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Computational models of development aim to desdtibemechanisms that underlie the acquisition
of new skills or the emergence of new capabiliti$ie strength of a model is judged by both its
ability to explain the phenomena in question asl sl its ability to generate new hypotheses,
generalize to new situations, and provide a ungfyoonceptual framework. Although often
constructed using traditional engineering methogiels evaluating the performance of a
computational model of development in terms ofitradal perspectives is a flawed approach. This
paper addresses the fundamental issues that cehfpamtitative analysis of computational models
of developmental systems. In particular we focustiee following recommendations: 1) don't
equate the success of a developmental model vetipaak performance at some task; 2) don't
employ purely subjective or vague measures of mfiimhelss; and 3) don’t hide or reject variation as
found in the computational model. Along the way @iscuss the aspects of computational models
of development that lead to the requirements feceized methods of analysis.
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1. Introduction

Recently, many researchers in robotics have begawing away from constrained
systems tuned for specific domains and towards ngmeeral systems capable of
operating under a wide range of conditions and renments. This trend has been
motivated largely by a growing body of scientifiork that links the flexible nature of
biological systems with the interactions betweenvetlgpmental processes and
environmental concerns. Notably, the emerging dfiedf autonomous mental
developmerit seeks to bring ideas from basic research in neismse and
developmental psychology to robotics by situatimdpats in a dynamic real-world
environment while equipping these robots with otflg most parsimonious set of self-
scaffolding guiding principles. It is hoped thabots reared under such conditions will
develop the capacity to operate generally, withiiet need for task specification and
without the need for environmental constraints. isltthis promise of open-ended
incremental improvement that has lead to a greal dé interest in developmental
robotics*>.

@This paper is a revised version of a paper orlyimaublished and presented at the InternationiitJo
Conference on Neural Networks in Vancouver, B.@&0



The mapping from biological and psychological reskao robotics, however, is
often difficult. The extraction of key conceptsdamasic principles from biology and the
translation of these ideas into software is a B®ed¢hat is not wholly natural, partly due
to the discrepancies between cells and silicon,pamtly due to the ambiguity and multi-
faceted nature of the biological developmental essc The conversion process is aided,
however, by the use of modeling. The computatiomaideling of developmental
processes treats aspects of the development system metaphor, and, within this
metaphor, finds relations and links between theratting components. By employing
computational models in the investigation of depetental processes, it is thus possible
to gain insight into the underlying principles tlgaivern the process, and it is this insight
that can form the basis for autonomous mental dpweént. Given that there exists
utility in the creation and analysis of these depetental models, however, one is faced
with the task of evaluating these models.

At first glance, it seems that those who employ porational models to describe
developmental phenomena belong in the same cantipoas who want to build better
computational systems using inspiration from depelental biology. In both cases, the
goal is the creation of a computational framewoskmulation, or mathematical
formulation. In both groups, researchers are iatély concerned with the fundamental
mechanisms driving developmental processes. Hawélve aims of these two groups
could not be more dissimilar: one group uses bickigthemes to develop better
engineering; the other uses computational techsigodormulate better descriptions of
biological development. This paper focuses ondheko seek to illuminate biological
development through the use of computational modeland discusses the issues that
arise when these systems are evaluated in traditemgineering terms.

Computational models are employed in all areas shHmuman developmental
progression can be tracked. For instance, compuntdtmodels of development are used
to model observed patterns of word pronuncidtitine development of auto-associative
memory, the advent of numerical perceptidn the incorporation of objects into
categorie¥, and the progression of motor skills necessarycémrdinated reaching and
pointing>. These models of development are not only fomnahany different domains,
but are also employed in a wide range of applicationcluding models of the learning of
sets of skill¥, investigations into the mechanisms underlying tteelopment of
cognitive capabilitieS, and comparisons of populations involving atypical
developmental progressitit> These models employ subsystems and componaaits th
range from the most elementary, as is found inistuthat examine the interaction of
simulated neurons in human menSryto the exceedingly complex, as is found in
models of social behavior and reasoning

The diversity of domain, application, and technigquafounds the formulation of a
single, unified, globally applicable method for kading the fithess of a computational
model of development. Like metrics for measurirdge tintelligence of artificial
computational systertfs'®, the characterization of a developmental modeltrrale into
account multiple dimensions that often reflect vepecific aspects of the model's



purpose and role. Despite their apparent hetemtyermowever, computational models
of developmental systems share several commorsalitie First and foremost,

developmental models generate multiple results thast be matched in a temporal
progression. That is, these models do not opeatatey a simple binary axis of “correct”
or “not correct”, but rather progress from milestdo milestone.

