
Self-Taught Visually-Guided Pointing for a Humanoid Robot

Matthew Marjanović, Brian Scassellati, Matthew Williamson
545 Technology Square

Room NE43-920
Cambridge, MA 02139

maddog@ai.mit.edu, scaz@ai.mit.edu, matt@ai.mit.edu

Abstract
The authors implemented a system which per-

forms a fundamental visuomotor coordination
task on the humanoid robot Cog. Cog’s task was
to saccade its pair of two degree-of-freedom eyes
to foveate on a target, and then to maneuver its six
degree-of-freedom compliant arm to point at that
target. This task requires systems for learning
to saccade to visual targets, generating smooth
arm trajectories, locating the arm in the visual
field, and learning the map between gaze direc-
tion and correct pointing configuration of the arm.
All learning was self-supervised solely by visual
feedback. The task was accomplished by many
parallel processes running on a seven processor,
extensible architecture, MIMD computer.

1 Introduction

This paper is one of a series of developmental snapshots
from the Cog Project at the MIT Artificial Intelligence
Laboratory. Cog is a humanoid robot designed to ex-
plore a wide variety of problems in artificial intelligence
and cognitive science (Brooks & Stein 1994). To date our
hardware systems include a ten degree-of-freedom upper-
torso robot, a multi-processor MIMD computer, a video
capture/display system, a six degree-of-freedom series-
elastic actuated arm, and a host of programming lan-
guage and support tools (Brooks 1996, Brooks, Bryson,
Marjanovic, Stein, & Wessler 1996). This paper focuses
on a behavioral system that learns to coordinate visual
information with motor commands in order to learn to
point the arm toward a visual target. Related work on

The authors receive support from a National Science Foundation
Graduate Fellowship, a National Defense Science and Engineering
Graduate Fellowship, and JPL Contract # 959333, respectively. Sup-
port for the Cog project is provided by an ONR/ARPA Vision MURI
Grant (No. N00014-95-1-0600), a National Science Foundation Young
Investigator Award (No. IRI–9357761) to Professor Lynn Andrea Stein,
and by the J.H. and E.V. Wade Fund. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of our sponsors.

Cog is also being presented at this conference, see (Fer-
rell 1996, Williamson 1996). Additional information on
the project background can be found in (Brooks & Stein
1994, Irie 1995, Marjanovic 1995, Matsuoka 1995, Pratt
& Williamson 1995, Scassellati 1995).

Given the location of an interesting visual stimulus in
the image plane, the task is to move the eyes to foveate
on that stimulus and then move the arm to point to that vi-
sual location. We chose this task for four reasons: First,
the task is a fundamental component of more complex
tasks, such as grasping an object, shaking hands, or play-
ing “hide-and-seek” with small toys. Second, reaching
to a visually stimulating object is a skill that children
develop at a very early age (before the 5th month), and
the development of this skill is itself an active area of
research (Diamond 1990). Third, the task specification
can be reformulated as a variety of behavioral responses.
The task can be viewed as a pointing behavior (to show
the location of a desired object), a reaching behavior (to
move the arm to a position where the hand can begin to
grasp an object), a protective reflex (to move the arm to
intercept a dangerous object), or even as an occlusion task
(to move the arm to block out bright lights or to hide an
object from sight like the children’s game “peek-a-boo”).
Finally, the task requires integration at multiple levels in
our robotic system.

To achieve visually-guided pointing, we construct a
system that first learns the mapping from camera im-
age coordinates to the head-centered coor-
dinates of the eye motors and then to
the coordinates of the arm motors 0 5 . An
image correlation algorithm constructs a saccade map

: , which relates positions in the camera im-
age with the motor commands necessary to foveate the
eye at that location. Our task then becomes to learn
the ballistic movement mapping from head-centered co-
ordinates to arm-centered coordinates . To simplify
the dimensionality problems involved in controlling a six
degree-of-freedom arm, arm positions are specified as a
linear combination of basis posture primitives. The bal-
listic mapping : is constructed by an on-line

learning algorithm that compares motor command signals
with visual motion feedback clues to localize the arm in
visual space.

