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Computational models of development aim to describe the mechanisms that underlie the acquisition 
of new skills or the emergence of new capabilities.  The strength of a model is judged by both its 
ability to explain the phenomena in question as well as its ability to generate new hypotheses, 
generalize to new situations, and provide a unifying conceptual framework.  Although often 
constructed using traditional engineering methodologies, evaluating the performance of a 
computational model of development in terms of traditional perspectives is a flawed approach.  This 
paper addresses the fundamental issues that confound quantitative analysis of computational models 
of developmental systems.  In particular we focus on the following recommendations: 1) don’t 
equate the success of a developmental model with its peak performance at some task; 2) don’t 
employ purely subjective or vague measures of model fitness; and 3) don’t hide or reject variation as 
found in the computational model.  Along the way, we discuss the aspects of computational models 
of development that lead to the requirements for specialized methods of analysis. 
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1.  Introduction 
 
Recently, many researchers in robotics have begun moving away from constrained 
systems tuned for specific domains and towards more general systems capable of 
operating under a wide range of conditions and environments.  This trend has been 
motivated largely by a growing body of scientific work that links the flexible nature of 
biological systems with the interactions between developmental processes and 
environmental concerns.  Notably, the emerging field of autonomous mental 
development2 seeks to bring ideas from basic research in neuroscience and 
developmental psychology to robotics by situating robots in a dynamic real-world 
environment while equipping these robots with only the most parsimonious set of self-
scaffolding guiding principles.  It is hoped that robots reared under such conditions will 
develop the capacity to operate generally, without the need for task specification and 
without the need for environmental constraints.  It is this promise of open-ended 
incremental improvement that has lead to a great deal of interest in developmental 
robotics3,4,5. 

 
a This paper is a revised version of a paper originally published and presented at the International Joint 
Conference on Neural Networks in Vancouver, B.C. 20061. 



The mapping from biological and psychological research to robotics, however, is 
often difficult.  The extraction of key concepts and basic principles from biology and the 
translation of these ideas into software is a process that is not wholly natural, partly due 
to the discrepancies between cells and silicon, and partly due to the ambiguity and multi-
faceted nature of the biological developmental process.  The conversion process is aided, 
however, by the use of modeling.  The computational modeling of developmental 
processes treats aspects of the development system as a metaphor, and, within this 
metaphor, finds relations and links between the interacting components.  By employing 
computational models in the investigation of developmental processes, it is thus possible 
to gain insight into the underlying principles that govern the process, and it is this insight 
that can form the basis for autonomous mental development.  Given that there exists 
utility in the creation and analysis of these developmental models, however, one is faced 
with the task of evaluating these models.  

At first glance, it seems that those who employ computational models to describe 
developmental phenomena belong in the same camp as those who want to build better 
computational systems using inspiration from developmental biology.  In both cases, the 
goal is the creation of a computational framework, simulation, or mathematical 
formulation.  In both groups, researchers are intimately concerned with the fundamental 
mechanisms driving developmental processes.  However, the aims of these two groups 
could not be more dissimilar: one group uses biological themes to develop better 
engineering; the other uses computational techniques to formulate better descriptions of 
biological development.  This paper focuses on those who seek to illuminate biological 
development through the use of computational modeling, and discusses the issues that 
arise when these systems are evaluated in traditional engineering terms. 

Computational models are employed in all areas where human developmental 
progression can be tracked.  For instance, computational models of development are used 
to model observed patterns of word pronunciation6, the development of auto-associative 
memory7, the advent of numerical perception8,9, the incorporation of objects into 
categories10, and the progression of motor skills necessary for coordinated reaching and 
pointing11.  These models of development are not only found in many different domains, 
but are also employed in a wide range of applications including models of the learning of 
sets of skills12, investigations into the mechanisms underlying the development of 
cognitive capabilities13, and comparisons of populations involving atypical 
developmental progression14,15.  These models employ subsystems and components that 
range from the most elementary, as is found in studies that examine the interaction of 
simulated neurons in human memory16, to the exceedingly complex, as is found in 
models of social behavior and reasoning17. 

The diversity of domain, application, and technique confounds the formulation of a 
single, unified, globally applicable method for evaluating the fitness of a computational 
model of development.  Like metrics for measuring the intelligence of artificial 
computational systems18,19, the characterization of a developmental model must take into 
account multiple dimensions that often reflect very specific aspects of the model’s 



purpose and role.  Despite their apparent heterogeneity, however, computational models 
of developmental systems share several commonalities.  First and foremost, 
developmental models generate multiple results that must be matched in a temporal 
progression.  That is, these models do not operate along a simple binary axis of “correct” 
or “not correct”, but rather progress from milestone to milestone. 