Also, like most models, the utility of a computatédd model of development is
connected with its ability to accurately represtiet phenomena in question. In contrast
to models found in most pattern-recognition appioces, however, the peak performance
of developmental models is not of prime importanddis is not to say performance is
unimportant, as a model that is intended to reptetfe development of some learned
skill should ultimately produce measurable improeais in performance. However, it is
the relationship of learning, the progression ofad@mental trends, and the interactions
of the components of the model that are of prinaigrest.

Given that pure performance is not the measure Mychwa computational
developmental model should be evaluated, the aquestiises: what should the measure
be? As mentioned earlier, due to the diversitg@felopmental modeling, this is not a
guestion that can be answered simply and neatlymdny ways, it makes more sense to
address the question in the negative: what are smmenon errors and misconceptions
in the evaluation of computational models of depetent? or, more simply, how should
we not evaluate developmental systems?

This paper seeks to provide guidelines as to homldpmental mechanisms may be
compared and quantified, and how common pitfally bavoided. In order to properly
phrase our goals, in Section II, we first discuss difficulties that arise when we try to
take a conventional engineering metric of perforoearsuch as a task-based performance
measure, and attempt to apply it as the sole meaduhe worthiness of a developmental
model. We continue, in Section lll, with a disdosson how computational models of
development require rigorous methods for analysisanpared to subjective, vague, or
superficial measures of success. In Section IV, shew how the variance of
computational models of development, in terms ®feitnergent behavior, is actually an
advantage, and not a problematic deficit that ndéedse hidden or rejected. We then
conclude with a summary of the main points of {aper, together with a discussion on
the utility, purpose, and ultimate role of compigiadl models of development in
practical application as well as in theoreticaldstigation. As we proceed, we will give
simple toy examples that are illustrative of oujon@oints.

2. The Problem with Peak Task Performance

In many pattern recognition and machine learningliegtions we are interested in
training a computational model to best perform s@pecific task. For instance, a face
recognition system used in biometric authenticatian be evaluated solely on its ability
to accurately recognize specific faces. Howeves,developmental time course of face
recognition, as recorded by psychological and psghbksical experiments in neonates,



infants, children, and adults, is much more comglean the mere fact that recognition
can occur at some maximal accuracy. Evaluatingompaotational model of a
developmental system in terms of peak task perfocaanisses all the complexities of
the underlying developmental process.

This brings us to our first problem with employipgak task performance as the
single measure of how well a developmental moddbpas: it neglects the time-varying
aspects of development. For instance, for a dewedmtal model of syllable phoneme
segmentation, we are not interested in how manyn@mmes a computational model can
discriminate after being trained with a corpus wéraples, but whether the number of
phonemes recognizable as a function of training tresembles, say, a logistic growth
function, thereby having the capacity to mimic ttevelopmental function as found in
human childref?.

A second problem is that choosing a specific task rapresentative of a
developmental process neglects other related mrfestand events that may be of even
greater interest. In the human developmental tooarse of face recognition, for
example, the increasing accuracy of recognitioa asction of exposure to faces is only
one aspect of the phenomenon. A computational ldeweental model of face
recognition should explain not only how accuracyiiaves with age, but also should
remark upon how face processing skills progressifeogeneral sensitivity to face-like
configurations found shortly after bifftf? to a preference for the mother's face at 1
month of ag#, to the ability to discriminate between familiardaunfamiliar individuals
by 3 month$’, and so on, up towards adult levels of face reitiogn performance.
Choosing one particular measure of performancesbirsdto one particular interpretation
of success; this, in turn, blinds us to deficit®ofission.

A third problem is that the assumption of a spedidisk neglects the complexity of
the real-world environment. This leads to at Igasee problems: 1) a defined task
measure fails to represent domains where the taglenerated internally or is defined
implicitly; 2) it provides no motivation for leanmgj and no grounding for development;
3) it drastically underestimates the difficulty thfe domain. By framing the problem
within traditional machine learning paradigms, wsswme that the problem is self-
contained, or contained within a small, compachtiemlable domain. Nothing could be
farther from the truth: human development occurdrfan a vacuum and a positive trend
in the analysis of models of development is the ofseomputational agents that are
explicitly embedded in complex environméts If we limit ourselves to performance
measures that are tightly coupled to a particidgrasentation of the problem, we limit
the generalizability of our results and the powfenwr implications. If we instead link the
task to some representation of the world, we grothel developmental process in
guestion to some concrete foundation. This, in,tatlows for a direct investigation of
the interplay that occurs between an individual &l environment. In addition, in
traditional applications, functional consideratipssch as performance degradation in the
presence of noise, under environmental variati@msl under increasing demands are
typically secondary to the question: how well didework? In developmental models,



however, such consideration are vital, as theyrdestiow the emergence of new skills
can arise in a robust fashion—a requirement for maational models of development
that are biologically-relevant, as opposed to thibhageare simply biologically-inspired.