The next section describes the hardware of Cog’s vi-
sual system, the physical design of the arm, and the com-
putational capabilities of Cog. Section 3 gives a func-
tional overview of the parallel processes that cooperate
to achieve the pointing task. Section 4 describes details
of the visual system: how the saccade map is learned
and how the end of the arm is located in the visual field.
Section 5 details the decomposition of arm movements
into a set of linearly separable basic postures, and the
learning algorithms for the ballistic map are explained in
Section 6. Preliminary results of this learning algorithm
and continuing research efforts can be found in Section
7.

2 Robot Platform

This section gives a brief specification of the physical
subsystems of Cog (see Figures 1 and 2) that are directly
relevant to our pointing task. We will describe the visual
inputs that are available, the design and physical char-
acteristics of the arm, and the processing capabilities of
Cog’s “brain”. We have compressed much detail on the
Cog architecture into this section for those readers inter-
ested in observing the progress of the project as a whole.
Readers interested only in the pointing task presented
here may omit many of these details.

Figure 1: Cog, an upper-torso humanoid robot. Cog has
two degrees-of-freedom in the waist, one in the shoulder,
three in the neck, six on the arm, and two for each eye.

Figure 2: Supporting structure for Cog. The “brain” of
the robot is a MIMD computer which occupies the racks
in the center of this image. Video from the cameras or
from the brain is displayed on a bank of twenty displays
shown on the left. User interface and file storage are
provided by a Macintosh Quadra. Cog itself is on the far
right.

2.1 Camera System

To approximate human eye movements, the camera sys-
tem has four degrees-of-freedom consisting of two active
“eyes” (Ballard 1989). Each eye can rotate about a ver-
tical axis (pan) and a horizontal axis (tilt). Each eye
consists of two black and white CCD cameras, one with
a wide peripheral field of view (88 6 115 8)
and the other with a narrow foveal view (18 4
24 4). Our initial experiments with the pointing
task have used only the wide-angle cameras.

The analog NTSC output from each camera is digi-
tized by a custom frame grabber designed by one of the
authors. The frame grabbers subsample and filter the
camera signals to produce 120 120 images in 8-bit
grayscale, which are written at a frame rate of 30 frames
per second to up to six dual-ported RAM (DPRAM) con-
nections. Each DPRAM connection can be linked to a
processor node or to a custom video display board. The
video display board reads images simultaneously from
three DPRAM slots and produces standard NTSC output,
which can then be routed to one of twenty video displays.

2.2 Arm Design

The arm is loosely based on the dimensions of a human
arm, and is illustrated in Figure 1. It has 6 degrees-of-
freedom, each powered by a DC electric motor through
a series spring (a series elastic actuator, see (Pratt &
Williamson 1995)). The spring provides accurate torque

feedback at each joint, and protects the motor gearbox
from shock loads. A low gain position control loop is
implemented so that each joint acts as if it were a virtual
spring with variable stiffness, damping and equilibrium
position. Thesespring parameterscanbe changed, both to
move the arm and to alter its dynamic behavior. Motion of
the arm is achieved by changing the equilibrium positions
of the joints, not by commanding the joint angles directly.
There is considerable biological evidence for this spring-
like property of arms (Zajac 1989, Cannon & Zahalak
1982, MacKay, Crammond, Kwan & Murphy 1986).

The spring-like property gives the arm a sensible “nat-
ural” behavior: if it is disturbed, or hits an obstacle, the
arm simply deflects out of the way. The disturbance is
absorbed by the compliant characteristics of the system,
and needs no explicit sensing or computation. The sys-
tem also has a low frequency characteristic (large masses
and soft springs) which allows for smooth arm motion at
a slower command rate. This allows more time for com-
putation, and makes possible the use of control systems
with substantial delay (a condition akin to biological sys-
tems). The spring-like behavior also guarantees a stable
system if the joint set-points are fed-forward to the arm.

