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Abstract— The perception of animacy is one of the fundamen-
tal social skills possessed by humans. The aim of this study is
to determine whether such a skill can be accurately reproduced
computationally, and if so, to describe the underlying factors
which contribute to the animacy decision. We hypothesize a set
of motion features which lead to such a distinction, construct
a database of sample movements from both synthetic and
natural stimuli, collect human judgments on the animacy of
these stimuli, and evaluate the effectiveness of a computational
system trained on this data to discriminate animacy.

Index Terms— Animacy, Perceptual development, Causality,
Naive physics

I. I NTRODUCTION

Objects around us may be classified as either having
a controlling intelligence behind them or those dependent
on purely physical circumstances. We can refer to these
objects as animate or inanimate, although the distinction is
not a clear one. What information do we need about an
object, in order to classify it as animate? There are many
artifacts which remind us of animacy, foremost of them being
live biological motion. However, there are often moments
where we classify abstract or non-living objects as animate,
for example a complicated object trajectory generated by a
mathematical equation, or a battery powered toy. The nuances
that discriminate animate from inanimate motion have not
been well described. In this work, we construct a system that
performs this discrimination and we analyze the components
of visual motion that contribute to this decision.

The phenomenon behind animate and inanimate motion
was first studied in the 1900s, and shot to attention with the
publication of Michotte’s book, “The Perception of Causal-
ity” [2]. This was followed by Heider and Simmel’s [3]
classic 1944 article on “An experimental study of apparent
behavior” which described the attribution of animacy and
causality as having the characteristics of a perceptual judg-
ment (being “fairly fast, automatic, irresistible and highly
stimulus-driven”) even though they were typically thought
of as cognitive processes [4]. This suggests that the visual
system infers properties like causality and animacy in the
same way it does for physical properties like object motion.
There is some evidence that other animals (including frogs
[5]) operate in this same manner.

The efforts of many to determine the motion cues which
mediate perceptual animacy have met with reasonable suc-

cess. However, no absolute metric has been found or de-
veloped yet. Bassilli [6] developed 5 computer controlled
displays, each showing 2 circles moving on a black back-
ground for his experiments. Dittrich and Lea [7] followed
by presenting adult subjects with displays containing several
randomly chosen, moving letters (called distractors), and a
target letter whose motion was designed to simulate biologi-
cally meaningful and intentional motion - a predator chasing
a prey, for example. They concluded that the perception of
any motion as animate depended not only on the degree of
interaction between the objects, but also on the degree of
intentionality conveyed by it.

Stewart [8] set out to investigate how motion influences
the perception of animacy. She hypothesized that observers
should describe objects which violate the laws of physics as
animate, since it would require them to have access to hidden
energy sources. Stewart used this energy-violation hypothesis
to predict that three types of motion were sufficient to identify
animacy: starts from rest, changes in direction to avoid a
collision and direct movement towards a goal. Gellman et
al [9] suggested that the ability to classify animacy is not
based solely on perceptual information, but also draws upon
innate or early-developing knowledge of causal principles in
humans. Blythe and his colleagues [10] on the other hand,
have argued that a small set of motion cues can be sufficient
not only to determine whether or not a moving object is
animate, but also to determine what intention motivated the
object’s movement. They go on to present an algorithm which
uses seven motion cues to predict observers’ responses when
asked to classify the motion into categories. Tremoulet and
Feldman [1] however hypothesized that animacy could be
perceived from point light movements, and formulated their
experiments with extremely simple stimuli - showing a single
white particle moving across a dark, featureless background.
In cases where the trajectories of two objects were the same,
the orientation and alignment of the object itself contributed
to the perception of animacy, thus refuting Stewart’s earlier
claim of energy violations being the only contributing factor
to such a decision.