2.1. Example — Face recognition

As a simple toy example highlighting the aforemaméid problems we train a small face
recognition system to show how developmental miless within a computational trend
may be isolated. We are interested in this systecause the developmental progression
of infant face recognition is particular well stadi Our network learns to recognize
faces specifically (i.e. identifying the individsalas a particular individual), faces
generally (i.e. as belonging to the general clas$aces, but not corresponding to a
known individual (e.g. a stranger)), and non-fa@swn from various locations in a
scene containing no people).

We take from the UMIST face datab&se selection of 6 cropped faces in black-
and-white, with each face presented from 19 diffexéewpoints. These face images are
filtered with a Laplacian-of-Gaussian filtes<5 pixels), cropped to square dimensions,
and downsampled by nearest neighbor interpolatmra t10x10 grid of intensities.
Similarly, we take one scene from the Caltech @ffiatabasé and extract 100 random
square regions within this scene (side length remiga@rawn from a range 16 pixels to
160 pixels). These regions are converted to bkao# white, and then filtered and
downsampled in the same manner as the faces are.

Three individuals are selected as faces to be réred specifically, three faces are
selected to comprise the general face class, @awah-face class is populated by random
sampling from the office scene. A simple two-lageural network (one input layer, one
hidden layer, and one output layer) is created Wwhakes the downsampled image pixels
as input, in a manner similar 8 The input layer is fully connected to a hiddager
consisting of 3 hidden tansig nodes. This hiddered is connected to the output layer
which consists of 4 logsig nodes, one for eachhoéd face targets, and one for the
general class of faces.

The network is trained by adaptive gradient desdgapeated batch random
presentation of face images and non-face images)tanresultant learning curve, as a
function of mean squared error of target outpussshown in Fig. 1. Fig. 1. also
highlights some developmental milestones in thersmwf network learning. These
milestones are judged to have occurred when netperformance on the corresponding
test dataset has a sensitivity and specificitywafr @ 0%, and does not drop below this bar
for the remainder of the learning.
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Fig. 1. Training curve of a neural network leaghto simultaneously recognize the class of facaseff vs non
faces) as well as 3 specific individual faces (fadace2, and face3). The x-axis is the numbetrahing
rounds, whereas the y-axis is the mean-squared efrihe recognition tasks. Milestones, as evigenby
behavior on a separate testing dataset, occurraiugapoints on the recognition learning curve. aMas a
traditional engineering task would only be inteeesin the end point of development (diamond, matieed of
training”), a developmental model is interested the entire curve, including milestones along the
developmental path.

If we were to view this task as a pure engineeqimgblem, i.e. a recognition
problem with a clearly defined accuracy metric, weuld in essence be following the
route of large scale studies suct&. We would only be interested in the end point of
development. With a developmental model we arré@sted not only in the shape of the
learning process, but also with milestones thatespond to activity on the learning
curve. Furthermore, the developmental systemsoagjprcan ask additional questions
regarding the nature of face representation: dbesetexist some specific pattern of
feature or pattern recognition within the hiddeyelaof the network?; is there a pattern of
learning consistent with N-shaped or U-shaped dgweént as noted in developing
infant$’?; does this developmental approach towards feammitey offer advantages in
generalizability, such as was shown in Nagai &tfal joint attention representation? A
purely engineering approach misses the underlyimgpiexity of the developmental
process.

3. Choosing The Right Quantitative Measure

In order to be able to compare a computational iaithe the developmental reality, we
need to find some appropriate metric for measutireggdistance between the predicted



phenomena and the biological progression. In n@ases, this entails characterizing
behavior. This is often difficult because behavsitself often an emergent property of
the underlying physical or neurophysiological solfing: it does not lie on the
measurable axes of the system, it lies on top. al&e of this, specific measures that
pinpoint the phenomena in question must be devdlopested, and deployed. This
process of finding the best set of measurements naetlics is plagued with many
potential pitfalls. These pitfalls include an owattachment to trivial computational
effects and the over-reliance upon subjective pesicial measures.