Also, like most models, the utility of a computational model of development is 
connected with its ability to accurately represent the phenomena in question.  In contrast 
to models found in most pattern-recognition applications, however, the peak performance 
of developmental models is not of prime importance.  This is not to say performance is 
unimportant, as a model that is intended to represent the development of some learned 
skill should ultimately produce measurable improvements in performance.  However, it is 
the relationship of learning, the progression of developmental trends, and the interactions 
of the components of the model that are of primary interest. 

Given that pure performance is not the measure by which a computational 
developmental model should be evaluated, the question arises: what should the measure 
be?  As mentioned earlier, due to the diversity of developmental modeling, this is not a 
question that can be answered simply and neatly.  In many ways, it makes more sense to 
address the question in the negative: what are some common errors and misconceptions 
in the evaluation of computational models of development? or, more simply, how should 
we not evaluate developmental systems?   

This paper seeks to provide guidelines as to how developmental mechanisms may be 
compared and quantified, and how common pitfalls may be avoided.  In order to properly 
phrase our goals, in Section II, we first discuss the difficulties that arise when we try to 
take a conventional engineering metric of performance, such as a task-based performance 
measure, and attempt to apply it as the sole measure of the worthiness of a developmental 
model.  We continue, in Section III, with a discussion on how computational models of 
development require rigorous methods for analysis as compared to subjective, vague, or 
superficial measures of success.  In Section IV, we show how the variance of 
computational models of development, in terms of its emergent behavior, is actually an 
advantage, and not a problematic deficit that needs to be hidden or rejected.  We then 
conclude with a summary of the main points of this paper, together with a discussion on 
the utility, purpose, and ultimate role of computational models of development in 
practical application as well as in theoretical investigation.  As we proceed, we will give 
simple toy examples that are illustrative of our major points. 

2.  The Problem with Peak Task Performance 

In many pattern recognition and machine learning applications we are interested in 
training a computational model to best perform some specific task.  For instance, a face 
recognition system used in biometric authentication can be evaluated solely on its ability 
to accurately recognize specific faces.  However, the developmental time course of face 
recognition, as recorded by psychological and psychophysical experiments in neonates, 



infants, children, and adults, is much more complex than the mere fact that recognition 
can occur at some maximal accuracy.  Evaluating a computational model of a 
developmental system in terms of peak task performance misses all the complexities of 
the underlying developmental process. 

This brings us to our first problem with employing peak task performance as the 
single measure of how well a developmental model performs: it neglects the time-varying 
aspects of development.  For instance, for a developmental model of syllable phoneme 
segmentation, we are not interested in how many phonemes a computational model can 
discriminate after being trained with a corpus of examples, but whether the number of 
phonemes recognizable as a function of training time resembles, say, a logistic growth 
function, thereby having the capacity to mimic the developmental function as found in 
human children20.  

A second problem is that choosing a specific task as representative of a 
developmental process neglects other related milestones and events that may be of even 
greater interest.  In the human developmental time course of face recognition, for 
example, the increasing accuracy of recognition as a function of exposure to faces is only 
one aspect of the phenomenon.  A computational developmental model of face 
recognition should explain not only how accuracy improves with age, but also should 
remark upon how face processing skills progress from a general sensitivity to face-like 
configurations found shortly after birth21,22, to a preference for the mother’s face at 1 
month of age23, to the ability to discriminate between familiar and unfamiliar individuals 
by 3 months24, and so on, up towards adult levels of face recognition performance.  
Choosing one particular measure of performance binds us to one particular interpretation 
of success; this, in turn, blinds us to deficits of omission. 

A third problem is that the assumption of a specific task neglects the complexity of 
the real-world environment.  This leads to at least three problems: 1) a defined task 
measure fails to represent domains where the task is generated internally or is defined 
implicitly; 2) it provides no motivation for learning and no grounding for development; 
3) it drastically underestimates the difficulty of the domain.  By framing the problem 
within traditional machine learning paradigms, we assume that the problem is self-
contained, or contained within a small, compact, controllable domain.  Nothing could be 
farther from the truth: human development occurs far from a vacuum and a positive trend 
in the analysis of models of development is the use of computational agents that are 
explicitly embedded in complex environments25.  If we limit ourselves to performance 
measures that are tightly coupled to a particular representation of the problem, we limit 
the generalizability of our results and the power of our implications. If we instead link the 
task to some representation of the world, we ground the developmental process in 
question to some concrete foundation.  This, in turn, allows for a direct investigation of 
the interplay that occurs between an individual and his environment.  In addition, in 
traditional applications, functional considerations, such as performance degradation in the 
presence of noise, under environmental variations, and under increasing demands are 
typically secondary to the question: how well does it work? In developmental models, 



however, such consideration are vital, as they describe how the emergence of new skills 
can arise in a robust fashion—a requirement for computational models of development 
that are biologically-relevant, as opposed to those that are simply biologically-inspired.   

