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Abstract. Weakly-acyclic games – a superclass of potential games –
capture distributed environments where simple, globally-asynchronous
interactions between strategic agents are guaranteed to converge to an
equilibrium. We explore the class of routing games in [4, 12], which mod-
els important aspects of routing on the Internet. We show that, in in-
teresting contexts, such routing games are weakly acyclic and, moreover,
that pure Nash equilibria in such games can be found in a computation-
ally efficient manner.

1 Introduction

1.1 Weakly-Acyclic Games

Convergence to a pure Nash equilibrium (PNE) is an important objective in a
large variety of application domains – both computerized and economic. Ideally,
this can be achieved via simple and natural dynamics, e.g., better-response or
best-response dynamics. Under better-response dynamics, players start at some
initial strategy profile and take turns selecting strategies. At each (discrete)
time step, a single player selects a strategy that increases his utility (given the
others’ current strategies). Under best-response dynamics, at every time step the
“active” player chooses a strategy thatmaximizes his utility. Better-response and
best-response dynamics are simple, low-cost behaviors to build into distributed
systems, as evidenced by today’s protocol for routing on the Internet [4, 12].

Convergence of better-/best-response dynamics to PNE is the subject of
much research in game theory. Clearly, a necessary condition for better-/best-
response dynamics to converge to a PNE regardless of the initial state is that, for
every such state, there exist some better-/best-response improvement path to a
PNE, i.e., a sequence of players’ better-/best-response strategies which lead to a
PNE.3 Games for which this holds (e.g., potential games [15]) are called “weakly
acyclic” [18, 14]. Weak acyclicity has also been shown to imply that simple

⋆ Current affiliation: Google Inc. This work was done while the author was a doctoral
student at the Technion.

3 Observe that this is equivalent to requiring that the game have no “non-trivial” sink
equilibria [8, 4] under better-response dynamics (i.e., that it have no sink equilibrium
of size greater than 1).
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dynamics (e.g., randomized better-/best-response dynamics, no-regret dynam-
ics) are guaranteed to reach a PNE [13, 14, 18]. Thus, weak acyclicity captures
distributed environments where a PNE can be reached via simple, globally-
asynchronous interactions between strategic agents, regardless of the starting
state of the system.

While the class of potential games – a subclass of weakly-acyclic games – is
the subject of extensive research, relatively little attention has been given to the
much broader class of weakly-acyclic games (see, e.g., [3, 13]). As a result, very
few concrete examples of weakly-acyclic games that do not fall in the category
of potential games are known. One famous result along these lines is that of
Milchtaich [14]. [14] studies Rosenthal’s congestion games [17] and proves that,
in interesting cases where the payoff functions (utilities) are player-specific, such
games are weakly acyclic (but not necessarily potential games).

Our focus in this work is on another extensively studied environment: routing
on the Internet. We show that weak acyclicity is important for analyzing such
environments. Our work, alongside its implication for Internet routing, provides
concrete examples of weakly acyclic games that lie beyond the space of potential
games, as well as technical insights into the structure of such games.

1.2 (Internet) Routing Games

The Border Gateway Protocol (BGP) establishes routes between the smaller, in-
dependently administered, often competing networks that make up the Internet.
Hence, BGP can be regarded as the glue that holds today’s Internet together.
Over the past decade there has been extensive research on the computational
and strategic facets of routing with BGP. Recent advances along these lines were
obtained via game-theoretic analyses (see, e.g., [4, 9, 12, 16]), which rely on the
simple, yet important, observation that BGP can be regarded as best-response
dynamics in a specific class of routing games [4, 12]. We now provide an intuitive
exposition of the class of routing games in [4, 12]. We refer the reader to Sect. 2
for a formal presentation.