Often, discussions of animacy occur within a larger con-
ceptual framework that accounts for intentional and goal-
directed behavior. These frameworks are often known as
”theory of mind” models because they require that the agent



have some ability to interpret the hidden mental states (of
goal and intention) of another entity. Based on the models
of Leslie [13] and Baron-Cohen [20], Scassellati [11], [14]
developed and implemented the basic components of a theory
of mind for a humanoid robot. This implementation used
Leslie’s model of a “Theory of Body” (ToBY) to determine
animacy of a visual target based on a set of naive physical
laws. Objects which obeyed these hand-constructed physical
laws were determined to be inanimate, while those that
displayed some measure of self-propelled movement were
seen as animate. This work serves as the basis for the work
presented here. We propose a number of different visual cues
to describe a particular motion, each of which is extracted
from a given trajectory. The cues are based on physical
properties such as the distance traveled by an object during its
motion, the direction in which it did so, the energy it gained
or lost during this time, and other such factors. Experiments
with a model built using these features then allow us to
conclude the importance of each of them in arriving at a
judgment of whether a given motion is animate or not.

II. SYSTEM OVERVIEW

It has been shown that a single moving object can create
the subjective impression of being animate, based solely on
its pattern of movement [1]. Some authors have also hy-
pothesized that the visual system automatically detects events
in which the observable kinetic energy increases [15], or is
otherwise not conserved [8] - which might imply the presence
of an animate entity with hidden energy sources. Our goal
was to not only construct a system which could distinguish
between animate and inanimate motions but also to analyze
the relative contribution of various features of a physical
movement that would contribute to a judgment of animacy.
Our system consists of three main components: a visual pre-
processor which converts visual data to the movement of
an object to a single trajectory through space and time, a
feature extractor which converts a motion trajectory into a
lower-dimensional set of features, and a classification system
that can be trained to discriminate animate from inanimate
trajectories.

A. The Visual Pre-Processor

The visual pre-processor converts a sequence of visual
images into a form suitable to submit to the next component,
the feature extractor. The training data we consider consists
of videos of point light sources generated using one of three
methods (as shown inFigure 1). The first method (”hand-
drawn”) extracted motion trajectories from hand-drawn tra-
jectories obtained by recording the mouse movements of a
human user engaged in a drawing task. The moving trajectory
of the mouse pointer was used to generate a synthetic image
that showed the position of the mouse pointer as a white
dot moving over a black screen. In the second method (”real
world”), an object with a small light source attached to it

Fig. 1. Three types of test video sequences. Top row - ”Hand drawn”
images; Middle row - ”Real world” images; and Bottom row - ”synthetic”
images

was moved through a motion trajectory in front of a camera
system. The recorded video of this moving light source
was used directly as data. The final method (”synthetic”),
constructed video sequences synthetically by tracing a white
point over a black background using a trajectory defined by
hand-coded equations of motion.

B. The Feature extractor

Because the videos obtained earlier may be of arbitrary
length, the first 120 frames of each trajectory is broken
up into thirty subdivisions (breaks) each consisting of four
spatial positions. The points thus obtained may however
have noise, and contain jitter. The four points within each
subdivision are averaged, and a piecewise polynomial cubic
spline curve is fitted to these average coordinate points
using a least squares approximation.Figure 2 shows the
generated spline curve of the object in motion inFigure 1.
The smoothed data can now be used to calculate motion
vectors, each represented by anangle of movementθ and
ρ, the distance between breaks. Taken together, these two
parameters constitute a set of motion vectors that describes
the complete trajectory. These basic parameters are then used
to derive features based on the principles of naive physics.

1) Velocity and Acceleration metrics:Tremoulet and Feld-
man [1] hypothesized that simultaneous changes in both
speed and motion direction - occurring in a uniform, fea-
tureless environment - lead to animate interpretations. In the
absence of any supporting context, these trajectories cannot
normally be accounted for by inanimate motion sources
common in the environment. One of the properties in our
classification system can thus be through monitoring changes
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Fig. 2. The spline curve generated for the third hand-generated motion

in the direction, velocity and acceleration of the object. We
calculate the mean, variance and range for bothθ and ρ
across the entire trajectory. The mean of distanceρ relates
to the average velocity of the object, and its variance to the
acceleration or deceleration endured. Directional information
can be obtained from the angleθ, whose mean and variance
give us directional changes.