When building a computational model of developménis often far too easy to
develop a simple representation of some particolleanomenon, grab the quickest and
nearest pattern recognition system, train the systnd present the resultant learning
curves as evidence for a developmental trend. fllhdamental problem caused by
building developmental models this way is thatansforms the rich, complex tapestry of
human development into a dull, one-dimensionahgtthat is almost trivial.

The most basic aspect of all machine learning systis that they learn, adapt, and
specialize. If we are interested in how humansnléa discriminate between images of
oranges from images of apples, and we frame tloiBl@m as an error-minimization task,
we should not be surprised that our ability to tifgroranges increases as we apply non-
linear gradient descent. Similarly, if we framejemib recognition as a constrained
clustering problem operating over silhouette hisdog statistics, we should not be
surprised that objects that cast the same shadsmagahvitate towards the same clusters.
A temporal progression leading to greater efficieris the most basic aspect of
developmental processes; its presence in a conqmahimodel of development is the
lowest bar that must be reached for suitable dissouo begin. In other words,
computational learning as a mechanism leading tengporal progression mimicking
development is only interesting in its own rightemithe observed effects are non-trivial.

A related trap that often turns a computational eh@d a developmental system into
a trivial experiment is caused by under-constrgrire parameters of the developmental
model. For example, the complexity of even thepsast models of cognitive processes
can be staggering: a basic model of visual attanténg.®®) uses hundreds of potential
parameters. In these cases, it is easy to stépdmatexplain any resultant discrepancies
between a computational model and physiologicalityey a hand-waving argument
involving the adjustment of any number of possideameters. Unfortunately, the same
argument that makes a model theoretically matchrticplar observed effect is also the
same argument that makes a model theoreticallyhraaty observed effect, or nothing at
all®. It is far more productive to start a model wiasonable parameters, adjust these
parameters sparingly, and discuss how the parasneteract.

In addition, it is possible to over-constrain a giencomputational model by linking
together modules that are tightly coupled in therfiace between effect and prerequisite.
Such systems are in effect large scale cause-ded-efhains, which only serve to
highlight the inevitable conclusion unless the naibms underlying the predicate
expansions are transparent and become the truecsuddjinvestigation. For example,



consider the ability for a 2 year old child to poio objects when they are named (e.g. a
child may point to a toy boat when his mother sélgeat”). A simple robotic model of
this would require 1) word recognition; 2) objeetognition; and 3) the ability to map
visual scenes to motor coordinates. If we traiaeystem to map spoken words to visual
signatures of objects, then trained a system to lowgiions in the visual scene to motor
coordinates, we should expect that, given a propeard structure, the robot can learn to
point to an object when the object is named. Heére scaffolding may be of
developmental interest; so too may the on-linerati#ons and adaptations of cognitive
intermediates be worthy of attention. The fact tharning is achieved should not be the
primary result.

Sweeping generalizations and overly simplisticugresficial analyses are, of course,
not limited to computational models of developmehgey can infect any computational
model used for behavioral analysis or reproductibhiological action. As we are well-
prepared to anthropomorphize even simple geomstripe¥, our minds also readily
ascribe a label of “biologically related” to a larglass of complex stimuli. In other
words, it is all too easy to assign life-like ditries to a computational system that
generates behavior of sufficient complexity. Hoemthe mere impression of biological
relevancy does us little good. For a computationatiel to be useful, it must be able to
generate predictions or further some particular ofiypsis. For a developmental
computational model to find relevancy, there musstesome quantifiable means of
comparing the model to behavioral reality.

It is a natural reaction to believe that a compotei model matches biological
reality when some measurable surface charactedstite computational model behaves
in some biologically plausible fashion. The diffity, however, is that many such
comparisons can be highly superficial. For instarconsider the development of fine
motor skills necessary to accomplish some task.computational hypothesis on the
development of these skills could be that a clsldbasically an adult with sub-adult
accuracy. One approach to building a computationatlel of increasingly accurate
motor control would be reinforcement learning. oge we are able to train such a
model, obtain a desired motor behavior, and sulegtjuare interested in presenting our
reinforcement strategy as a good model of motoeldgment. First, we show that the
final task performance is good; however this, amtioaed in the previous section, is
expected. Next, we show that performance increasastime; but this too is also only a
minimum requirement and not in itself sufficientvtarrant adjudicating a developmental
model successful. We are left, then, with compmarbur computational motion
trajectories with the motion trajectories of hunsamjects. However, a simple measure
based on the distances between joints or end-effe@nds up with a definition of
proximity that is too strict: it overestimates thistance” between two trajectories when
the Euclidean distance at some point in time igdabut the distance in terms of intent,
mechanism, or encapsulated behavior, is small.