In the game-theoretic framework of [4, 12], the players are source nodes re-
siding on a network graph, which aim to send traffic to a unique destination in
the network. Each source node has a (private) ranking of all simple (loop-free)
routes between itself and the destination. We stress that, in practice, different
source nodes can have very different, often conflicting, rankings of routes, reflect-
ing, e.g., local business interests [7] (in particular, source nodes do not always
prefer shorter routes to longer ones). Every source node’s strategy space is the
set of its neighboring nodes in the network; a choice of strategy represents a
choice of a single neighbor to forward traffic to. Observe that every combination
of source nodes’ strategies thus captures how traffic is forwarded (hop-by-hop)
towards the destination. A source node’s utility from every such combination of
strategies reflects how highly its ranks its induced route to the destination.

Fabrikant and Papadimitriou [4] and, independently, Levin et al. [12], ob-
served that BGP can be regarded as best-response dynamics in this class of rout-
ing games and that PNEs in such games translate to the notion of stable routing
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states, which has been extensively studied in communication networks litera-
ture. These observations laid the foundations for recent results regarding the
dynamics and incentive compatibility of routing on the Internet (see [9, 11, 16]).

1.3 Our Contributions: Weakly-Acyclic Routing Games

We present two interesting subclasses of routing games – (1) routing games with
Byzantine players and (2) backup routing games – which capture important
aspects of routing on the Internet. Routing games with Byzantine players intu-
itively capture scenarios where all but a few players are “well behaved”, and the
remaining players behave in an arbitrary manner. Such erratic “Byzantine” (in
distributed computing terminology) misbehavior can, for instance, be the conse-
quence of router configuration errors. Backup routing games model the common
practice of backup routing with BGP [6].

We prove that games in both these classes are weakly acyclic, even under best-
response (i.e., from every initial state there exists a best-response improvement
path to a PNE). Our results thus establish that, in these two contexts, a PNE
is guaranteed to exist and can be reached via simple, globally-asynchronous
interactions between strategic agents regardless of the initial state of the system.
Moreover, we prove that not only is a PNE reachable from every initial state via
a best-response improvement path, but that this path is “short” (of polynomial
length). Hence, in these subclasses of routing games, a PNE can be found in a
computationally-efficient manner; simply start at an arbitrary initial state and
follow the short best-response improvement path – whose construction we give
explicitly – until a PNE is reached.

Routing games with Byzantine players. To illustrate this subclass of games,
consider the scenario that all source nodes but a single source node m have
a “shortest-path ranking” of routes, i.e., they always prefer shorter routes to
longer routes. Unlike the other source nodes, m’s ranking of routes need not
necessarily be a shortest-path ranking and is not restricted in any way, e.g., m
might even always prioritize longer routes over shorter routes. We aim to answer
the following question: “Can m’s erratic behavior render the network unstable?”.

We prove a surprising positive result: every routing game of the above form
(i.e., with a single “misbehaving” source node) is weakly acyclic under best-
response. Hence, in particular, routing games where each player has a shortest-
path ranking are guaranteed to posses a PNE even in the presence of an arbitrary
change in a single source node’s behavior! We generalize this result to a broader
class of routing policies. We point out that our work is one of few to explore the
impact of “irrational” behavior in game-theoretic settings (see [1, 2, 10]).

Backup routing games. In this subclass of routing games each edge in the
network graph is either categorized as a “primary” edge or as a “backup” edge.
A source node with multiple outgoing edges prefers forwarding traffic to neigh-
boring nodes to which it is connected via primary edges over forwarding traffic
to neighbors to which it is connected via backup edges. Such “backup relation-
ships” are often established in practice to provide connectivity in the event of
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network failures via redundancy; the intent is that backup edges be used for
carrying traffic only in case of failures in the primary edges [6]. We consider nat-
ural restrictions on source nodes’ routing policies which capture this notion of
“backup routing”. We prove that the resulting routing games are weakly acyclic.