2.3 Computational System

The computational control for Cog is split into two levels:
an on-board local motor controller for each motor, and a
scalable MIMD computer that serves as Cog’s “brain.”
This division of labor allows for an extensible and mod-
ular computer while still providing for rapid, local motor
control.

Each motor has its own dedicated local motor
controller, a special purpose board with a Motorola
6811HC11E2 microcontroller, which reads the encoder,
performs servo calculations, and drives the motor with a
32KHz pulse-width modulated signal. For the eyes, the
microcontroller implements a PID control law for posi-
tion and velocity control, which is optimized for saccadic
movement. For the arms, the microcontroller generates
a virtual spring behavior at 1kHz. Similar motor control
boards, with device-specific control programs, are used
for body and neck motors.

Cog’s “brain” is a scalable MIMD computer consisting
of up to 239 processor nodes (although only eight are in
use so far). During operation, the brain is a fixed topol-
ogy network. However, the topology can be changed
and scaled by adding additional nodes and connections.
All components of the processing system communicate
through 8K by 16 bit DPRAM connections,so altering the
topology is relatively simple. Each node uses a standard
Motorola serial peripheral interface (SPI) to communicate
sensory information and control loop parameters with up
to eight motor control boards at 50Hz. Each processor

node contains its own 16MHz Motorola 68332 micro-
processor mounted on a custom-built carrier board that
provides support for the SPI communications and eight
DPRAM connections. A Macintosh Quadra is used as the
front-end processor for the user interface and file service
(but not for any computation). Communication between
the Quadra and the nodes of the MIMD computer is han-
dled by a custom-built packet multiplexer box.

Each processor runs its own image of L, a com-
pact, downwardly compatible version of Common Lisp
that supports multi-tasking and multi-processing (Brooks
1996); and each uses IPS, a front end to L that supports
communication between multiple processes (Brooks et
al. 1996).

3 Task Overview

Figure 3 shows a schematic representation of the sys-
tem architecture, at the process and processor level. The
system can be decomposed into three major pieces, each
developed semi-independently: visual, arm motor, and a
ballistic map. The visual system is responsible for mov-
ing the eyes, detecting motion, and finding the end of
the arm. The arm motor system maintains the variable-
compliance arm and generates smooth trajectories be-
tween endpoints specified in a spaceof basis arm postures.
The ballistic mapping system learns a feed-forward map
from gaze position to arm position and generates reach-
ing commands. Each of these subsystems is described in
greater detail below.

For this first large-scale integration task implemented
on Cog, we strove to meet a number of constraints, some
self-imposed and some imposed by the hardware capa-
bilities. The software architecture had to be distributed
at both the processor and the process level. No single
processor node had enough power to handle all the com-
putation, nor enough peripheral control ports to handle
the eleven motors involved. Within each processor, the
system was implemented as collections of functionally
independent but interacting processes. In the future we
hope to implement more refined and elaborate behaviors
by adding new processes to the existing network.

Although the basic activity for this particular task is
sequential — foveate, reach, train, repeat — there is no
centralized scheduler process. Rather, the action is driven
by a set of triggers passed from one process to another.
This is not a very important design consideration with
the single task in mind; however as we add more pro-
cesses, which act in parallel and compete for motor and
sensor resources, a distributed system of activation and
arbitration will become a necessity.

Arm Motors

Eye Motors

 Reach
Generator

Ballistic
 Map

B.M. Trainer

 Saccade
Generator

ArmMaster Arm
Driver

Ballistic Mapping

Arm Control

 Motion
Segmentation

 Motion
Detection

 Frame
Grabbers

Saccade
 Map

S.M. Trainer

Visual

NeckMaster

Neck Motors

Neck Control

a t
arg

et

a

p
o
s
i
t
i
o
n

e
po
si
ti
on

x position

a target

(e,a) (e,de)

t
r
i
g
g
e
r
s

Attention
Gateway

Calibrator

 Motor
Handlers

e

t
a
r
g
e
t

Figure 3: Schematic representation of the system architecture. Solid boxes are processes, dashed boxes indicate
processor nodes. Messages pass between processors via dual-ported RAM connections. Image coordinates are
represented by positions, head-centered coordinates are represented by pan and tilt encoder readings , and arm
positions are represented as linear combinations of the basis postures .

