Our system addresses the problem of how computa-
tional models of visual attention can be compared with
human subjects, and thereby be compared with one an-
other. Validation against human subjects is obviously

not the only measure by which computational mod-
els of attention may be judged. Draper and Lionelle
(2005), for example, evaluate the Itti Model in terms of
its sensitivity to similarity transforms. Though Draper
and Lionelle frame their investigation in terms of
appearance-based recognition systems, their work is
applicable more generally. The possibility that known
statistical and theoretical properties of the human visual
attention system be used to directly evaluate computa-
tional models is both intriguing and promising.

The use of random models as controls is one way
that such properties could be investigated. The ran-
dom models used in this current study all share one
common aspect: they are computed without regard to
absolute spatial and temporal information. Different
choices of models which incorporate more informa-
tion could help determine how particular aspects of the
scene interact with the chosen features. For instance, we
could randomly choose spatial locations from the set
of gaze positions reported in human observers. Such a
model would be spatially correlated but temporally un-
coupled. Its use as a control would give an indication
of the feature dependence on spatial versus temporal
information. We could also use human subjects, per-
haps engaged in specific tasks, such as target search,
as a comparison against the free-viewing experiments
we have seen here. Such search-based task patterns
would be completely physiological, but the scanning
patterns would represent a different underlying moti-
vation. The teasing apart of specific interactions us-
ing appropriate controls is a current area of active
investigation.

We should also note that though our formulation is
based upon probabilistic intuitions, it does not serve
necessarily as a generative model for visual attention. In
other words, our computational framework is capable
of revealing insights regarding how well a model is
performing, but it makes no statement regarding what
gaze policy should be applied.

An issue that makes it difficult to step directly to
some generative model for gaze trajectories in our
framework is the fact that visual attention is not state-
less. Viewing visual attention as a purely feature-based
probabilistic problem leads to behavior that is non-
physiological. As seen in Fig. 11, human eye move-
ments are composed of fixations interspersed with sac-
cades. If we sample from an approximation to the un-
derlying probability distribution, we ignore the strong
temporal and spatial correlations inherent to human
eye trajectories. It is likely that this framework could
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Figure 11. Human gaze data (left) and a trajectory drawn proba-
bilistically from an approximation to the underlying density (right).
Note that whereas saccades and fixations are identifiable in the left
image, these properties do not exist in the right image.

benefit from some type of state, as would be found in
a Markov model, for example.

As we have seen, another problem that complicates
our analysis is the presence of context-dependent be-
havior. It is likely that an observer viewing some scene
is constantly changing his preferences and objectives,
as dictated not only by the scene, but also by some unob-
servable internal mental state. These shifting priorities
and desires are likely one factor that contributes to the
degradation of our saliency computation as the tested
scene becomes temporally further removed. An alter-
nate interpretation of the same effect is one of overfit-
ting. However, if this were the case, the true unmatched
normal to normal comparison would be better than
what we have reported. As it stands, the results are
already shown to be significantly different from scene-
uncorrelated random models. We should note, how-
ever, that the issue of context and top-down effects
somewhat hinges on definition. Context effects, in a
computational sense, are those effects not adequately
represented by the features of a given model. As these
features come to be incorporated into a model, their
validity as well as the extent of their applicability in-
creases; correspondingly, the rapidity of performance
loss due to shifts away from the training source de-
creases. A model that seeks to represent the scanning
pattern of an observer examining a pair of faces laid
side by side might have abysmal performance until it
incorporates the fact that one of the faces is the mother
of the observer.

Our lack of attention to local trajectory statistics and
internal mental state is also reflected in our decision
to omit the inhibition-of-return mechanism from the
Itti Model, possible making its comparison an unfair
one. However, it is not clear how inhibition-of-return
could be adapted to a dynamic environment with mo-
tion, however, since the addition of a temporal com-
ponent might suggest that the areas corresponding to

inhibited behavior should be time-varying. In addition,
a question arises as to how the inhibition-of-return
mechanism should be initialized, as the gaze trajec-
tory predicted by the model would interfere with future
saliency calculations. This added complexity is likely
to be partially why inhibition of return is omitted from
many recent investigations of computational saliency
(Carmi and Itti, 2006; Itti, 2005b; Itti, 2006b). However,
we must admit that use of inhibition of return in the Itti
model, which provides some local state and memory,
could impact our results, though it is not clear whether
it would make the Itti model perform better or worse, or
whether other feature extraction methods would benefit
from a similar mechanism.