1.4 Organization

We present the class of weakly-acyclic games and the class of weakly-acyclic
under best-response games in Sect. 2, where we also present the class of rout-
ing games of [4, 12]. In Sect. 3, we illustrate the type of results we obtain via
two simple families of weakly-acyclic routing games. We present our results for
routing games with Byzantine players, and for backup-routing games, in Sects. 4
and 5, respectively. Due to space constraints, all proofs appear in the full version
of the paper.

2 Model

2.1 Weakly-Acyclic Games

We use standard game-theoretic notation. Consider a normal-form game with n
players 1, . . . , n, where each player i has strategy space Si and utility function
ui (which specifies player i’s utility for every combination of players’ strategies).
Let S = S1 × . . . × Sn and S−i = S1 × . . . × Si−1 × Si+1 × . . . × Sn. For every
si ∈ Si and s−i ∈ S−i, (si, s−i) denotes the combination of players’ strategies
where player i’s strategy is si and the other players’ strategies are as in s−i.

Definition 2.1. (better-response strategies) We call a strategy s∗i ∈ Si a
“ better-response” of player i to a strategy vector s = (si, s−i) ∈ S if ui(s

∗
i , s−i) >

ui(si, s−i).

Definition 2.2. (best-response strategies) We call a strategy s∗i ∈ Si a
“ best response” of player i to a combination of other players’ strategies s−i ∈
S−i if s

∗
i ∈ argmaxsi∈Siui(si, s−i).

Definition 2.3. (pure Nash equilibria) A strategy vector s = (s1, . . . , sn) ∈
S is a pure Nash equilibrium (PNE) if si is a best response to s−i for every
player i.

Definition 2.4. (better- and best-response improvement paths) A better-
response (best-response) improvement path in a game Γ is a sequence of strategy
vectors s(1), . . . , s(k) ∈ S, each reachable from the previous via a better response
(best response) of a single player.

We are now ready to present the class of weakly-acyclic games and the class
of weakly-acyclic under best-response games.

Definition 2.5. (weak acyclicity and weak acyclicity under best re-
sponse) A game Γ is weakly acyclic (weakly acyclic under best response) if,
from every s ∈ S there exists a better-response (best-response) improvement path
to a pure Nash equilibrium of Γ .
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2.2 (Internet) Routing Games

In the class of routing games in [4, 12] the players are n source nodes 1, . . . , n
residing on a network G = (V,E) who wish to send traffic to a unique destination
node d. Let Pi be the set consisting of all simple (loop-free) routes from source
node i to d in G and of the “empty route” ⊥. Each source node i’s strategy is its
choice of an outgoing edge ei ∈ E(G) (intuitively, a neighboring node to forward
traffic to), or the empty set ∅ (intuitively, not forwarding traffic). Observe that
every combination of source nodes’ strategies s ∈ S thus specifies a (directed)
subgraph Gs of G in which each source node has outdegree at most 1. Given a
combination of nodes’ strategies s ∈ S we define i’s induced route Rs

i to be i’s
unique simple route to d in Gs if such a route exists, and ⊥ otherwise.

We now define source nodes’ utility functions. Each source node i has a rout-
ing policy with two components: (1) a ranking function πi that maps elements
in Pi to the integers, such that πi(⊥) < πi(R) for all R ∈ Pi \ {⊥}; and (2) an
export policy that, for each neighboring node j ∈ V (G), specifies a set of routes
Rij ⊆ Pi that i is willing to make available to j. To simplify notation, when
πi(R) < πi(Q) (πi(R) ≤ πi(Q)) for some routes R,Q ∈ Pi, we write R <i Q
(R ≤i Q). We say that a route Ri ∈ Pi is “permitted” if each node on R is willing
to export its (sub)route to its predecessor on R. Given a combination of nodes’
strategies s ∈ S, i’s utility is π(Rs

i ) if R
s
i is permitted and 0 otherwise.

3 Illustration: Simple Weakly-Acyclic Routing Games

We now illustrate the kind of results we obtain via two simple families of weakly-
acyclic games.

