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Abstract

This paper advocates a developmental approach to
building complex interactive behaviors for robotic sys-
tems. A developmental methodology is advantageous
because it provides a structured decomposition of
complex tasks, because it facilitates learning, and be-
cause it allows for a gradual increase in task complex-
ity. The developmental approach provides a struc-
tured means both of dividing a task among research
units, as well as a metric for evaluating the progress
of the task. Initial work with developmental modeling
has also hinted that these skill decompositions may
make the overall task easier to accomplish through
the re-use of knowledge gained from developmental
precursors.

We report here on two projects of building behaviors
developmentally for a humanoid robot. In the first
project, the robot learned to reach to a visual target
by following a developmental progression similar to
those observed in infants. The second project outlines
a proposal for building social skills developmentally.

Introduction

One of the main tasks for our field is to develop meth-
ods to explain, construct, and understand complex in-
teractive behavior. If we are to build complete, in-
tegrated systems that can utilize a multitude of be-
haviors to survive in the real world, we must find
methodologies that allow us to scale our behavioral
systems easily. Earlier methods, based on models of
adult biological systems or on ad-hoc computational
formalisms, have failed to provide a structure that fa-
cilitates scaling simple behaviors into complex, adap-
tive behaviors.

An alternative methodology is to use a developmen-
tal approach to designing robotic systems. A devel-
opmental approach divides high-level tasks into com-
putationally simpler, and developmentally earlier, be-
haviors. A developmental approach is deals directly
with the scaling problem, that is, how can one exploit

existing structures to facilitate learning new, more so-
phisticated behavior?

Our group has been constructing an upper-torso hu-
manoid robot called Cog (see Figure 1), in part to ex-
plore how building behaviors developmentally can help
us overcome the scaling problem. The robot has been
built to roughly approximate the motion of a human,
with twenty-one degrees of freedom, and to roughly
approximate the sensory capabilities of a human, with
visual, auditory, proprioceptive, and vestibular senses.
In this paper, we will examine the potential benefits of
a developmental methodology and provide two exam-
ples of how this methodology can be applied to robotic
systems.

Advantages to the Developmental
Methodology

A developmental methodology is advantageous because
it provides a structured decomposition of complex
tasks, because it facilitates learning, and because it al-
lows for a gradual increase in task complexity. In this
section, we explore these three themes, drawing on ex-
amples of biological development and the implications
that these insights have to the development of robotic
systems. We focus primarily on human development,
but developmental phenomena can be observed in vir-
tually all animals.

Development gives a structured
decomposition

Often, the most difficult aspect of building a complex,
integrated system is simply dividing the problem into a
set of manageable behaviors. The ways in which we de-
compose problems can greatly influence the difficulty
of implementing those pieces. A useful decomposition
breaks the problem into manageable pieces that over-
lap enough to allow integration to be successful, but
do not unnecessarily duplicate effort. For the decom-
position to be effective, we must be certain that the
pieces will combine into the desired behavior.
Developmental studies give insights into decomposi-
tions of complex skills that are both useful and effec-
tive. Development is an incremental process in which



Figure 1: Cog, an upper-torso humanoid robot. Cog
has 21 degrees of freedom to approximate human mo-
tion, and visual, vestibular, proprioceptive, and audi-
tory senses to approximate human perception.

later forms of behavior arise from the situated con-
text that earlier behaviors provide. These precursors
provide a task decomposition that is not necessarily a
minimal set of required behaviors, but at the least a
sufficient set. This decomposition also allows for larger
behavioral tasks to be divided between a set of research
teams, or between members of a research group.

This decomposition is also useful because it provides
a set of stable behavioral precursors which can be used
as an evaluation metric. While it is often difficult to
evaluate the progress of a robotic project, the presence
of a set of precursor behaviors gives a demonstrable
means to evaluate the progress of a system. The eval-
uation of the system is the set of behaviors that it is
capable of performing, and this can be compared with
other results based on standard observation techniques
from ethology, psychology, and cognitive science.