Our custom implementation likely differs in
some ways from the implementation available at
(ilab.usc.edu). Because the specifics of the Itti model
are clearly defined, with the possible exception of mo-
tion, we found it more expedient to implement the
model directly. This resulted in a large improvement
in the ability of the Itti model to adequately describe
the gaze patterns of human observers. The Itti model
has evolved substantially from its inception, and it is
likely that recent incorporations of signal rectification
and local enhancement which, visually, give a more
interpretable picture of the salience associated with a
given modality, also lead to some loss of information
that is not recoverable, and thereby not available for
optimization at our classification stage. We have exam-
ined the Itti model from multiple angles, under multiple
testing conditions, and our results are similar in all per-
mutations.

We should note that we have chosen one particular
path in our framework for reasons of computational ex-
pediency and illustrative use, but many options exist.
In particular, we have used the notion of saliency as
an intermediary step in calculation mainly due to its
intuitive nature. However, we are, in fact, evaluating
trajectory generators simply by dimensionality reduc-
tion over human trajectories—a notion that does not
actually require either a true probabilistic underpinning
or an explicit formulation of saliency in the manner of
Koch and Ullman (1985). There exists an equivalence
class of possible saliency schema, the nature, limita-
tions, and capabilities of which we hope to investigate
in the future.

7. Conclusions

We have presented a general technique for evaluat-
ing whether a computational model for visual attention
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behaves in a human-like manner by direct comparison
with human subjects. We have shown that distance met-
rics in image space are insufficient for a general concept
of proximity for visual attention, and have developed
a classification strategy employing dimensionality-
reduction that instead operates in feature space.
This classification strategy not only provides a more
standardized basis for a notion of salience, but also pro-
vides a common interface upon which different models
of visual attention may be compared. We have taken a
probabilistic version of this classification strategy and
transformed it into a dimensionality reduction problem,
opening up a broad area of possible inquiry.

By employing our framework, we have shown
that the popular, biologically-inspired bottom-up Itti
Model, though it serves as a cornerstone for many
robotic implementations for visual attention, does not
necessarily provide any advantage in terms of emulat-
ing human behavior.

In conclusion, we have demonstrated how com-
putational models of visual attention can be devel-
oped, applied, optimized, and evaluated: steps we
hope bring us closer to robots that look at where hu-
mans look, on the road towards seeing what humans
see.

Appendix A—The Extended Itti Model (Motion
Extension)

Simple image difference detection (by computing the
absolute difference between adjacent frames, as is done
in Niebur and Koch (1996)) is insufficient as a basis
for a motion modality, as it fails to highlight known
pop-out effects (Fig. 12, right) (Wolfe, 2004). Simi-
larly, employing optical flow (see (Beauchemin and
Barron, 1995) for a review) as a basis for motion
salience typically involves a retrospective interpreta-
tion of the optical flow field, a paradigm that does
not fit neatly into the feedforward framework. Opti-
cal flow techniques which could be easily adapted,
such as Heeger’s work with hierarchical spatiotempo-
ral Gabor filters (1988), are computational expensive as
they incorporate numerical optimization at each image
location.