Shortest-path routing with Byzantine players. Consider the scenario that
all source nodes have shortest-path rankings (where shorter routes are always
preferred to longer ones) and “export-all policies”, i.e., each node i is willing
to make all routes in Pi available to all neighboring nodes. We call games of
this form “shortest-path routing games”. We make the simple observation that
shortest-path routing games are potential games. Now, consider the case that
there is a single Byzantine player, i.e., that the routing policy of a single source
node in a shortest-path routing game is changed arbitrarily. We now present the
following corollary of a more general result proved in Sect. 4.

Corollary 3.1. Every shortest-path routing game with a single Byzantine player
is weakly-acyclic under best response and, moreover, a PNE in such a game can
be found in a computationally-efficient manner.

In contrast, we show (Appendix A) that shortest-path routing games with a
single Byzantine player are no longer necessarily potential games.

Theorem 3.1. There exists a shortest-path routing game with a single Byzan-
tine player which is not a potential game.
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Shortest-path backup routing. In this setting, every edge in the network
graph is either “primary” or “backup”. A source node always prefers a route
through a neighbor to which it is connected via a primary edge (“primary route”)
over a route through a neighbor to which it is connected via a backup edge
(“backup route”). When faced with a choice between two (or more) primary
routes, or two (or more) backup routes, nodes always prioritize shorter routes.
Every source node i has an export-all policy (i.e., i is willing to make all routes
in Pi available to all neighboring nodes). We prove the following.

Theorem 3.2. Every shortest-path backup routing game is a potential game
and, moreover, a PNE in such a game can be found in a computationally-efficient
manner.

Proof. Let B = n2. For each node i, let ℓ(i) be the length of its route to d.
Define ϕ(i) to be ℓ(i) if i’s route is a primary route, and B + ℓ(i) if its route is
a backup route (ϕ = B2 if i has no route to d). Then, it is easy to verify that∑

i ϕ(i) is a valid potential function.

In Sect. 5 we examine a more complex class of backup routing games and
show that games in that class are guaranteed to be weakly acyclic under best-
response yet are not necessarily potential games.

4 Routing Games with Byzantine Players

We now present our results for the class of routing games with Byzantine players.

4.1 Routing Policies

[5] introduces the notions of policy consistency and of consistent export, which
generalize natural classes of routing policies, e.g., shortest-path routing and next-
hop routing. We now present these two concepts.

Policy-Consistent Ranking. Two well-studied classes of ranking functions
are shortest-path rankings and next-hop rankings. Shortest-path rankings always
prioritize shorter routes. Next-hop rankings, in contrast, rank routes based solely
on the identity of the “next-hop” – the immediate neighbor – en route to the
destination, i.e., a next-hop ranking assigns the same preference to all routes
that share the same next-hop node. [5] generalizes these two classes of rankings
as follows.

Definition 4.1. (policy consistency) [5] Let i and j be two adjacent source
nodes in G. We say that i is policy consistent with j iff for every two routes
Q,R ∈ Pj such that i /∈ Q,R, if R <j Q, then (i, j)R ≤i (i, j)Q. We say that
policy consistency holds if each source node is policy consistent with each of its
neighboring source nodes.

Observe that in the scenario that all source nodes have shortest-path rank-
ings, and also in the scenario that all nodes have next-hop rankings, policy
consistency indeed holds. (See [5] for more details.)
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Consistent Export. The simplest export policy is the export-all policy, where
a source node i is willing to make all routes in Pi available to all neighboring
nodes. [5] presents the following generalization of export-all.

Definition 4.2. (consistent export) [5] Let i and j be two adjacent nodes in
G. We say that i consistently exports with respect to j iff there is some route
R ∈ Pi such that Rij = {Q| Q ∈ Pi and R ≤i Q}. We say that a node i
consistently exports if it consistently exports with respect to each neighboring
node j. We say that consistent export holds if all nodes consistently export.