Development facilitates learning

Some of the most significant insights development pro-
vides us as robot designers are identifying the con-
straints, interactions, and strategies infants exploit
to promote learning in complex environments. Hu-
man development is fundamentally about scaling. The
range of behaviors that a human infant acquires within

the first year of life easily dwarfs the complete range
of behaviors that current robotic systems offer. Devel-
opmental approaches make explicit the flexibility that
our robotic systems require, and offer insights on how
simpler behaviors may bootstrap more complex behav-
iors.

Perhaps the most obvious insight is that develop-
ment is an incremental process. At each stage in the
process, prior structures and their behavioral manifes-
tations place important constraints on the later struc-
tures and proficiencies. Knowledge that is gained from
learning a precursor behavior can be recruited by a
more complex behavior to simplify the learning pro-
cess, or simpler behaviors may serve as construction
blocks for later behaviors. The earlier forms boot-
strap the later structures by providing subskills and
knowledge that can be re-used. By following the devel-
opmental progression, the learning difficulties at each
stage are minimized.

Development provides a gradual increase
in complexity

Another key insight is that it is not a disadvantage
to start with an immature and uncalibrated system.
A system that begins simple and becomes gradually
more complex allows for more efficient learning. For
example, infants are born with low acuity vision which
simplifies the visual input they must process. The in-
fant’s visual performance develops in step with their
ability to process the influx of stimulation (Johnson
1993). The same is true for the motor system. New-
born infants do not have independent control over each
degree of freedom of their limbs, but through a gradual
increase in the granularity of their motor control they
learn to coordinate the full complexity of their bodies.
A process where the acuity of both sensory and motor
systems are gradually increased significantly reduces
the difficulty of the learning problem (Thelen 1993).

Development does not only consist of a gradual in-
crease in internal complexity, but also a gradual in-
crease in the complexity of the external world. The
complexity of the infant’s external world is carefully
structured by the caregiver. By carefully control-
ling the environment, the caregiver can bias how the
learning proceeds. This approach is in stark contrast
to most machine learning methods, where the robot
learns in a usually hostile environment, and the bias,
instead of coming from the robot’s interaction with
the world, is included by the designer. By gradually
increasing the complexity of the environment, learning
will be made easier, and the robustness of learning will
also be improved.

By exploiting a gradual increase in complexity both
internal and external, while reusing structures and in-
formation gained from previously learned behaviors,
we hope to be able to learn increasingly sophisticated
behaviors. We believe that these methods will allow
us to construct systems which scale autonomously.



Examples of Developmental Systems

Our group has been exploring building complex behav-
iors by studying human development. The following
sections detail two examples of how we have been us-
ing studies of human development to build complex,
interactive behavior.

The common hardware platform that we have used
for these studies is the upper-torso humanoid robot
called Cog (see Figure 1). The robot approximates
a human being from the waist up with twenty-one
degrees-of-freedom (DOF') and a variety of sensory sys-
tems. Mechanically, Cog has a torso with a two degree-
of-freedom (DOF) waist, a one DOF torso twist, and
a three DOF neck. Two six DOF arms, each joint
powered by a motor through a series torsional spring,
exhibit a natural compliant behavior similar to human
arms (Williamson 1995). The head assembly consists
of a three DOF active vision system with two active
“eyes,” each eye composed of two (a wide peripheral
and a narrow foveal) CCD cameras. The head also con-
tains a vestibular system, with three rate gyroscopes
and two inclinometers, and an auditory system with
two microphones and crude pinnae.

The robot’s “brain” is a heterogeneous parallel pro-
cessor network that contains dedicated sensory pro-
cessors, for visual and auditory computation, as well
as general purpose processors for motor control and
higher level computation. In addition, much of the
local motor control is handled on dedicated on-board
controllers for faster response.

In addition to the full humanoid robot, we have also
developed active head platforms, similar in mechanical
design to Cog’s head, with identical computational sys-
tems; the same code can be run on all platforms. Sec-
tions of the following work were developed and tested
using these systems.