4 Visual System

The components of the visual system used in this task can
be grouped into four functional units: basic eye-motor
control, a saccade map trainer, a motion detection mod-
ule, and a motion segmentation module. The eye-motor
control processes maintain communication with the local
motor control boards, initiate calibration routines, and
arbitrate between requests for eye movement. The sac-
cade trainer incrementally learns the mapping between
the location of salient stimuli in the visual image with
the eye motor commands necessary to foveate on that
object. The motion detection system uses local area dif-
ferences between successive camera images to identify
areas where motion has occured. The output from the
motion detection system is then grouped, segmented, and
rated to determine the largest contiguous moving object.
This segmented output is then combined with arm motor
feedback by the ballistic map trainer (see Section 6) to
locate the endpoint of the moving arm.

4.1 Eye Motor Control

The basic eye-motor control software is organized into
a two-layer structure. In the lower layer, there is one
process, called a handler, which maintains a continuous
communication between the processor node and the lo-
cal motor control board. In the upper layer is a single
attentional gateway process which ensures that only one
external process has control over the eyes at any given
time. Currently, as soon as calibration has finished, the
attentional gateway cedes control of the eye-motors to the
ballistic map trainer. As more procedures begin to rely
on eye movement, the attentional gateway will arbitrate
between requests. Similar structures are used for the neck
and arm motors, but do not appear in the Figure 3.

4.2 Learning the Saccade Map

In order to use visual information as an error signal for
arm movements, it is necessary to learn the mapping be-
tween coordinates in the image plane and coordinates
based on the body position of the robot. With the neck in
a fixed position, this task simplifies to learning the map-
ping between image coordinates and the pan/tilt encoder

coordinates of the eye motors. The behavioral correlate
of this simplified task is to learn the pan and tilt positions
necessary to saccade to a visual target. Initial experi-
mentation revealed that for the wide-angle cameras, this
saccade map is linear near the image center but rapidly
diverged near the edges. An on-line learning algorithm
was implemented to incrementally update an initial esti-
mate of the saccade map by comparing image correlations
in a local field. This learning process, the saccade map
trainer, optimized a look-up table that contained the pan
and tilt encoder offsets needed to saccadeto a given image
coordinate.

0200040006000

0

1000

2000

3000

4000

Pan Encoder Values

T
ilt

 E
nc

od
er

 V
al

ue
s

Saccade Map

Figure 4: Saccade Map after 0 (dashed lines) and 2000
(solid lines) learning trials. The figure shows the pan and
tilt encoder values for every tenth position in the image
array within the ranges x=[10,110] (pan) and y=[20,100]
(tilt).

Saccade map training began with a linear estimate
based on the range of the encoder limits (determined
during calibration). For each learning trial, the saccade
map trainer generated a random visual target location
() and recorded the normalized image intensities ¯

in a 16 16 patch around that point. The process then
issued a saccade motor command using the current map
entries. After the saccade, a new image ¯ is acquired.
The normalized 16 16 center of the new image is then
correlated against the target image. Thus, for offsets 0

and 0, we sought to maximize the dot-product of the
image vectors:

max
0 0

¯ ¯ 0 0 1

Since each image was normalized, maximizing the dot
product of the image vectors is identical to minimizing
the angle between the two vectors. This normalization

also gives the algorithm a better resistance to changes
in background luminance as the camera moves. In our
experiments, the offsets 0 and 0 had a range of 2 2 .
The offset pair that maximized the expression in Equation
1, scaled by a constant factor, was used as the error vector
for training the saccade map.