Observe that when all source nodes have all-export policies then consistent
export indeed trivially holds.

4.2 Positive Result

Consider games for which policy consistency and consistent export hold. These
games include, among others, routing games with shortest-path rankings and
export-all policies, as well as routing games with next-hop rankings and export-
all policies, and can easily be shown to be potential games. We turn our attention
to the scenario that there exists a single Byzantine player, i.e., that the routing
policy of a single player can be changed in an arbitrary manner. We prove the
following surprising positive result.

Theorem 4.1. If policy consistency and consistent export hold for a routing
game then the game is weakly acyclic under best response even in the presence
of a single Byzantine player. Moreover, a PNE in such a game (with a single
Byzantine player) can be found in a computationally-efficient manner.

Proof. Our proof is constructive. LetG be a network for which policy consistency
and consistent export hold. Let m be the (single) Byzantine node. We present
a best response improvement path from any given initial strategy, which we
construct via what we call the “stabilization process”.

The stabilization process:

– Part I: Repeat the following two steps until no node that has no route or
has a route that goes through m selects a route that does not go through m
(but at least once).

• Step 1: Repeatedly activate (one by one, and in arbitrary order) all
nodes (but m) that wish to select new routes4 that do not go through
m (and allow them to do so), until no such node exists.

• Step 2: Activate m once.

4 Henceforth, we shall sometimes say that a node selects a route when we mean that
the node actually selects an outgoing edge (in its strategy set); the selected edge,
followed by the induced route to d of the neighboring node to which that edge points
determines what we call the node’s selected route.
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– Part II: Repeatedly activate (one by one, and in arbitrary order) all nodes
but m that wish to select new routes (and allow them to do so), until no
such node exists.

We refer to each time that the two steps of Part I of the stabilization process
are executed as an iteration.

Claim. Each individual iteration in Part I is guaranteed to terminate.

This can be established via a simple potential function argument, where
the potential function is simply the social welfare of the source nodes, when
disregarding nodes whose routes go through m. By definition of Part I of the
stabilization process:

Observation 4.1. A node that does not have a route to d that goes through m
at some point in Part I of the stabilization process, will not have such route later
in Part I of the stabilization process.

Consider the nodes whose route go through m in the initial strategy profile.
Notice that only these nodes can get disconected. Also, by Observation 4.1, no
new nodes are ever added to this set of nodes in Part I, and once nodes leave
this set of nodes they never return. Therefore, after sufficiently many iterations
the number of nodes whose routes go through m remains fixed. We can thus
conclude that:

Claim. Part I of the stabilization process terminates.

To establish the termination of Part II we have the following lemma.

Lemma 4.1. Let R be m’s route at the end of Part I of the stabilization process,
and let T be the set of all routes to d that were available to m at the end of Part
I of the stabilization process. Then,

– m’s route throughout Part II and at the end of Part II of the stabilization
process remains R.

– The set of routes to d that are available to m at the end of Part II of the
stabilization process must be a subset of T .

We observe that Lemma 4.1 concludes the proof of weak acyclicity. First,
observe that it implies that in Part II of the stabilization process the network is
effectively equivalent to a network for which policy consistency and consistent
export hold. So, Part II of the stabilization process is guaranteed to terminate.

Second, observe that at the end of Part II of the stabilization process every
node but, possibly, m, is playing its best response. Hence, to prove that the
routing state reached at the end of Part II is a PNE it suffices to show that m
is also playing its best response. Consider the edge e chosen by m to result the
route R at the end of Part I of the stabilization process. It must be that e is m’s
best response at that point in time. By Lemma 4.1, R will remain m’s route at
the end of Part II of the stabilization process. Moreover, e must still be m’s best
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response, since, by Lemma 4.1, no new routes were made available to m since
the end of Part I of the stabilization process. This concludes the proof of weak
acyclicity.