2.1.  Example – Face recognition 

As a simple toy example highlighting the aforementioned problems we train a small face 
recognition system to show how developmental milestones within a computational trend 
may be isolated.  We are interested in this system because the developmental progression 
of infant face recognition is particular well studied.  Our network learns to recognize 
faces specifically (i.e. identifying the individuals as a particular individual), faces 
generally (i.e. as belonging to the general class of faces, but not corresponding to a 
known individual (e.g. a stranger)), and non-faces (drawn from various locations in a 
scene containing no people).   

We take from the UMIST face database26 a selection of 6 cropped faces in black-
and-white, with each face presented from 19 different viewpoints.  These face images are 
filtered with a Laplacian-of-Gaussian filter (σ=5 pixels), cropped to square dimensions, 
and downsampled by nearest neighbor interpolation to a 10x10 grid of intensities.  
Similarly, we take one scene from the Caltech Office Database27 and extract 100 random 
square regions within this scene (side length randomly drawn from a range 16 pixels to 
160 pixels).  These regions are converted to black and white, and then filtered and 
downsampled in the same manner as the faces are. 

Three individuals are selected as faces to be recognized specifically, three faces are 
selected to comprise the general face class, and the non-face class is populated by random 
sampling from the office scene.  A simple two-layer neural network (one input layer, one 
hidden layer, and one output layer) is created which takes the downsampled image pixels 
as input, in a manner similar to 28.  The input layer is fully connected to a hidden layer 
consisting of 3 hidden tansig nodes.  This hidden layer is connected to the output layer 
which consists of 4 logsig nodes, one for each of three face targets, and one for the 
general class of faces.   

The network is trained by adaptive gradient descent (repeated batch random 
presentation of face images and non-face images) and the resultant learning curve, as a 
function of mean squared error of target outputs, is shown in Fig. 1.  Fig. 1. also 
highlights some developmental milestones in the course of network learning.  These 
milestones are judged to have occurred when network performance on the corresponding 
test dataset has a sensitivity and specificity of over 70%, and does not drop below this bar 
for the remainder of the learning.  
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Fig. 1.  Training curve of a neural network learning to simultaneously recognize the class of faces (faces vs non 
faces) as well as 3 specific individual faces (face1, face2, and face3).  The x-axis is the number of training 
rounds, whereas the y-axis is the mean-squared error of the recognition tasks.  Milestones, as evidenced by 
behavior on a separate testing dataset, occur at various points on the recognition learning curve.  Whereas a 
traditional engineering task would only be interested in the end point of development (diamond, marked “end of 
training”), a developmental model is interested in the entire curve, including milestones along the 
developmental path.  

If we were to view this task as a pure engineering problem, i.e. a recognition 
problem with a clearly defined accuracy metric, we would in essence be following the 
route of large scale studies such as 29,30.  We would only be interested in the end point of 
development.  With a developmental model we are interested not only in the shape of the 
learning process, but also with milestones that correspond to activity on the learning 
curve.  Furthermore, the developmental systems approach can ask additional questions 
regarding the nature of face representation: does there exist some specific pattern of 
feature or pattern recognition within the hidden layer of the network?; is there a pattern of 
learning consistent with N-shaped or U-shaped development as noted in developing 
infants31?; does this developmental approach towards face learning offer advantages in 
generalizability, such as was shown in Nagai et al32 for joint attention representation?  A 
purely engineering approach misses the underlying complexity of the developmental 
process.   

3.  Choosing The Right Quantitative Measure 

In order to be able to compare a computational model with the developmental reality, we 
need to find some appropriate metric for measuring the distance between the predicted 



phenomena and the biological progression.   In many cases, this entails characterizing 
behavior.  This is often difficult because behavior is itself often an emergent property of 
the underlying physical or neurophysiological scaffolding: it does not lie on the 
measurable axes of the system, it lies on top.  Because of this, specific measures that 
pinpoint the phenomena in question must be developed, tested, and deployed.  This 
process of finding the best set of measurements and metrics is plagued with many 
potential pitfalls.  These pitfalls include an over-attachment to trivial computational 
effects and the over-reliance upon subjective or superficial measures. 

When building a computational model of development, it is often far too easy to 
develop a simple representation of some particular phenomenon, grab the quickest and 
nearest pattern recognition system, train the system, and present the resultant learning 
curves as evidence for a developmental trend.  The fundamental problem caused by 
building developmental models this way is that it transforms the rich, complex tapestry of 
human development into a dull, one-dimensional string that is almost trivial. 