Figure 5: Two examples of the effects of the saccade
map learning. The center set of images is the pre-saccade
target image ¯ . The left image is the post-saccade image
centers with no learning. The right image is the post-
saccade image centers after 2000 learning trials. The
post-learning images match the target more closely than
the pre-learning images.

Note that a single learning step of this hill-climbing al-
gorithm does not find the optimal correlations across the
entire image. The limited search radius vastly increases
the speed of each learning trial at the expense of pro-
ducing difficulties with local maxima. However, in the
laboratory space that makes up Cog’s visual world, there
are many large objects that are constant over relatively
large pixel areas. The hill-climbing algorithm effectively
exploited this property of the environment to avoid local
maxima.

To simplify the learning process, we initially trained
the map with random visual positions that were
multiples of ten in the ranges 10 110 for (the pan
dimension) and 20 100 for (tilt). By examining only
a subset of the image points, we could quickly train a
limited set of points which would bootstrap additional
points. Examining image points closer to the periphery
was also unnecessary since the field of view of the camera
was greater than the range of the motors; thus there were
points on the edges of the image that could be seen but
could not be foveated regardless of the current eye posi-
tion. Figure 4 shows the data points in their initial linear
approximation (dashed lines) and the resulting map after
2000 learning trials (solid lines). The saccade map after
2000 trials clearly indicates a slight counter-clockwise ro-
tation of the mounting of the camera, which was verified
by examination of the hardware. The training quickly
reached a level of 1 pixel-error or less per trial within

Figure 6: Expanded example of the visual learning of the saccade map. The center collage is the pre-saccade target
images ¯ for a subset of the entire saccade map. The left collage shows the post-saccade image centers with no
learning. The right collage shows the post-saccade image centers after 2000 learning trials. The post-learning collage
shows a much better match to the target than the pre-learning collage.

2000 trials (approximately 20 trials per image location).
Perhaps as a result of lens distortion effects, this error
level remained constant regardless of continued learning.

Two examples of the visual effect of the learning proce-
dure are shown in Figure 5. The center two images are the
expected target images ¯ recorded before the saccade for
the imagepositions (30,70) and (90,110). Using the initial
linear approximation with no learning, the post-saccade
image ¯ (shown at left) does not provide a good match
to the target image (center). After 2000 learning trials,
the difference in results is dramatic; the post-saccade im-
age (shown to the right of the target) closely matches the
pre-saccade target image. If the mapping had learned
exactly the correct function, we would expect the pre-
saccade and post-saccade images to be identical (modulo
lens distortion). Visual comparison of the target images
before saccade and the new images after saccade showed
good match for all training image locations after 2000
trials. A larger set of examples from the collected data is
shown in Figure 6.

4.3 Motion Detection and Segmentation

The motion detection and motion segmentation systems
are used to provide visual feedback to the ballistic map
trainer by locating the endpoint of the moving arm. The
motion detection module computes the difference be-
tween consecutive wide-angle images within a local field.
The motion segmenter then uses a region-growing tech-
nique to identify contiguous blocks of motion within the
difference image. The bounding box of the largest mo-
tion block is then passed to the ballistic map trainer as
a visual feedback signal for the location of the moving
arm. In order to operate at speeds close to frame rate, the
motion detection and segmentation routines were divided
between two processors.

The motion detection process receives a digitized
120 120 image from the left wide-angle camera. In-
coming images are stored in a ring of three frame buffers;

one buffer holds the current image 0, one buffer holds
the previous image 1, and a third buffer receives new
input. The absolute value of the difference between the
grayscale values in each image is thresholded to provide
a raw motion image (0 1). The raw
motion image is then used to produce a motion receptive
field map, a 40 40 array in which each cell corresponds
to the number of cells in a 3 3 receptive field of the raw
motion image that are above threshold. This reduction
in size allows for greater noise tolerance and increased
processing speed.