Example #1: Visually-Guided Pointing

Taking a strictly engineering approach to the problem
of visually-guided reaching, our task can be formulated
as follows: Given the location of an interesting stim-
ulus within the image plane, we desire to move the
arm to an extended posture that intersects that posi-
tion. If we were to follow a classical robotics approach
to this problem, we would take the two-dimensional
position of the object within the image plane as our
input, and convert that to a trajectory through eleven
degrees of freedom (two from the eye, three from the
neck, and six from the arm). We could determine the
kinematics and dynamics of this system and compute
the requisite function. However, this solution is very
complex, incapable of adapting to new configurations
of the robot, and gives no insight of how to generalize
to other hand-eye coordination tasks. Instead, we look
to infant development for examples of how to build
these behaviors.

Diamond has shown that children between the ages
of 5 and 12 months undergo a number of distinct de-

velopmental stages (Diamond 1990) . By the age of
5 months, the infant has already gained a significant
amount of motor control over her eyes and neck, but
is just beginning to use her arms to reach deliberately
for objects. The first step in this progression is a very
stereotyped reach along the visual axis directly toward
the object of interest. During this stage, the infant’s
reach is ballistic; once the reach has begun, the trajec-
tory is modified only once the infant comes into contact
with an object. Children at this stage always begin a
reach from a rest position in front of their bodies. If
they miss the target, they return to the rest position
and try again.

To achieve visually-guided pointing with our hu-
manoid robot, we construct a system that first learns to
foveate the visual target, and then to orient to that tar-
get, and finally to reach for that target. The learning
is done on-line and completely self-supervised as the
robot attempts to reach for targets. The original work
was conducted with the neck in a fixed position, elim-
inating 3 degrees of freedom from the problem. With
this assumption, the training takes place in the follow-
ing two phases:

1. The system learns to saccade to a visual target.
An image correlation algorithm constructs a sac-
cade map S 7 ¢, which relates positions in
the camera image ¥ = (x,y) with the motor com-
mands necessary to foveate the eye at that location
€ = (pan, tilt).

2. The system learns to ballistically reach along the

angle of gaze. Using motion feedback from the
moving arm, the system learns a ballistic mapping
B : & — & between the position of the eyes in
the head € = (pan,tilt) and the arm motor com-
mands necessary to move the arm to that location
a= ((Xo...(l5).

Following the developmental progression simplifies the
second step of this task, as we will see below. More in-
formation on this project can be found in (Marjanovié,
Scassallati & Williamson 1996).

To learn the saccade map, the system simply at-
tempts to foveate objects and learns from its mistakes.
This map is implemented as a 17 x 17 interpolated
lookup table, which is trained by the following algo-
rithm:

1. Initialize with a linear map obtained from self-
calibration.

2. Randomly select a visual target.
3. Saccade using the current map.

4. Find the target in the post-saccade image using cor-

relation.

5. Update the saccade map based on Ls error.
6. Go to step 2.

The system converges to an average of < 1 pixel of
error per saccade after 2000 trials (1.5 hours).



To learn the ballistic map incrementally, we face
three fundamental problems. First, we require an un-
supervised error signal. We accomplish this by using
a motion detection routine to find the end of the hand
as 1t reaches out. Since the eyes are already point-
ing toward the target, the error is simply the vector
from the center of the image to the projection of the
hand on the image plane. The second problem that
we face is that our error signal is in the coordinates of
the image plane. We solve this by re-using the saccade
map that we learned in the previous step to convert the
error vector from image coordinates to eye motor coor-
dinates. That is, we use the saccade map to determine
the position that we would need to look to in order to
foveate the hand. The saccade map transforms our er-
ror metric into one of the coordinate systems used by
the ballistic map. However, our third problem is that
the error signal is in the coordinate frame of the input
to our mapping, not the coordinates of the output. To
train a system in this way, we use a learning technique
similar to the distal supervised learning of (Jordan &
Rumelhart 1992); we train a forward map of the sys-
tem F which is the inverse of the ballistic map B. The
forward kinematic model F' is useful in that it gives an
expectation of where to look to find the arm. This can
be used to generate a window of attention to filter out
distractions in_the motion detection.