2) Static metric:Certain objects can be easily be classified
as inanimate, since they have a high chance of not undergoing
any movement at all. This measure is proportional to the
length of the trajectory of motion - the probability of it being
inanimate rises higher as length of motion becomes shorter.
From the above data, we have already obtained the distance
metric as given byρ. If this is near zero, the static feature
flag is set to true.

3) Straight line metric: Although it is not a strict re-
quirement, most animate movements follow an element of
uncertainty, and the chances of them being geometrically
perfect are minimal. We can thus include a measure of how
closely the motion of an object approximates a straight line or
a smooth curve by analyzing point locations with respect to
time, and comparisons with the relevant trajectory equations.
To calculate this, we formulate the equation of a straight line
from the first two points available to us,

(y − y1) = ((y2− y1)(x− x1))/(x2− x1) (1)

For successive values of(x, y) from the array, we substitute
(x, y) and make sure that the equation is satisfied - which
will only occur if the object moves in a straight line. We
also check if the value of the initial angleθ of the object,
and the range of angles it has moved through are close to
each other, suggesting very slight deviation from a straight
line. This method proves to be more efficient, since no object
as analyzed in the real world moves exactly in a straight line.

4) Energy metric: We implement a simple energy mon-
itoring system based on [15], which judges an object that
gains energy to be animate. The total energy is calculated
based on a simple model of kinetic and potential energies -

E =
1
2
mv2

y + mgy (2)

wherem is the mass of the object,vy the vertical velocity,g
the gravity constant, andy the vertical position in the image.
An object higher up in the image is assumed to have more
potential energy. This is possible only if the object has some
means of increasing its own energy - definitely the hallmark
of an animate object. To determine a metric, we analyze the
energy over the entire motion of the object (assuming that
the mass of the object is a constant). We calculate if there
has been any gain in the potential energy, since this would
signify a force other than natural ones acting on the object.

Final attribute set
Distance Metric(ρ) Mean (ρV ), variance (ρV )

and range (ρR) sampled on
each of the thirty trajectory
breaks (3 features)

Direction Metric
(θ)

Mean (θM ), variance
(θV ), range(θR) sampled
as above (3 features)

Spline coeff. 1st, 2nd, 3rd and 4th
order coefficients measure
the sharpness of the mean,
variance and range of the
motion vectors (12 fea-
tures)

Static Flagε(0, 1) Static or not, depending
on magnitude of distance
travelled (1 feature)

Straight line Flag
ε(0, 1)

Straight line or not, de-
pending on change in an-
gle of motion (1 feature)

Energy agent(E) Measures any increase in
potential energy of the ob-
ject (1 feature)

C. The Classification System

The underlying basis of the classification system is a naive
Bayes classification algorithm. A repository of classification
data about the motions was first generated after letting vol-
unteers interact with the system. Their responses on whether
a particular motion is animate or not, were integrated along
with the extracted features, into a combined dataset which
was used to train the classifier.

The process of classifying a movement as animate or
inanimate is something inherently built into human beings,
and there are no definitive means of quantifying it (yet). We
thus need to consider the fact that none of the distinctions



our system makes fall neatly into either of the two groups -
there is bound to be an error in judgment at various points.
Animacy is hence represented as a latent variable - one whose
value can not be directly observed, but indirectly inferred
from the values of other observable and measurable variables.
In our scenario, the properties we extract from the image
sequences play the role of the latter. One advantage of using
latent variables is that it reduces the dimensionality of data.
A large number of observable variables can be aggregated to
represent an underlying concept, making it easier for human
beings to understand and assimilate information - we can
extrapolate this conclusion for machines.