The most basic aspect of all machine learning systems is that they learn, adapt, and 
specialize.  If we are interested in how humans learn to discriminate between images of 
oranges from images of apples, and we frame this problem as an error-minimization task, 
we should not be surprised that our ability to identify oranges increases as we apply non-
linear gradient descent.  Similarly, if we frame object recognition as a constrained 
clustering problem operating over silhouette histogram statistics, we should not be 
surprised that objects that cast the same shadow also gravitate towards the same clusters.  
A temporal progression leading to greater efficiency is the most basic aspect of 
developmental processes; its presence in a computational model of development is the 
lowest bar that must be reached for suitable discourse to begin.  In other words, 
computational learning as a mechanism leading to a temporal progression mimicking 
development is only interesting in its own right when the observed effects are non-trivial. 

A related trap that often turns a computational model of a developmental system into 
a trivial experiment is caused by under-constraining the parameters of the developmental 
model.  For example, the complexity of even the simplest models of cognitive processes 
can be staggering: a basic model of visual attention (e.g. 33) uses hundreds of potential 
parameters.  In these cases, it is easy to step back and explain any resultant discrepancies 
between a computational model and physiological reality by a hand-waving argument 
involving the adjustment of any number of possible parameters.  Unfortunately, the same 
argument that makes a model theoretically match a particular observed effect is also the 
same argument that makes a model theoretically match any observed effect, or nothing at 
all34.  It is far more productive to start a model with reasonable parameters, adjust these 
parameters sparingly, and discuss how the parameters interact.   

In addition, it is possible to over-constrain a simple computational model by linking 
together modules that are tightly coupled in the interface between effect and prerequisite.  
Such systems are in effect large scale cause-and-effect chains, which only serve to 
highlight the inevitable conclusion unless the mechanisms underlying the predicate 
expansions are transparent and become the true subject of investigation.  For example, 



consider the ability for a 2 year old child to point to objects when they are named (e.g. a 
child may point to a toy boat when his mother says, “boat”).  A simple robotic model of 
this would require 1) word recognition; 2) object recognition; and 3) the ability to map 
visual scenes to motor coordinates.  If we trained a system to map spoken words to visual 
signatures of objects, then trained a system to map locations in the visual scene to motor 
coordinates, we should expect that, given a proper reward structure, the robot can learn to 
point to an object when the object is named.  Here the scaffolding may be of 
developmental interest; so too may the on-line interactions and adaptations of cognitive 
intermediates be worthy of attention.  The fact that learning is achieved should not be the 
primary result. 

Sweeping generalizations and overly simplistic or superficial analyses are, of course, 
not limited to computational models of development: they can infect any computational 
model used for behavioral analysis or reproduction of biological action.  As we are well-
prepared to anthropomorphize even simple geometric shapes35, our minds also readily 
ascribe a label of “biologically related” to a large class of complex stimuli.  In other 
words, it is all too easy to assign life-like attributes to a computational system that 
generates behavior of sufficient complexity.  However, the mere impression of biological 
relevancy does us little good.  For a computational model to be useful, it must be able to 
generate predictions or further some particular hypothesis.  For a developmental 
computational model to find relevancy, there must exist some quantifiable means of 
comparing the model to behavioral reality.   

It is a natural reaction to believe that a computational model matches biological 
reality when some measurable surface characteristic of the computational model behaves 
in some biologically plausible fashion.  The difficulty, however, is that many such 
comparisons can be highly superficial.  For instance, consider the development of fine 
motor skills necessary to accomplish some task.  A computational hypothesis on the 
development of these skills could be that a child is basically an adult with sub-adult 
accuracy.  One approach to building a computational model of increasingly accurate 
motor control would be reinforcement learning.  Suppose we are able to train such a 
model, obtain a desired motor behavior, and subsequently are interested in presenting our 
reinforcement strategy as a good model of motor development.  First, we show that the 
final task performance is good; however this, as mentioned in the previous section, is 
expected.  Next, we show that performance increases over time; but this too is also only a 
minimum requirement and not in itself sufficient to warrant adjudicating a developmental 
model successful.   We are left, then, with comparing our computational motion 
trajectories with the motion trajectories of human subjects.  However, a simple measure 
based on the distances between joints or end-effectors ends up with a definition of 
proximity that is too strict: it overestimates the “distance” between two trajectories when 
the Euclidean distance at some point in time is large, but the distance in terms of intent, 
mechanism, or encapsulated behavior, is small. 