The maps B and F' are both implemented using a
radial basis function consisting of 64 Gaussian nodes
distributed evenly over the input space. The nodes
have identical variance, but are associated with differ-
ent output vectors. The learning routine follows the
following steps:

1. Initialize the maps Band F.
2. Randomly select a visual target.

3. Saccade to that target using the learned saccade
map.

4. Attempt to reach for the target using the current
ballistic mapping.

5. As the arm moves, track the end of the arm using
visual motion detection.

6. Once the arm has finished reaching, compute the
visual error signal & between the center of the visual
field and the arm position.

7. Transform the visual error from image coordinates
to eye motor coordinates ¢ using the saccade map.

8. Backpropagate € through the forward map F to gen-
erate an error signal in terms of the arm coordinates

—

a.

9. Backpropagate the error in arm coordinates a
through the Ballistic map.

10. Return the arm to the resting position.

11. Go to step 2.

The system trains to reach reliably within approxi-
mately 700 reaches, which requires 90 minutes of train-
ing. This system is not yet capable of generic hand-eye
coordination, but the developmental progression that
we have modeled here provides insights on how to gen-
eralize this skill (see (Diamond 1990)).

Although the developmental framework in this task
greatly simplifies the computation necessary, the ballis-
tic reaching task could be accomplished with a brute-
force approach using current technology without re-
sorting to a developmental approach. In the next sec-
tion, we look at a task that has not been adequately
addressed in current technology: enabling a machine
to interact with a naive human in a natural way.

Example #2: Building Social Skills
Developmentally

In our work, we have also examined social interaction
from this developmental perspective. One research
program focuses on a developmental implementation
of an early precursor of social communication, shared
attention mechanisms. Shared attention, the ability to
selectively attend to an object of mutual interest, is
part of the large repertoire of social cues, such as gaze
direction, pointing gestures, and postural cues, that
humans so easily master. The primary focus of this
research is to investigate how individuals develop the
skills to recognize and produce these social cues by im-
plementing models of this developmental progression
on our humanoid robot. A more detailed account of
this project can be found in (Scassellati 1996).

We are interested in shared attention as a precursor
to social communication for two reasons. First, we be-
lieve that by using a developmental program to build
social capabilities we will be able to achieve a wide
range of natural interactions with untrained observers
(Brooks, Ferrell, Irie, Kemp, Marjanovic, Scassellati &
Williamson 1998). Constructing a machine that can
recognize the social cues from a human observer al-
lows for more natural human-machine interaction and
creates possibilities for machines to learn by directly
observing untrained human instructors. Second, by
building models from developmental psychology, we
further these models by providing a test bed for ma-
nipulating the behavioral progression. With an imple-
mented developmental model, we can test alternative
learning conditions, environmental conditions, and ab-
normal developmental progressions. This investigation
of shared attention asks questions about the develop-
ment and origins of the complex non-verbal communi-
cation skills that humans so easily master: What is the
progression of skills that humans must acquire to en-
gage in shared attention? When something goes wrong
in this development, as it seems to do in Autism, what
problems can occur, and what hope do we have for
correcting these problems? What parts of this com-
plex interplay can be seen in other primates, and what
can we learn about the basis of communication from



these comparisons?

A Developmental Model of Shared Attention
The mechanisms for shared attention in humans are
not a single monolithic system. Evidence from child-
hood development shows that not all mechanisms
for shared attention are present from birth (Hobson
1993). There are also developmental disorders, such as
Autism,! that appear to affect shared attention (Frith
1990).

We begin with a developmental model from (Baron-
Cohen 1995). Baron-Cohen provides a model that
gives a coherent account of the observed developmen-
tal stages of shared attention behaviors in both normal
and blind children, the observed deficiencies in shared
attention of Autistic children, and a partial explana-
tion of the observed abilities of primates on shared at-
tention tasks. What Baron-Cohen’s model does not
provide is a task-level decomposition of necessary skills
and the developmental mechanisms that provide for
transition between his stages. Our current work is on
identifying and implementing a developmental account
of one possible skill decomposition (Scassellati 1996).
The skill decomposition that we are pursuing can be
broken down into four stages: gaze monitoring, in-
terpolation of gaze, identifying pointing, and utilizing
pointing.