The learning method we intend to follow is supervised
learning [21] - that of creating a function from training data,
whose aim will be to predict a class label of the input data,
after having analysed a number of training examples. We
choose a probabilistic classifier, specifically the naive Bayes
classifier, also known as the independent feature model.

1) The Naive Bayes Classifier:We consider the function
of properties (features) described earlier(P1, P2, ..Pn), which
describes the instance we wish to classify. The classifier can
be thought of in a conditional model, whereA is a dependent
class variable with a small number of outcomes (a in A),

P (A|P1, P2....Pn) (3)

where a = 0 if the motion is inanimate anda = 1 if the
motion is animate. The above however, will not work for an
arbitrarily large number of properties. Using Bayes theorem,
we can thus get,

P (A|P1, ...Pn) =
P (A)P (P1, ...Pn|A)

P (P1...Pn)
(4)

The value of the denominator does not depend on A, and
because the values of the properties once computed will
remain constant, we can effectively ignore it. The numerator
can be thought of as a joint probability model of the two
terms,

P (A,P1, ...Pn) = P (A)P (P1|A)...P (Pn|A) (5)

which is the same as,

P (A)
n∏

i=1

P (Pi|A) (6)

The Bayes probability model can now be combined with a
decision rule, in this case theMaximum A Posteriori(MAP)
rule. The classification function for a particular instance to a
classa, classify(P1, P2...Pn) from a set of possible classes
A thus becomes,

argmaxcP (A = a)
n∏

i=1

P (Pi = pi|A = a). (7)

We will also compute a vector of elements,

VA = P (A)
n∏

i=1

(Pi|A) (8)

After normalization, this vector denotes the class probabil-
ities. (Both these and the conditional probabilities are esti-
mated from training data). The class probability is the same as
the relative class frequency. We can calculate the conditional
probabilities by computing the number of instances which
have theirith attribute equal toPi, and belong toA.

In this system however, we use the m-estimate mechanism
of calculating probabilities due to the fact that the relative
frequency method of calculation has problems when the
instance size is small. Thus,

P = (nc + mp)/(n + m) (9)

wheren is the total number of training examples, andnc is
the corresponding value when calculating the estimate.m is
the equivalent sample size, which determines how heavily to
weightp relative to the observed data.p is the prior estimate
of probability we wish to estimate. We estimate byp by
assuming uniform priors, and setp = 1/k.

III. PERFORMANCE EVALUATION AND TESTING

The classification system was built and tested with the
Orange [18] framework. The dataset on which the testing was
done consists of fifty videos each of which was classified
by twelve human volunteers as animate or inanimate. For
simplicity of analysis, the hand-drawn video trajectories and
the equation-generated synthetic trajectories were lumped to-
gether. These videos, their extracted features, and the human-
generated labels were taken as the training set. We started
by testing the accuracy of the system using some common
techniques. Analysis of the relation between the accuracy of
the system in context of synthetic and real world motions was
then done, followed by a knockout evaluation of the data to
determine which one of the features was the most important
in judging a motion as animate.

A. K-Fold Cross Validation results

The evaluation through k-fold cross validation method is a
very common one in the machine learning community. The
data set is here split intok equally sized subsets, and then
in the i-th iteration, the(i = 1..k) ith subset is used for
testing the classifier that has been built on all other remaining
subsets. We see from Figure. 3 that as the number of datasets
are increased, the accuracy of the system increases - the
use of one training data set achieved30% accuracy, which
increased to64.38% for seven samples, but decreased again
for twelve samples, to60.33%, which might highlight an
aberration in the successive human perception of the test data.
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Fig. 3. Accuracy of the learning system

B. Area under ROC Curve results

Another method used is the area under ROC curve [19].
It is a discrimination measure that ranges from 0.5 (random
guessing) to 1.0 (a clear margin exists in probability that
divides the two classes). As we can see from Figure. 3, the
results are quite consistent in terms of prediction of new data.
Accuracy measures ranged from40% in case of one data
set, to about68% for seven samples, and decreased again for
twelve samples to about63%. The discrimination measure
remained at about 0.5, suggesting that there is no clear margin
in the probability which divides the two classes - animate and
inanimate, in accordance to our hypothesis.