A measure of the applicability of some developmental or biological model to reality 
should factor in the key components and factors that affect the process in question.  This 



is necessary because otherwise any trends that do match physical evidence will match 
only phenomenologically.  If we are only interested in the surface characteristics, we 
don’t actually need a computational model at all.  It is more useful to incorporate the 
forces that are known to be biologically or psychologically significant, and to thereby be 
able to investigate the relationship of these forces in framing the actual development or 
behavior, than it is to have a model that accurately characterizes a trend over a time-
frame, but has no basis in deeper mechanism. 

3.1.  Example – Comparing eye fixations 

As an example, consider the comparison of real and artificial eye movements in Fig. 2.  
The left image of Fig. 2 is the actual eye trajectory of a human subject viewing some 
scene.  We can take this eye trajectory and use it to build a probability map by placing a 
Gaussian at every fixation point and normalizing.  This probability map can form the 
basis of a simple computational model for synthesizing a sequence of artificial eye 
movements.  At each time step, a random location of fixation is chosen from the 
underlying probability distribution (right image of Fig. 2).  However, this model suffers 
from several flaws.  First, the total Euclidean distance between the human gaze trajectory 
and the trajectory generated computationally can be arbitrarily large.  Second, the 
computational model is also terrible at representing many characteristics of human eye 
trajectories, and notably lacks fixations and saccades. 

 

     

Fig. 2.  Human gaze data (left) and a trajectory drawn probabilistically from an approximation to the underlying 
density (right).  Note that whereas saccades and fixations are identifiable in the left image, these properties do 
not exist in the right image. 

 The major weakness of the above model, however, is not that the distance between 
computed fixation points and real fixation points is large, nor is the major problem that 
the computational model so blatantly does not produce coherent time-varying action.  
The major weakness is that it ignores the fact that the fixations of an individual will 
depend highly on the scene itself (see 36).  Employing Euclidean distance as a sole 



measure of the similarity of two gaze trajectories completely misses this point.  Similarly, 
the use of a probability density function is also inappropriate, as it implicitly incorporates 
Euclidean distance as the basis for its comparison.  Fig. 3 illustrates this point further.  In 
very simple cases where there is only one single salient region, distance makes sense as a 
measure of how close a fixation is with another fixation (Fig. 3, left).   However, in a 
more realistic case, employing Euclidean distance as the basis of fixation similarity 
would fail completely (Fig. 3, right).  That is, if the implicit goal of the observer is to 
look at the eyes of individuals in the scene, focusing on the eye of the left face or the 
right face is equally valid, yet the distance between the eyes of the two faces could be 
arbitrarily distant. 
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Fig. 3.  Problems with Fixation Distance Metrics for Measuring Similarity.  In the case on the left, if some 
model picks point A and another model picks point B, we could safely say that these two models are dissimilar.  
Conversely, if one model picks A and another model picks C, we could say that the models are similar.  In this 
case, a distance metric based on distance between fixations makes sense.  In the case on the right, the Euclidean 
distance between A’ and B’ is roughly equivalent to the distance between A’ and C’.  A distance measure of 
similarity would gauge a model choosing C’ and a model choosing B’ as being equally similar to a model 
choosing A’.  Based on underlying features, however, a model choosing C’ would be much more similar to a 
model choosing A’.  In this case, using a fixation distance metric does not make sense.  By employing distance 
metrics between points of fixation, we ignore the underlying substrate of visual attention: that of features of the 
scene itself.  

The myriad ways of looking at the similarity between a computational model and the 
physiological gold standard (for eye gaze: as Euclidean distances, as a density function, 
as a series of saccades and fixations, and as an operation over underlying features) point 
towards the need to obtain a relevant measure of how a computational model is 
performing.  If some aspect of the developmental model is of interest, a measure must be 
explicitly assigned.  On the bright side, if the aspect is able to be tracked accurately, and 
if the measures are chosen appropriately, we are able to obtain statistics regarding the 
performance of a model that are meaningful to development (e.g. see 37).  

For the eye gaze comparison example, we cannot measure our success by the end-
point of behavior by calculating Euclidean distances between fixations.  This measure is a 
reflection of a process, and it is this process, not its realization, in which we are 
interested.  Likewise, we cannot measure our success by the input to our system, the 



entirety of the visual scene, because this interpretation precedes any interesting 
processing.  Our metric for similarity must lie someplace between these two extremes.  
For example, we could assume that the proper level of comparison is at the level of the 
local features centered at the points corresponding to fixations.  Our measures can neither 
be too loose, where they degenerate to hand-waving, nor can they be too tight, where they 
bring us the inevitably expected goal: in either case we are doomed to succeed. 