The motion segmentation module takes the receptive
field map from the motion detection processor and pro-
duces a bounding box for the largest contiguous motion
group. The process scans the receptive field map marking
all locations which pass threshold with an identifying tag.
Locations inherit tags from adjacent locations through a
region grow-and-merge procedure. Once all locations
above threshold have been tagged, the tag that has been
assigned to the most locations is declared the “winner”.
The bounding box of the winning tag is computed and
sent to the ballistic map trainer.

5 Arm Motion Control

5.1 Postural Primitives

The method used to control the arm takes inspiration from
work on organization of movement in the spinal cord
of frogs (Bizzi, Mussa-Ivaldi & Giszter 1991, Giszter,
Mussa-Ivaldi & Bizzi 1993, Mussa-Ivaldi, Giszter &
Bizzi 1994). These researchers electrically stimulated
the spinal cord, and measured the forces at the foot, map-
ping out a force field in leg-motion space. They found
that the force fields were convergent (the leg would move
to fixed posture under the field’s influence), and that there
were only a small number of fields (4 in total). This lead
to the suggestion that these postures were primitives that
could be combined in different ways to generate move-

ment (Mussa-Ivaldi & Giszter 1992). Details on the ap-
plication of this research to robotic arms can be found in
(Williamson 1996).

In Cog’s arm the primitives are implemented as a set of
equilibrium angles for each of the arm joints, as shown in
Figure 7. Each primitive corresponds to a different pos-
ture of the arm. Four primitives are used: a rest position,

Figure 7: Primitives for the reaching task. There are
four primitives: a rest position, and three in front of the
robot. Linear interpolation is used to reach to points in
the shaded area. See also Figure 8.

and three on the extremes of the workspace in front of the
robot. These are illustrated in Figure 8. Positions in space
can be reached by interpolating between the primitives,
giving a new set of equilibrium angles for the arm, and
so a new end-point position. The interpolation is linear
in primitive and joint space, but due to the non-linearity
of the forward kinematics (end-point position in terms
of joint angles), the motion in Cartesian space is not lin-
ear. However since only 4 primitives are used to move
the 6 DOF arm, there is a large reduction in the dimen-
sionality of the problem, with a consequent reduction in
complexity.

There are some other advantages to using this prim-
itive scheme. There is a reduction in communication
bandwidth as the commands to the arm need only set the
rest positions of the springs, and do not deal with the
torques directly. In addition the motion is bounded by the
convex hull of the primitives, which is useful if there are
known obstacles to avoid (like the body of the robot!).

5.2 Reaching motion

The reaching behavior takes inspiration from studies of
child development (Diamond 1990). Children always
begin a reach from a rest position in front of their bodies.
If they miss the target, they return to the rest position
and try again. This reaching sequence is implemented
in Cog’s arm. Infants also have strong grasping and

withdrawal reflexes, which help them interact with their
environment at a young age. These reflexes have also
been implemented on Cog (Williamson 1996).

The actual motion takes inspiration from observations
of the smooth nature of human arm motions (Flash &
Hogan 1985). To produce a movement, the joints of the
arm are moved using a smooth, minimum jerk profile
(Nelson 1983).

6 Ballistic Map

The ballistic map is a learned function mapping eye
position into arm position , such that the resulting arm
configuration puts the end of the arm in the center of the
visual field. Arm position is specified as a vector in a
space of three basic 6-dimensional joint position vectors
— the reach primitives (shown in Figure 8). There is also
a fourth “rest” posture to which the arm returns between
reaches.

The reach primitive coefficents are interpreted as per-
centages, and thus are required to sum to unity. This
constrains the reach vectors to lie on a plane, and the arm
endpoint to lie on a two-dimensional manifold. Thus, the
ballistic map is essentially a function 2 2.

We attempted to select reach primitives such that the
locus of arm endpoints was smooth and 1-to-1 when
mapped onto the visual field. The kinematics of the
arm and eye specify a function : which maps
primitive-specified arm positions into the eye positions
which stare directly at the end of the arm. The ballis-
tic map is essentially the inverse of : we desire

. If is 1-to-1, then is single-valued
and we need not worry about learning discontinuous or
multiple output ranges.