We employ a compromise approach as a basis
for computing motion saliency, a variation of time-
varying edge detection (as recounted in Jain et al.
(1995)). The time-varying “edginess” of a point, Es,t ,
is computed as the product of the spatial and temporal

Figure 12. Motion pop-out stimuli composed of boxes (top panes)
and associated final motion conspicuity map (bottom panes). The
left figures represent directional competition, with a single stimuli
moving leftwards in a field of rightward moving distractors. The
right figures represent cross-orientation competition, with a single
upwards moving stimuli popping-out among rightward moving dis-
tractors. The arrows in the top panes are for illustrative purposes
only, and did not appear in the actual movie.

derivatives:

Es,t (x, y, t) = Ds I (x, y, t) · Dt I (x, y, t)

where I is the intensity of an image at the spatial coor-
dinates, x and y, and at the temporal coordinate, t, and
s is some spatial direction s = s(x, y). In our work,
we approximate the spatial derivative with the imagi-
nary component of the Gabor-filtered image obtained
during the basic Itti Model extraction, and obtain the
temporal derivative from image differencing after tem-
poral filtering. Note that this technique can only provide
the combined magnitude of motion and intensity and
not the magnitude of stimuli motion alone. This flaw,
however, is mitigated by the multi-scale aspect of the
Itti Model. Our motion extension is very much in the
style of the Itti model as it is (i) integrated in a fash-
ion similar to that of the orientation modality and does
not break away from the original model’s methodol-
ogy or framework, (ii) computational quick and easy
in implementation, and (iii) capable of describing a
wide range of pop-out motion phenomena. An up-
dated relational diagram for the Itti Model is shown in
Fig. 13.

We begin by extending the original Itti Model (Itti
et al., 1998) equations in time (e.g. the intensity modal-
ity I (σ ) becomes I (t, σ ), the red-green feature map
RG(c, s) becomes RG(t, c, s), etc.) Working purely
with image intensities, under the assumption that mo-
tion is largely color-blind, for N frames I (t, σ ), t ∈
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Figure 13. Relational diagram of Extended Itti Model. At the fea-
ture level, intensity informs orientation, which in turns informs mo-
tion. At the conspicuity level, aspects of each modality compete
within that modality. The results of conspicuity computation are then
funneled into a final saliency.

[1 . . . N ], we obtain motion feature maps in the fol-
lowing manner:

(1) Compute the N -th order first temporal derivative,
Mt (t, σ ).

(2) Compute the spatial derivative, Ms(t, σ, θ), from
gradients extracted during orientation computa-
tion:

Ms(t, σ, θ) = I m{Oc(t, σ, θ)}

(3) Compute the motion feature map M(t, σ, θ) as the
product of Ms(t, σ, θ) and Mt (t, σ, θ):

M(t, σ, θ) = Ms(t, σ, θ) · Mt (t, σ, θ )

The motion conspicuity map is derived directly from
the above algorithm, using the normalization operator
N, and a cross-scale addition operator, ⊕, as defined
in Itti et al. (1998), to emulate the effects of lateral
inhibition:

(1) Compute the direction of motion for each ori-
entation to obtain positive and negative direc-
tional features. The positive directional feature
M+(t, σ, θ) is defined as

√
M(t, σ, θ) at locations

whereM(t, σ, θ ) is positive, and 0 otherwise. Sim-
ilarly, the negative directional feature M−(t, σ, θ)
is defined as

√−M(t, σ, θ) at locations where
M(t, σ, θ) is negative, and 0 otherwise.

(2) Compute the directional contribution to motion
conspicuity, Md (t, σ, θ ) by allowing positive and

negative directional motion features to compete lo-
cally:

Md (t, σ, θ) = N (M+(t, σ, θ)) ⊕ N (M−(t, σ, θ))

This accounts for popout phenomena such as
shown in on the left in Fig. 12.

(3) Compute the across-scale contribution for each ori-
entation, Mo(t, θ ).

Mo(t, θ ) = 8⊕
σ=0

N (Md (t, σ, θ ))

This is equivalent to saying that all scales at a par-
ticular orientation compete with one another.

(4) Compute the conspicuity map for motion, M̄(t), by
combining across all orientations:

M̄(t) =
∑

θ∈{0, π
4 ,π, 3π

4 }
N (Mo(t, θ ))

Motion conspicuity is then added, as an additional
modality, to the final saliency map:

S = 1

4

(
N ( Ī ) + N (C̄) + N (Ō) + N (M̄)

)
replacing the basic Itti Model equation for saliency
(which only neglects a term for motion).
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