The first step in producing mechanisms of shared
attention is gaze monitoring, the tendency to monitor
what the caregiver is looking at. Just as human infants
have an innate preference for looking at human faces
and eyes, our robot has a hard-wired preference to look
at human faces and eyes. In its simplest form, this skill
is the ability to tell when someone is looking at you.
This requires a great deal of perceptual ability, but
relatively little motor control.

The second step will be to engage in shared attention
by interpolation of gaze. Povinelli and Preuss report
that in all of the great apes, when a caretaker moves
its gaze to a new location, the child will move its gaze
to that same location (Povinelli & Preuss 1995). This
basic form of imitation serves to focus the child’s atten-
tion on the same object that the caregiver is attending
to. This functional imitation appears simple, but in-
volves many separate proficiencies, as we will see in the
following section.

The third step in our account will be to engage in
shared attention through pointing. Just as gaze di-
rection can indicate a request for shared attention, a
pointing gesture is a request for the observer to at-

! While the deficits of Autism certainly cover many other
areas of perceptual and cognitive capabilities, some re-
searchers believe that the missing mechanisms of shared
attention may be critical to the other deficiencies (Baron-
Cohen 1995). In comparison to other mental retarda-
tion and developmental disorders (like Williams and Downs
Syndromes), the deficiencies of Autism in this area are quite
specific (Karmiloff-Smith, Klima, Bellugi, Grant & Baron-
Cohen 1995).

tend to a distal object. To understand pointing as a
mechanism of shared attention requires both the abil-
ity to recognize postural and gestural cues but also the
ability to extrapolate from that posture to a distal ob-
ject. As a singular skill, this is as complex as gaze
following. However, including this skill as part of a de-
velopmental program makes the task more attainable;
the infrastructure for extrapolation from a body cue is
already present from the first two stages, it need only
be applied to a new domain.

The final step is to enable our robot to request shared
attention by pointing at an object. This step adds
more complex computational and motor control re-
quirements to our system, but the skills from the first
three stages can be combined with imitation to achieve
requests for shared attention. By imitatingthe success-
ful pointing gestures of other individuals, the robot can
learn to make use of similar gestures. Our robot has
already learned the sensori-motor coordination neces-
sary to point to a visual target (see the previous exam-
ple). Adding the ability to imitate pointing requests
will require the ability to perceive relevant gestures, to
map the perceived gestures to gestures that the robot
is capable of performing, and to produce new gestures
at an appropriate time.

Current Results The hardware platform that we
use for vision is a binocular, foveated, active vision
system (Scassellati 19984) shown in Figure 1.2 There
are two cameras per eye, one which captures a wide-
angle view of the periphery (approximately 110° field
of view) and one which captures a narrow-angle view
of the central (foveal) area (approximately 20° field of
view with the same resolution).

Implementing the first developmental stage requires
finding faces and eyes. The strategy that we use can
be decomposed into the following five steps:

1. Use a motion-based pre-filter to identify potential
face locations in the peripheral image.

2. Use a ratio-template based face detector to identify
target faces.

3. Saccade to the target using a learned sensori-motor
mapping.

4. Convert the location in the peripheral image to a
foveal location using a learned mapping.

5. Extract the image of the eye from the foveal image.

Further details about this method can be found in
(Scassellati 1998b).

To identify face locations, the peripheral image is
converted to grayscale and passed through a pre-filter
stage. The pre-filter allows us to search only locations

2Two additional copies of this platform exist as desktop
development platforms. While there are minor differences
between the platforms, these are not important to the work
reported here. Some of the results in this section were
obtained from those platforms.



that are likely to contain a face, greatly improving the
speed of the detection step. The pre-filter selects a
location as a potential target if it has had motion in
the last 4 frames, was a detected face in the last 5
frames, or has not been evaluated in 3 seconds. A
combination of the pre-filter and some early-rejection
optimizations allows us to run face detection at 20 Hz
with little accuracy loss.