A measure of the applicability of some developmieotaiological model to reality
should factor in the key components and factorsdffact the process in question. This



is necessary because otherwise any trends thatatichrphysical evidence will match
only phenomenologically. If we are only interesiedthe surface characteristics, we
don’t actually need a computational model at dtl.is more useful to incorporate the
forces that are known to be biologically or psycdugitally significant, and to thereby be
able to investigate the relationship of these fericeframing the actual development or
behavior, than it is to have a model that accuyatblaracterizes a trend over a time-
frame, but has no basis in deeper mechanism.

3.1. Example — Comparing eye fixations

As an example, consider the comparison of realatificial eye movements in Fig. 2.
The left image of Fig. 2 is the actual eye trajectof a human subject viewing some
scene. We can take this eye trajectory and usehitiild a probability map by placing a
Gaussian at every fixation point and normalizinghis probability map can form the
basis of a simple computational model for synthegiza sequence of artificial eye
movements. At each time step, a random locatiorfixation is chosen from the
underlying probability distribution (right image &ig. 2). However, this model suffers
from several flaws. First, the total Euclideantalise between the human gaze trajectory
and the trajectory generated computationally canalstrarily large. Second, the
computational model is also terrible at representimany characteristics of human eye
trajectories, and notably lacks fixations and sdesa

Fig. 2. Human gaze data (left) and a trajectoayair probabilistically from an approximation to tinederlying
density (right). Note that whereas saccades adidns are identifiable in the left image, theseperties do
not exist in the right image.

The major weakness of the above model, howevemtighat the distance between
computed fixation points and real fixation poindslarge, nor is the major problem that
the computational model so blatantly does not ptedcoherent time-varying action.
The major weakness is that it ignores the fact thatfixations of an individual will
depend highly on the scene itself (S8 Employing Euclidean distance as a sole



measure of the similarity of two gaze trajectodempletely misses this point. Similarly,
the use of a probability density function is alsappropriate, as it implicitly incorporates
Euclidean distance as the basis for its comparigég. 3 illustrates this point further. In
very simple cases where there is only one sindlerdaegion, distance makes sense as a
measure of how close a fixation is with anothenfiibn (Fig. 3, left). However, in a
more realistic case, employing Euclidean distangeth@ basis of fixation similarity
would fail completely (Fig. 3, right). That is, tfie implicit goal of the observer is to
look at the eyes of individuals in the scene, fouy®on the eye of the left face or the
right face is equally valid, yet the distance betwehe eyes of the two faces could be
arbitrarily distant.
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Fig. 3. Problems with Fixation Distance Metrics fdeasuring Similarity. In the case on the leftsome
model picks point A and another model picks point@ could safely say that these two models agrditar.
Conversely, if one model picks A and another mqulehs C, we could say that the models are similarthis
case, a distance metric based on distance betwegioris makes sense. In the case on the right:titlidean
distance between A’ and B’ is roughly equivalenthe distance between A’ and C’. A distance measiir
similarity would gauge a model choosing C' and adelcchoosing B’ as being equally similar to a model
choosing A'. Based on underlying features, howgaemodel choosing C’ would be much more similaato
model choosing A’. In this case, using a fixattistance metric does not make sense. By emplalistgnce
metrics between points of fixation, we ignore tinelerlying substrate of visual attention: that ctéees of the
scene itself.

The myriad ways of looking at the similarity betwese computational model and the
physiological gold standard (for eye gaze: as Heelh distances, as a density function,
as a series of saccades and fixations, and asaatimm over underlying features) point
towards the need to obtain a relevant measure @f hocomputational model is
performing. If some aspect of the developmentall@ehés of interest, a measure must be
explicitly assigned. On the bright side, if th@east is able to be tracked accurately, and
if the measures are chosen appropriately, we deetabobtain statistics regarding the
performance of a model that are meaningful to deweknt (e.g. se¥).

For the eye gaze comparison example, we cannotureeasir success by the end-
point of behavior by calculating Euclidean distambetween fixations. This measure is a
reflection of a process, and it is this process, it® realization, in which we are
interested. Likewise, we cannot measure our sscbgsthe input to our system, the



entirety of the visual scene, because this intésiom precedes any interesting

processing. Our metric for similarity must lie septace between these two extremes.
For example, we could assume that the proper leivebmparison is at the level of the

local features centered at the points corresponditigations. Our measures can neither
be too loose, where they degenerate to hand-wanorg;an they be too tight, where they
bring us the inevitably expected goal: in eithesecave are doomed to succeed.