C. Role of synthetic vs. real-world data

To determine if there are possible differences in interpre-
tation of one type of movement compared to the other by
humans, we analysed our system in two ways - by training it
on the synthetic data set, and testing it on the real-world data,
and vice versa. The accuracy of the system was found to be
minimally different between these two conditions. In the first
case, we obtain an accuracy value of46.99%, and in the other,
48.7%. Compared to the accuracy levels in the region of72%
when the entire set is considered, this is significantly low, but
it can be stated that there are no significant differences in their
interpretation.

D. Knockout analysis of features

In order to answer our earlier question of determining
which features contribute most to the animacy judgment,
we ran knockout tests on the feature set. In the first test, a
certain feature was nullified in the testing set, (but no changes
made in the training set), and the system was run. The
accompanying graph (Figure. 4) illusrates the results. The
drop in accuracy to44% remains constant when the velocity
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Fig. 4. Knockout analysis of the feature-set - Test I. Accuracy of the
classifier when each of the mentioned features were removed from only the
testing set

(ρ), direction (θ), staticness features, as well as the spline
coefficients representing the sharpness of these changes are
each nullified independently. There is no change in accuracy
when the straight line vector is removed, which signifies
its lesser contribution to the judgment process. The energy
feature however, leads to a significant fall in accuracy, going
down to62%. When all features are retained, we get a high
accuracy of72%.

In the second test, both the training and testing sets were
modified. For each step in the process, all attributes except
one were consecutively removed, and the system was run.
As is illustrated by the accompanying graph (Figure 5), the
accuracy is a high72% when all the attributes are retained.
When testing only on direction (θ), we achieve an accuracy
of 66%, which goes down to58% when using only the
velocity attribute set (ρ). On the other hand, considering only
the sharpness factors for the above data leads to a higher
accuracy in correctly classifying the motion, achieving64%.
The staticness metric, and the straight line metric perform on
par, with average accuracy for both (taken independently) re-
maining44%, signifying a lesser contribution to the judgment
process. An interesting result of this was the relatively high
accuracy obtained when retaining only the energy metric,
which results in values near68%.

We can thus conclude that the major features used in
determining a particular motion as animate are a combination
of the sharpness in change of velocity, and direction, with
the energy metric playing a significant role in the process.
The direction or velocity magnitude themselves contribute
a much lesser amount to the final categorization of motion
into either of the two classes. The staticness metric and the
straight line metric are seen to contribute in a considerable,
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Fig. 5. Knockout analysis of the feature-set - Test II. Accuracy of the
classifier when all but the mentioned attributes were removed. The major
contributors to the judgment were theta, spline and the energy metrics

yet less substantial manner to the judgment.

IV. D ISCUSSION

Due to their innate complexity, a set of motions can not be
discretely classified as being animate or inanimate. The fact
that the 2 classes are not linearly separable is an obvious
one (and substantiated by the AROC test) - mere physical
representations of such motions give an insight into but one
of the myriad features they possess. Humans have the ability
to interpret complex features from such motion, the specifics
of which are still unknown - it is definite however, that
these relate to higher cognitive functions. Errors in judgment
still abound, as is well illustrated by the samples of data
which have been subjected to human analysis, and this fact
highlights the blurred lines between animate and inanimate
motion. After all, what would be the right classification for
a movement in which a person falls down the stairs? If we
were to approximate purely physical notions, then it could
be argued that this is inanimate motion. However, when
considering the randomness of movement, which is yet in
sync with the various parts of the human body, this could
be classified as animate. Our system of classification is a
flexible one, able to adapt to changing data, rather than have
extensivea priori knowledge about the system, and achieves
our aim in developing a learning system which can learn
through social interaction.
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