The learning techniques used here closely parallels the
distal supervised learning approach (Jordan & Rumelhart
1992). We actually learned the forward map as well as

; this was necessitated by our training scheme. How-
ever, is useful in that it gives an expectation of where
to look to find the arm. This can be used to generate a
window of attention to filter out distractions in the motion
detection.

6.1 Map Implementation

The maps and are both implemented using a simple
radial basis function approach. Each map consists of 64
Gaussian nodes distributed evenly over the input space.
The nodes have identical variance, but are associated with
different output vectors. The output of such a network
() for some input vector is given by:

Figure 8: The basic arm postures. From left, “rest”, “front”, “up”, and “side.”

where

exp
1
2

2

and is a set of weights.
The ballistic map is initialized to point the arm to the

center of the workspace for all gaze directions. The
forward map is initialized to yield a centered gaze for
all arm positions.

6.2 Learning the Ballistic Map

After the arm has reached out and its endpoint has been
detected in the visual field, the ballistic map is updated.
However, since the error signal is a position in the image
plane, the training cannot be done directly. We need to
use the forward map and the saccade map .

The current gaze direction 0 is fed through to yield
a reach vector (-space is a two dimensional parame-
terization of the reach-primitive space). This is sent
to the arm to generate a reaching motion. It is also fed
through the forward map to generate an estimate of
where the arm will be in gaze-space after the reach. In an
ideal world, would equal 0.

After the arm has reached out, the motion detection
determines the position of the arm in pixel coordinates.
If the reach were perfect, this would be the center of
the image. Using the saccade map , we can map the
difference in image (pixel) offsets between the end of the
arm and the image center into gaze (eye position) offsets.
So, we can use to convert the visual position of the arm

into a gaze direction error .
We still cannot train directly, since we have an -

space error but a -space output. However, we can back-
propagate through the forward map to yield a useful
error term.

After all is said and done, we are performing basic
least-mean-squares (LMS) gradient descent learning on

the gaze error . For defined by:

the update rule for the weights is:

for some learning rate .
The forward map is learned simultaneously with the

ballistic map. Since 0 is the gaze position of
the arm after the reach, and is the position predicted
by , can be trained directly via gradient descent using
the error .

7 Results, Future Work, and Conclusions

At the immediate time of this writing, the complete sys-
tem has been implemented and debugged, but has not
been operational long enough to fully train the ballistic
map. Initial results on small subsets of the visual input
space show promising results. However, it will take some
more extended training sessions before Cog has fully ex-
plored the space of reaches.

In addition to completing Cog’s basic ballistic pointing
training, our plans for upcoming endeavors include:

incorporating additional degrees of freedom, such as
neck and shoulder motion, into the model

refining the arm finding process to track the arm dur-
ing reaching

expanding the number of primitive arm postures to
cover a full three-dimensional workspace

extracting depth information from camera vergence
and stereopsis, and using that to implement reaching
to and touching of objects.

adding reflexive motions such as arm withdrawal and
a looming response, including raising the arm to pro-
tect eyes and head

making better use of the inverse ballistic map in reduc-
ing the amount of computation necessary to visually
locate the arm.

This pointing task, albeit simple when viewed along-
side the myriad complex motor skills of humans, is a
milestone for Cog. This is the first task implemented
on Cog which integrates major sensory and motor sys-
tems using a cohesive distributed network of processes
on multiple processors. To the authors, this is a long-
awaited proof of concept for the hardware and software
which have been under development for the past two and
a half years. Hopefully, this task will be a continuing
part of the effort towards an artificial machine capable of
human-like interaction with the world.

8 Acknowledgments

The authors wish to thank the members of the Cog group
(past and present) for their continual support: Mike Bin-
nard, Rod Brooks, Cynthia Ferrell, Robert Irie, Yoky
Matsuoka, Nick Shectman, and Lynn Stein.