Similarly, our models cannot be so vague that they incorporate any effect,
leading us to the unsatisfying but inevitable stapt that the desired trend could be
shown if only some variables were constrained. hSmodels can, in fact, be fit with
some effort; they perform randomly when presentét wew data. Our models cannot
be so specific, so completely integrated with theirenment, that all the conclusions fall
down like a line of dominos. Often in these siitpra it is instructive to return to basics
and ask: can this experiment fail? If the answerd, then there is no experiment.

Judging whether a developmental model has failéaoarse, is its own problem.
Just as individuals are found along a wide rangghgtical and personal characteristics,
so too can their developmental progression varywéver, in contrast to the almost
useless fact that developmental systems improeendtion that developmental systems
vary turns out to be crucial in the evaluation ofcamputational model of a
developmental system.

4. Retaining Variation

In most applications, variation of performance éers as a negative factor, often being
viewed as system unreliability or instability. Bdior computational models of
developmental systems, retaining and employingatian is both positive and practical.
Developmental milestones rarely happen with clogkweprecision. For example,
children begin babbling between 3 and 8 monthsga, &egin using single words at
around 12 months, develop a small vocabulary dflsinvords between the ages of 15
months and 18 months, and begin using simple parhsaveen 18 and 24 months
Children who do not follow this progression are rigk for problems such as
developmental or language delay. However, a gteal of variation occurs in practice,
since, as language acquisition is a combination both innate capability and
environmental exposufe its emergence as a distinct capability in childreflects the
interaction of multiple cognitive and muscular sygism&°.

The key point is that, for the progression of skiin the time-course of human
development, some variation is expected. This detd some greater flexibility in
computational modeling, as events are not bounsoiye strict schedule. However, this
also leads to greater demands, as the source whthaions must be explained in a way
that is rigorous. For developmental milestonesaveenot as interested in exact times of
appearance as we are in preserving a certain ofdill emergence. While some skills
are bounded naturally (for instance the abilitysfzeak simple phrases cannot occur
before the ability to speak simple words), othéliskre not, especially when comparing



across modalities (e.g. speech capability versusormeoordination). We can then
explore the interaction of previously developedatalities in providing a scaffold for
new abilities.

One particular aspect of the developmental progresthat should be defined and
quantified, however, is the sources of developmewdaiation. Factors leading to
variability in skill onset should be phrased innterof intrinsic stochastic mechanisms in
cognitive development, such as neurogenesis, toetgr of dendritic branches, or
inherent cortical plasticity, or in terms of exsia environmental variability, such as
limited exposure to, say English vocabulary words iSpanish-speaking household. In
addition, the interactions between these factotsichvare often the cornerstone of a
particular computational investigation, should lmenfulated in such a way that the
cascading effects of variability of intrinsic anxtrinsic factors on the stochastic schedule
of skill emergence can be examined.

In line with having a variable basis, computationadels of development are not
always expected to work. This is not to say thatadel should produce gibberish or
nonsensical results, but that the failure of a rhtmlenaintain some typically developing
structure is useful. One of the most fruitful usefls computational modeling in
developmental psychology is in the analysis of dmmental pathology or atypical
development. This is why apparent failures in mgotational model of a developmental
system should neither be ignored nor swept underdly: an apparent failure signals
either a true flaw in the model, which must be added, or a possible mechanism for
arrested or abnormal development. Similarly, & i&ilure of the model when the model
succeeds where humans would fail (for example auteofibr tracking the development
of face recognition through adolescence should bitxhivell-known visual-system
peculiarities, such as decreased ability to recmgimiverted faces). For these reasons,
the parameters on which a computational model eéldgment is built should be varied,
the systems involved should be stressed, and tiees of the models should be
carefully examined.

Another form of variation that may appear is theidental milestone: sometimes a
developmental effect emerges as the result of thdicplar computational model
employed. Typically employed as an interestingleasthe emergence of behaviors that
are unexpected from a computational model, andeiated to any explicit encoding, are
the best evidence that a particular implementatiodevelopmental simulation achieves
a level of performance exceeding expectation. Xgeeted behaviors that do not
correlate with biologically observed phenomena #halso be reported. These are
indications that remaining work needs to be accwhpt, either in the form of the
reassessment of assumptions and formulations, treirform of further investigations
and experiments.

Finally, one of advantages of having a computatiamzdel is that the model should
be executable multiple times. The aggregation sérées of simulations should be able
to lead to statistics regarding the frequency, wnde and distributions of emergent skills.
By integrating across multiple runs, we can examntime variability in onset of one



particular skill versus another, and all computadicattributes against the true biological
ground truth. In this manner, the aspects of belnalvcomparisons seen previously as
confounds to analysis and quantification, can lo@igint into line with rigorous metrics.