Similarly, our models cannot be so vague that they can incorporate any effect, 
leading us to the unsatisfying but inevitable statement that the desired trend could be 
shown if only some variables were constrained.  Such models can, in fact, be fit with 
some effort; they perform randomly when presented with new data.  Our models cannot 
be so specific, so completely integrated with the environment, that all the conclusions fall 
down like a line of dominos.  Often in these situations it is instructive to return to basics 
and ask: can this experiment fail?  If the answer is no, then there is no experiment. 

Judging whether a developmental model has failed, of course, is its own problem.  
Just as individuals are found along a wide range of physical and personal characteristics, 
so too can their developmental progression vary.  However, in contrast to the almost 
useless fact that developmental systems improve, the notion that developmental systems 
vary turns out to be crucial in the evaluation of a computational model of a 
developmental system.  

4.  Retaining Variation  

In most applications, variation of performance is seen as a negative factor, often being 
viewed as system unreliability or instability.  But for computational models of 
developmental systems, retaining and employing variation is both positive and practical.  
Developmental milestones rarely happen with clockwork precision.  For example, 
children begin babbling between 3 and 8 months of age, begin using single words at 
around 12 months, develop a small vocabulary of single words between the ages of 15 
months and 18 months, and begin using simple phrases between 18 and 24 months38.  
Children who do not follow this progression are at risk for problems such as 
developmental or language delay.  However, a great deal of variation occurs in practice, 
since, as language acquisition is a combination of both innate capability and 
environmental exposure39, its emergence as a distinct capability in children reflects the 
interaction of multiple cognitive and muscular subsystems40.   

The key point is that, for the progression of skills on the time-course of human 
development, some variation is expected.  This leads to some greater flexibility in 
computational modeling, as events are not bound by some strict schedule.  However, this 
also leads to greater demands, as the source of the variations must be explained in a way 
that is rigorous.  For developmental milestones we are not as interested in exact times of 
appearance as we are in preserving a certain order of skill emergence.  While some skills 
are bounded naturally (for instance the ability to speak simple phrases cannot occur 
before the ability to speak simple words), other skills are not, especially when comparing 



across modalities (e.g. speech capability versus motor coordination).  We can then 
explore the interaction of previously developed capabilities in providing a scaffold for 
new abilities. 

One particular aspect of the developmental progression that should be defined and 
quantified, however, is the sources of developmental variation.  Factors leading to 
variability in skill onset should be phrased in terms of intrinsic stochastic mechanisms in 
cognitive development, such as neurogenesis, the growth of dendritic branches, or 
inherent cortical plasticity, or in terms of extrinsic environmental variability, such as 
limited exposure to, say English vocabulary words in a Spanish-speaking household.  In 
addition, the interactions between these factors, which are often the cornerstone of a 
particular computational investigation, should be formulated in such a way that the 
cascading effects of variability of intrinsic and extrinsic factors on the stochastic schedule 
of skill emergence can be examined. 

In line with having a variable basis, computational models of development are not 
always expected to work.  This is not to say that a model should produce gibberish or 
nonsensical results, but that the failure of a model to maintain some typically developing 
structure is useful.  One of the most fruitful uses of computational modeling in 
developmental psychology is in the analysis of developmental pathology or atypical 
development.  This is why apparent failures in a computational model of a developmental 
system should neither be ignored nor swept under the rug: an apparent failure signals 
either a true flaw in the model, which must be addressed, or a possible mechanism for 
arrested or abnormal development.  Similarly, it is a failure of the model when the model 
succeeds where humans would fail (for example a module for tracking the development 
of face recognition through adolescence should exhibit well-known visual-system 
peculiarities, such as decreased ability to recognize inverted faces).  For these reasons, 
the parameters on which a computational model of development is built should be varied, 
the systems involved should be stressed, and the failures of the models should be 
carefully examined.   

Another form of variation that may appear is the incidental milestone: sometimes a 
developmental effect emerges as the result of the particular computational model 
employed.  Typically employed as an interesting aside, the emergence of behaviors that 
are unexpected from a computational model, and not related to any explicit encoding, are 
the best evidence that a particular implementation or developmental simulation achieves 
a level of performance exceeding expectation.   Unexpected behaviors that do not 
correlate with biologically observed phenomena should also be reported.  These are 
indications that remaining work needs to be accomplished, either in the form of the 
reassessment of assumptions and formulations, or in the form of further investigations 
and experiments. 