Face detection is done with a method called “ratio
templates” designed to recognize frontal views of faces
under varying lighting conditions (Sinha 1996). A ra-
tio template is composed of a number of regions and
a number of relations, as shown in Figure 2. Overlay-
ing the template with a grayscale image, each region
is convolved with the grayscale image to give the av-
erage grayscale value for that region. Relations are
comparisons between region values, such as “the left
forehead is brighter than the left temple.” In Figure
2, each arrow indicates a relation, with the head of the
arrow denoting the lesser value. The match metric is
the number of satisfied relations. The more matches,

the higher the probability of a face.
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Figure 2: A ratio template for face detection. The
template is composed of 16 regions (the gray boxes)
and 23 relations (shown by arrows).

Once a face has been detected, the face location is
converted into a motor command using the saccade
map that was learned as part of the ballistic reaching
task detailed in the previous section. After the ac-
tive vision system has saccaded to the face, the face
and eye locations from the template in the peripheral
camera are mapped into the foveal camera using a sec-
ond learned mapping. The mapping from foveal to
peripheral pixel locations can be seen as an attempt to
find both the difference in scales between the images
and the difference in pixel offset. In other words, we
need to estimate four parameters: the row and column
scale factor that we must apply to the foveal image to

match the scale of the peripheral image, and the row
and column offset that must be applied to the foveal
image within the peripheral image. This mapping can
be learned in two steps. First, the scale factors are es-
timated using active vision techniques. While moving
the motor at a constant speed, we measure the optic
flow of both cameras. The ratio of the flow rates is the
ratio of the image sizes. Second, we use correlation to
find the offsets. The foveal image is scaled down by
the discovered scale factors, and then correlated with
the peripheral image to find the best match location.

Once this mapping has been learned, whenever a face
is foveated we can extract the image of the eye from the
foveal image. This extracted image is then ready for
further processing. Figure 3 shows the result of the face
detection routines on a typical grayscale image before
the saccade. Figure 4 shows the extracted image of
the eye that was obtained after saccading to the target
face.

Figure 3: An example of the face detector. The
128x128 grayscale image was captured by the active
vision system, and then processed by the pre-filtering
and ratio template detection routines. One face was
found within the image, and is shown outlined.

This work is still in progress. To accomplish gaze
monitoring, we are in the process of adding the ca-
pabilities to detect eye contact and to extrapolate the
angle of gaze from the orientation of the head and neck
and the location of the pupil within the eye. However,
this developmental structure has already given us in-
teresting additional imitative capabilities. By adding
a tracking mechanism to the output of the face detec-
tor and then classifying these outputs, we have been
able to have the system mimic yes/no head nods of
the caretaker. As the caretaker shakes his head yes,
the robot will also shake its head yes. While this
is a very simple form of imitation, it is highly selec-
tive. Merely producing horizontal or vertical move-
ment is not sufficient for the head to mimic the ac-
tion — the movement must come from a face-like ob-



Figure 4: Extracted image of the eye from the foveal
image.

ject. Video clips of this imitation are available from
http://www.ai.mit.edu/projects/cog/Text /video-
index.html.

Conclusion

This paper has advocated a developmental approach
to building complex interactive behaviors for robotic
systems. We focused on three reasons that the de-
velopmental methodology is advantageous: because it
provides a structured decomposition of complex tasks,
because it facilitates learning, and because it allows for
a gradual increase in task complexity.

We have motivated a deeper exploration of the de-
velopmental methodology with two examples from our
humanoid robot project. In learning to reach to a vi-
sual target, the developmental methodology provided a
structured system for re-applying useful knowledge and
in limiting the dimensional complexity of our task. In
building mechanisms of shared attention, we can begin
to see a means of decomposing complex social skills
into a set of manageable tasks, and a way in which
these tasks can facilitate the bootstrapping of more ad-
vanced skills. In both these examples, a developmental
perspective has enabled our group to tackle complex
task domains with a structured, formal methodology.
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