4.1. Example — Locomotive development

Conventional wisdom holds fast to the cliché: yowstncrawl before you walk.
However, this is not actually true: roughly fiverpent of infants begin walking without
any previous crawlinj. A computational model that aims to describedeelopmental
progression of locomotion from birth should be ableharacterize this variation as well
as the general time course of emergent behavics. alh example we will consider a
simple dynamical systems model of locomotion. Nb# this example serves purely in
a didactic capacity and is not necessarily intenttetie representative of any serious
investigation (a serious investigation should asténcorporate some aspects of the work
by Thelen and Smiff).

We begin by assuming that the development of lodmnaan be described by two
variables: arm locomotion (a) and leg locomotiod). (gThese two motor capabilities
represent the abstract concept of a maturing moskeletal system and a developing
neurological motor coordinating capability. Foistexample, we hand-constructed a set
of equations that generate a vector field whichdpoes interesting results (in other
words, these equations are not intended to betrlige only, and not based on any
empirical observation or published data). The &qnoa for that field are:

%:4a—g—§ag+1

dt 3

dg 1 1)
—= == (40g° -66g° +23g+3

el g°+23g+3)

The developmental progression of a single individaia discrete random walk (100
steps) over this field. da/dt and dg/dt togethefing the center anglec and
corresponding magnitude rc. The actual movemertgtaah time step is a step of size
0.018rc in a random direction drawn from a normatribution centered atc with
standard deviation equal to 45°/rc. This givesausrajectory across arm and leg
locomotion space (Fig. 4).

Since locomotive development of each individuadétermined by probability, each
run of the model will generate slightly differemtsults. As in the true biological reality,
variation occurs. This variation, however, is &alall trajectories start at the point
where locomotive capability is completely undeveld@nd stop in a basin of attraction
where development ends. This global behaviorliabie and reproducible, even though
the individual path is not. Consistent with evaogry theory, those behaviors and



biological components that are vital to the fitneéan organism must contain stabilizing
machinery.

Furthermore, we can take this model and apply tosecond level of analysis. We
add a single Boolean variable, s, which governs ékpression of locomotion. No
locomotion is observable unless s is true. s Isegmfalse, and, once it switches on, it
remains in that state for the remainder of the erpnt. The decision to switch on is
determined stochastically with a probability of 786 each time step. This process
represents the idea held by some that though dewelotal progress is being made
internally, and that though the capability to masests, the first initiation of motion is
essentially a stochastic decision process. In &ighe dotted points on the trajectory
represent the points where locomotion is expressed.

We can further divide the space of locomotion istibregions, with each subregion
corresponding to a particular behavior. For exanpl Fig. 4, the bottom left region
marked in hatching represents the area of preangwvhich includes crawling where the
belly remains on the floor; the surrounding lefttps the space represents the area where
arm motion and leg motion contribute equally toolmotive efforts, leading to true
crawling (with the belly off the floor); the remairy right side of the space is when leg
action begins to dominate and walking occurs.
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Fig. 4. A dynamical system as a developmental motllmcomotion. Current development, in termdexs
and arms, are points in the figure (e.g. (0,0)exponds to the point where no part of locomotiateigeloped,
(1,0) corresponds to the point where only the frgsdeveloped). An individual's developmental pesgion is
represented as a curve emanating from the oriBiots on the trajectory represent locations whepression
of locomotion occurs (see text). The arrows regmeshe most likely direction in which developmenitl
proceed at any given time, with the magnitude smpoeding to the relative speed of the transitioThe
locomotion space is separated into discrete betgwwith the small hatched region in the lower Igfé
precrawling behavior, the left side of the spa@edtawling behavior, and the right side of the spaalking.

By aggregating the results of 1,000,000 independeals, we can examine the
statistics regarding when certain behaviors ariBleese results are shown in Fig. 5A for