Finally, one of advantages of having a computational model is that the model should 
be executable multiple times.  The aggregation of a series of simulations should be able 
to lead to statistics regarding the frequency, ordering, and distributions of emergent skills.  
By integrating across multiple runs, we can examine the variability in onset of one 



particular skill versus another, and all computational attributes against the true biological 
ground truth.  In this manner, the aspects of behavioral comparisons seen previously as 
confounds to analysis and quantification, can be brought into line with rigorous metrics.  

4.1.  Example – Locomotive development 

Conventional wisdom holds fast to the cliché: you must crawl before you walk.  
However, this is not actually true: roughly five percent of infants begin walking without 
any previous crawling41.  A computational model that aims to describe the developmental 
progression of locomotion from birth should be able to characterize this variation as well 
as the general time course of emergent behavior.  As an example we will consider a 
simple dynamical systems model of locomotion.  Note that this example serves purely in 
a didactic capacity and is not necessarily intended to be representative of any serious 
investigation (a serious investigation should at least incorporate some aspects of the work 
by Thelen and Smith42). 

We begin by assuming that the development of locomotion can be described by two 
variables: arm locomotion (a) and leg locomotion (g).  These two motor capabilities 
represent the abstract concept of a maturing musculoskeletal system and a developing 
neurological motor coordinating capability.  For this example, we hand-constructed a set 
of equations that generate a vector field which produces interesting results (in other 
words, these equations are not intended to be illustrative only, and not based on any 
empirical observation or published data).  The equations for that field are: 
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The developmental progression of a single individual is a discrete random walk (100 

steps) over this field.  da/dt and dg/dt together define the center angle αc and 
corresponding magnitude rc.  The actual movement at each time step is a step of size 
0.018rc in a random direction drawn from a normal distribution centered at αc with 
standard deviation equal to 45˚/rc.  This gives us a trajectory across arm and leg 
locomotion space (Fig. 4). 

Since locomotive development of each individual is determined by probability, each 
run of the model will generate slightly different results.  As in the true biological reality, 
variation occurs.  This variation, however, is stable: all trajectories start at the point 
where locomotive capability is completely undeveloped and stop in a basin of attraction 
where development ends.  This global behavior is reliable and reproducible, even though 
the individual path is not.  Consistent with evolutionary theory, those behaviors and 



biological components that are vital to the fitness of an organism must contain stabilizing 
machinery.  

Furthermore, we can take this model and apply to it a second level of analysis.  We 
add a single Boolean variable, s, which governs the expression of locomotion.  No 
locomotion is observable unless s is true.  s begins as false, and, once it switches on, it 
remains in that state for the remainder of the experiment.  The decision to switch on is 
determined stochastically with a probability of 7% at each time step.  This process 
represents the idea held by some that though developmental progress is being made 
internally, and that though the capability to move exists, the first initiation of motion is 
essentially a stochastic decision process.  In Fig. 4, the dotted points on the trajectory 
represent the points where locomotion is expressed. 

We can further divide the space of locomotion into subregions, with each subregion 
corresponding to a particular behavior.  For example, in Fig. 4, the bottom left region 
marked in hatching represents the area of precrawling, which includes crawling where the 
belly remains on the floor; the surrounding left part of the space represents the area where 
arm motion and leg motion contribute equally to locomotive efforts, leading to true 
crawling (with the belly off the floor); the remaining right side of the space is when leg 
action begins to dominate and walking occurs. 

 

 

Fig. 4.  A dynamical system as a developmental model of locomotion.  Current development, in terms of legs 
and arms, are points in the figure (e.g. (0,0) corresponds to the point where no part of locomotion is developed, 
(1,0) corresponds to the point where only the legs are developed).  An individual’s developmental progression is 
represented as a curve emanating from the origin.  Dots on the trajectory represent locations where expression 
of locomotion occurs (see text).  The arrows represent the most likely direction in which development will 
proceed at any given time, with the magnitude corresponding to the relative speed of the transition.   The 
locomotion space is separated into discrete behaviors, with the small hatched region in the lower left the 
precrawling behavior, the left side of the space the crawling behavior, and the right side of the space walking.   

By aggregating the results of 1,000,000 independent trials, we can examine the 
statistics regarding when certain behaviors arise.  These results are shown in Fig. 5A for 