To prove Lemma 4.1, we introduce the following terminology:

– Blue nodes: nodes that appear on m’s route to d.
– Red nodes: nodes whose routes to d go through m.
– Black nodes: nodes that are disconnected from d (i.e., have no route to d).
– White nodes: nodes that do not fall within the previous three categories.

Lemma 4.1 now follows from the following proposition:

Proposition 4.1. The following holds:

1. If a node is blue at the end of Part I, it will have the same route throughout
Part II.

2. If a node is red at the end of Part I or becomes red during Part II, it shall
remain red henceforth.

3. If a node is black at the end of Part I, it shall be either black or red at the
end of Part II.

4. If a node is white at the end of Part I, it will either have the same route
throughout Part II (and thus remain white), or be red at the end of Part II.

The first bullet in the statement of Proposition 4.1 implies the first half of
Lemma 4.1; if all blue nodes have the same route at the end of Part I and at the
end of Part II, then m’s route at the end of Part I is the same route it has at the
end of Part II. The other bullets in the statement of Proposition 4.1 imply the
second half of Lemma 4.1; m’s route to d cannot go through black nodes (that
are disconnected from d), or red nodes (whose routes go through m). Hence, if
white nodes either have the exact same route at the end of Part I and at the
end of Part II, or become red, and no other node becomes white, then m’s set
of available routes at the end of Part II is a subset of its set of available routes
at the end of Part I. To conclude the proof, we now prove Proposition 4.1.

Proof. (of Proposition 4.1) For point of contradiction, suppose that one (or
more) of the bullets in the statement of Proposition 4.1 is false. Let i be the
first node to violate the statement of one of the bullets when selecting a route
in Part II. We handle the four cases:

– Case I: i is a blue node whose route changes. Consider the moment
in time in which i’s route changed. Let j be i’s next hop node on the new
route.

– Case II: i is a red node that becomes non-red. Consider the moment in
time in which i becomes non-red. Let j be i’s next hop on its new (non-red)
route.

– Case III: i turns from black to blue/white. Consider the moment in
time in which i turned to blue/white. Let j be i’s next hop on its new
(non-black) route.
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– Case IV: i is a white node that changes its route and becomes
non-red. Consider the moment in time in which i changed its route and
became non-red. Let j be i’s next hop on its new (non-red) route.

For all the cases, observe that j cannot be black or red. Hence, j must be
either blue or white. If so, j had the exact same route at the end of Part I (or we
get a contradiction to the choice of i). i could therefore choose to route through
j at an earlier time and did not do so – a contradiction.

⊓⊔

Computational complexity of finding a PNE. We are left with showing that
the length of the improvement path constructed in the stabilization process
is polynomial. Notice that the number of iterations in Part I is at most the
number of nodes, as in every iteration there must be a red or a black (former-
red) node that turns white, only red nodes turn black and no nodes become red.
To complete the analysis we show that Step 1 of Part I (and Part II) can be
made to run in a polynomial number of steps.

Consider the following variant of Step 1 (and Part II). We activate nodes
in rounds, where in each round we increase the length of the routes we permit
nodes to select, with the exception of red nodes and red nodes that turned
black, which we allow to become white at all times and give precedence to such
transitions. Whenever such an event (red node/red node turned black becomes
white) occurs, we restart the rounds (go back to length 1). Observe that such a
“restart” can happen at most |V | times.

We have already shown that Step 1 terminates regardless of the activation
order. Let s be the resulting strategy profile. The graph Gs is a directed tree,
rooted in d (apart from black nodes). The crucial observation is that nodes at
distance i from d in Gs will have their route available and fixed by the i’th round,
and from that point on, they will not move. Also, any node that will, at some
point, want to select a route of length i can do so at the i’th round. So, in the
i’th round, each node has at most |V | possible routes to choose from of length i,
and the set of these routes can only get smaller as the process goes on. Hence,
each round has a polynomial number of steps. To complete the analysis notice
that the number of rounds is polynomial. ⊓⊔

Can this result be extended to more than a single Byzantine player? Sim-
ple examples show that the answer to this question is, in general, No. We be-
lieve, however, that under certain reasonable conditions (e.g., that the number of
Byzantine nodes not exceed a certain threshold, and that the Byzantine nodes
not be “too concentrated” in a single part of the network) our result can be
made to hold more generally. We leave this as an interesting direction for future
research.