References

Ballard, D. (1989), ‘Behavioral Constraints on Animate
Vision’, Image and Vision Computing 7:1, 3–9.

Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. F. (1991),
‘Computations underlying the execution of move-
ment: A biological perspective’, Science 253, 287–
291.

Brooks, R. (1996), L, Technical report, IS Robotics In-
ternal Document.

Brooks, R. & Stein, L. A. (1994), ‘Building Brains for
Bodies’, Autonomous Robots 1:1, 7–25.

Brooks, R., Bryson, J., Marjanovic, M., Stein, L. A., &
Wessler, M. (1996), Humanoid Software, Techni-
cal report, MIT Artificial Intelligence Lab Internal
Document.

Cannon, S. & Zahalak, G. I. (1982), ‘The mechanical
behavior of active human skeletal muscle in small
oscillations’, Journal of Biomechanics 15, 111–121.

Diamond, A. (1990), Development and Neural Bases of
Higher Cognitive Functions, Vol. 608, New York
Academy of Sciences, chapter Developmental Time
Course in Human Infants and Infant Monkeys, and
the Neural Bases, of Inhibitory Control in Reaching,
pp. 637–676.

Ferrell, C. (1996), Orientation Behavior Using Registered
Topographic Maps, Society of Adaptive Behavior.
In these proceedings.

Flash, T. & Hogan, N. (1985), ‘The Coordination
of Arm Movements:An Experimentally Confirmed
Mathematical Model’, Journal of Neuroscience
5(7), 1688–1703.

Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E. (1993),
‘Convergent Force Fields Organized in the Frog’s
Spinal Cord’, Journal of Neuroscience 13(2), 467–
491.

Irie, R. (1995), Robust Sound Localization: An Appli-
cation of an Auditory Perception System for a Hu-
manoid Robot, Master’s thesis, MIT Department of
Electrical Engineering and Computer Science.

Jordan, M. I. & Rumelhart, D. E. (1992), ‘Forward Mod-
els: supervised learning with a distal teacher’, Cog-
nitive Science 16, 307–354.

MacKay, W. A., Crammond, D. J., Kwan, H. C. & Mur-
phy, J. T. (1986), ‘Measurements of human forearm
posture viscoelasticity’, Journal of Biomechanics
19, 231–238.

Marjanovic, M. (1995), Learning Functional Maps Be-
tween Sensorimotor Systems on a Humanoid Robot,
Master’s thesis, MIT Department of Electrical En-
gineering and Computer Science.

Matsuoka, Y. (1995), Embodiment and Manipulation
Learning Process for a Humanoid Hand, Master’s
thesis, MIT Department of Electrical Engineering
and Computer Science.

Mussa-Ivaldi, F. A. & Giszter, S. F. (1992), ‘Vector field
approximation: a computational paradigm for mo-
tor control and learning’, Biological Cybernetics
67, 491–500.

Mussa-Ivaldi, F. A., Giszter, S. F. & Bizzi, E.
(1994), ‘Linear combinations of primitives in ver-
tebrate motor control’, Proceedings of the National
Academy of Sciences 91, 7534–7538.

Nelson, W. L. (1983), ‘Physical Principles for Economies
of Skilled Movements’, Biological Cybernetics
46, 135–147.

Pratt, G. A. & Williamson, M. M. (1995), Series Elastic
Actuators, in ‘Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS-95)’, Vol. 1, Pittsburg, PA, pp. 399–
406.

Scassellati, B. (1995), High Level Perceptual Contours
from a Variety of Low Level Features, Master’s
thesis, MIT Department of Electrical Engineering
and Computer Science.

Williamson, M. M. (1996), Postural primitives: interac-
tive behavior for a humanoid robot arm, Society of
Adaptive Behavior. In these proceedings.

Zajac, F. E. (1989), ‘Muscle and tendon:Properties, mod-
els, scaling, and application to biomechanics and
motor control’, CRC Critical Reviews of Biomedi-
cal Engineering 17(4), 359–411.