true crawling (25.9±5.8 weeks) and Fig. 5B for walking (45.1±5.7 weeks).  These values 
are in line with evidence from child development and psychology38.  However, much 
more information can be extracted from the developmental model beyond simple means 
and standard deviations.  We can determine, for instance, that the incidence of walking 
without prior crawling is 7.7%; for these individuals the mean age for walking is 
49.1±13.4 weeks (Fig. 5C).  We can note that the associated distribution for these 
individuals is highly non-normal and skewed to the right, implying that the vast majority 
of these walkers who never crawl are simply late expressers for motility (a notion that 
would, naturally, need to be verified by further experimentation).  By examining the 
delay between walking and crawling for individuals that do both crawl and walk, we can 
calculate an average delay of 18.8±6.9 weeks (Fig. 5D) between crawling and walking 
based on distributional differences.  Though this example is obviously a very simple toy 
example, the analyses performed highlight the potential types of information that can be 
collected in a computational model of a developmental system, turning the inherent 
variance of the system into both additional statistics for analyses and novel hypotheses 
for further investigation.  In this particular example, we could continue by examining the 
rate of regression from walking back to crawling, the final distribution of walking 
expertise, capacity to walk versus expression of walking, and so on.  Not only does the 
variation of the model paint a richer portrait of the developmental scene, it also provides 
additional measures that can be independently evaluated and compared against empirical 
results.  
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Fig. 5.  Extracting developmental implications of a computational model.  These charts show information that 
can be extracted from a computational model of walking and crawling development.  Plot A shows the times at 
which the crawling behavior emerged (25.9±5.8 weeks) in a population; Plot B shows the distribution for 
walking (45.1±5.7 weeks). In Plot C, which focuses on the 7.7% of the population that walked before crawling, 
the mean age for walking is 49.1±13.4 weeks.  The distribution of times between walking and crawling is 



shown in Plot D (18.8±6.9 weeks).  The variation of the system provides a rich description of the progression of 
developmental milestones. 

5.  Discussion 

Computational models of developmental systems are powerful tools in the analysis of not 
only typical cycles of maturation, but also of alternate pathways leading to abnormal 
development.  The specific purposes of models of development also lead to specific 
prerequisites for interpretable results.  In this paper we have discussed how traditional 
methods for evaluating machine learning systems are not wholly applicable to 
developmental systems in three ways (Fig. 6).  (1) Pure task-based measure of 
performance fail to capture the hallmark of a developmental process: the developmental 
time-course.  We have also shown how binding our performance evaluation to a specific 
task leads to ignoring other interesting subtasks and related developmental milestones, as 
well as the interaction between the subject being modeled and enclosing context of the 
environment.  (2) Finding the correct quantitative measures for the evaluating the 
performance of a developmental model is critical for generating relevant results.  We 
have shown that employing the wrong measure leads to subjective, overly simplistic, or 
superficial measures of performance and that these types of measures are ultimately 
harmful to the power of conclusions that can be drawn for a computational model.  
Furthermore, we have shown that in order to avoid triviality, a computational model must 
provide greater insight than the zero-order measure of task performance (i.e. the model 
learns to perform the task reasonably well), but also the first-order measure of learning 
(i.e. performance changes during training).  (3) Variation is the strength of a 
developmental model.  The variations can be collected into distributions for measures of 
interest, many of which can be independently compared and verified against empirical 
results.  The underlying uncertainties of the model, the unreliability of obtaining 
convergent results, and the errors and quirks of simulation are disadvantages for a system 
measured strictly by performance, but are advantageous for systems investigating 
developmental trends.  
 

In traditional engineering… In models of development… 

…we optimize for peak task performance …the journey there matters. 

…the metrics for evaluation are often obvious …the obvious metrics are often wrong. 

…consistency and reproducibility are ideals. 
…instability, variation, and failures are more 
interesting than success. 

Fig. 6. Comparison of traditional engineering and modeling of development. 



The techniques and applications discussed within this paper are especially applicable 
to robotic models of development and robotic systems that employ developmental 
components.  Robotic implementations with developmental aspects have additional 
advantages in ecological validity: robots operating in the real world can incorporate real-
world patterns of noise and unpredictability, can host practical factors such as 
transmission delay and signal degradation, and can explore interactions with humans in 
interfaces ranging from real-time socially-contingent response to proprioceptive reflex.  
Robotic systems offer a platform by which the full complexities of the natural human 
environment can be brought to bear on a developmental question.  We should note, 
however, that, for robots intended to perform engineering tasks, engineering measures of 
performance are still the most critical measures, even if these tasks rely on developmental 
components.  Indeed, engineering techniques and developmental techniques are not 
mutually exclusive, as good engineering takes into account the context of the solution, 
and developmental systems require excellent engineering tools in design and formulation.  
It is the over-reliance or the sole interpretation of developmental systems through an 
engineering mindset that proves insufficient.   

Though no clear, universal metrics for the evaluation of computational models of 
development exist, we hope that this paper has brought light to some of the issues 
relevant to the evaluation of developmental systems.  And though this paper has been 
presented in the negative, as methods and techniques and approaches that should not be 
employed in building computational models of developmental systems, we hope that it 
has illuminated also the way these systems should be examined. 
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