true crawling (25.9+5.8 weeks) and Fig. 5B for viladk(45.1+5.7 weeks). These values
are in line with evidence from child development gmsychologi?. However, much
more information can be extracted from the develepial model beyond simple means
and standard deviations. We can determine, fdaaite, that the incidence of walking
without prior crawling is 7.7%; for these individeathe mean age for walking is
49.1+13.4 weeks (Fig. 5C). We can note that theo@ated distribution for these
individuals is highly non-normal and skewed to thght, implying that the vast majority
of these walkers who never crawl are simply latpressers for motility (a notion that
would, naturally, need to be verified by furtherpexsmentation). By examining the
delay between walking and crawling for individutiiet do both crawl and walk, we can
calculate an average delay of 18.846.9 weeks ®&II. between crawling and walking
based on distributional differences. Though thianeple is obviously a very simple toy
example, the analyses performed highlight the piatietypes of information that can be
collected in a computational model of a developmesystem, turning the inherent
variance of the system into both additional stagsfor analyses and novel hypotheses
for further investigation. In this particular expl®, we could continue by examining the
rate of regression from walking back to crawlinge tfinal distribution of walking
expertise, capacity to walk versus expression dking, and so on. Not only does the
variation of the model paint a richer portrait bétdevelopmental scene, it also provides
additional measures that can be independently atealuand compared against empirical
results.
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Fig. 5. Extracting developmental implications of@mputational model. These charts show informattiat
can be extracted from a computational model of imglland crawling development. Plot A shows theetmt
which the crawling behavior emerged (25.945.8 wieksa population; Plot B shows the distributiorr fo
walking (45.145.7 weeks)n Plot C, which focuses on the 7.7% of the popatathat walked before crawling,
the mean age for walking is 49.1+13.4 weeks. Tis&rillution of times between walking and crawlirgy i



shown in Plot D (18.8+6.9 weeks). The variationtaf system provides a rich description of the msgion of
developmental milestones.

5. Discussion

Computational models of developmental systems aweeful tools in the analysis of not
only typical cycles of maturation, but also of altete pathways leading to abnormal
development. The specific purposes of models afldpment also lead to specific
prerequisites for interpretable results. In théggr we have discussed how traditional
methods for evaluating machine learning systems roe wholly applicable to
developmental systems in three ways (Fig. 6). Rlre task-based measure of
performance fail to capture the hallmark of a depeiental process: the developmental
time-course. We have also shown how binding oufopmance evaluation to a specific
task leads to ignoring other interesting subtasksralated developmental milestones, as
well as the interaction between the subject beimgleted and enclosing context of the
environment. (2) Finding the correct quantitativeeasures for the evaluating the
performance of a developmental model is critical denerating relevant results. We
have shown that employing the wrong measure leadsibbjective, overly simplistic, or
superficial measures of performance and that thgses of measures are ultimately
harmful to the power of conclusions that can bewdrdor a computational model.
Furthermore, we have shown that in order to auaithtity, a computational model must
provide greater insight than the zero-order meastitask performance (i.e. the model
learns to perform the task reasonably well), bab dhe first-order measure of learning
(i.e. performance changes during training). (3)riston is the strength of a
developmental model. The variations can be cabtbato distributions for measures of
interest, many of which can be independently comgband verified against empirical
results. The underlying uncertainties of the mpdbe unreliability of obtaining
convergent results, and the errors and quirksmofdilsition are disadvantages for a system
measured strictly by performance, but are advaotagefor systems investigating
developmental trends.

In traditional engineering... In models of development...
...we optimize for peak task performance ...the jourtheye matters.
...the metrics for evaluation are often obvious ..gbeious metrics are often wrong.

...instability, variation, and failures are more

...consistency and reproducibility are ideals. interesting than success.

Fig. 6. Comparison of traditional engineering amabeling of development.



The techniques and applications discussed withenpper are especially applicable
to robotic models of development and robotic systetmat employ developmental
components. Robotic implementations with develapiade aspects have additional
advantages in ecological validity: robots operatim¢he real world can incorporate real-
world patterns of noise and unpredictability, cansth practical factors such as
transmission delay and signal degradation, andegaiore interactions with humans in
interfaces ranging from real-time socially-contingeesponse to proprioceptive reflex.
Robotic systems offer a platform by which the fedimplexities of the natural human
environment can be brought to bear on a develomhentestion. We should note,
however, that, for robots intended to perform eagiing tasks, engineering measures of
performance are still the most critical measuresnéf these tasks rely on developmental
components. Indeed, engineering techniques anélaj@wental techniques are not
mutually exclusive, as good engineering takes atoount the context of the solution,
and developmental systems require excellent engimgetols in design and formulation.
It is the over-reliance or the sole interpretatmindevelopmental systems through an
engineering mindset that proves insufficient.

Though no clear, universal metrics for the evabratdf computational models of
development exist, we hope that this paper hasdhtolight to some of the issues
relevant to the evaluation of developmental systerdsd though this paper has been
presented in the negative, as methods and tectmanpa approaches that should not be
employed in building computational models of depatental systems, we hope that it
has illuminated also the way these systems shaukbmined.
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