5 Backup Routing Games

In Sect. 3, we considered the following simple setting. Every edge in the network
graph is either categorized as a “primary” edge or as a “backup” edge. A source
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node with multiple outgoing edges ranks routes in which it is connected to the
next-hop node via a primary edge (“primary routes”) more highly than routes in
which it is connected to the next-hop node via a backup edge (“backup routes”).
When faced with a choice between multiple routes in the same category (pri-
mary/backup) a source node always prioritizes shorter routes over longer routes.
In addition, every source node has an export-all policy. We have shown that
games that fall within this subclass of routing games are weakly-acyclic (and,
in fact, even potential games). Next, we present a more realistic model, inspired
by today’s commercial Internet.

5.1 Commercial Backup-Routing Games

As before, each edge in the network graph is either “primary” or “backup”. In
addition, neighboring nodes in the network graph have one of two business re-
lationships: either one node is a customer of the other (which is its provider)
or the two nodes are peers. We make the standard assumption that no node is
an indirect customer of itself, i.e., that there are no customer-provider cycles in
this business hierarchy [7]. We now present constraints on source nodes’ ranking
functions and export policies that are naturally induced by this business hier-
archy and extend the famous economic Gao-Rexford constraints [7] to handle
backup routing. See [7] for a detailed explanation of this economic framework.

Ranking. A source node with multiple outgoing edges ranks primary routes
more highly than backup routes. When faced with a choice between multiple
routes in the same category (primary/backup), a source node always prioritizes
(revenue-generating) routes in which its next-hop is its customer (“customer
routes”) over routes in which its next-hop is its peer/provider (“peer/provider
routes”). Consider the network in Fig. 1(a). In the event that node 3 has a
primary edge to its peer, node 2, and a backup edge to its customer, node 1,
node 3 should prefer routes through 2 over routes through 1. However, if 3’s
edges to nodes 1 and 2 are both primary or both backup, node 3 should prefer
routes through 1 over routes through 2.

Export. A source node is willing to export all routes through it to its customers,
but is only willing to export (all of) its customer routes to neighbors its peers and
providers. Intuitively, this captures a source node’s willingness to carry transit
traffic for its customers, but not for its peers and providers (by whom it is not
paid). Consider the network in Fig. 1(b), and suppose that all edges are primary.
Node 5 should announce routes through node 1, its customer, to all neighboring
nodes. However, node 5 should only announce routes through node 3, its peer,
to its customers (nodes 1 and 2), and not to its other peer (node 4) and provider
(node 6).

We call routing games where each node has a ranking function and export
policy as above “commercial backup-routing games”.
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Fig. 1. Commercial Backup Routing

5.2 Positive Result

We prove the following positive result for the class of commercial backup-routing
games.

Theorem 5.1. Every commercial backup-routing game is weakly acyclic un-
der best-response and, moreover, a PNE in such a game can be found in a
computationally-efficient manner.

Proof. To prove the theorem we construct a best-response improvement path
from any given strategy profile to a PNE. The construction relies on an iterative
process which is designed to gradually ensure that nodes do not get disconnected.
Prioritizing primary edges is at the heart of the gradual process.

We use the following terminology throughout the proof.

Coloring nodes. Let s ∈ S and let Gs be the matching subgraph of G.

– Black nodes in s are nodes that do not have a permitted route to d in Gs.
– White nodes in s are nodes that have permitted primary routes to d in

Gs.
– Gray nodes in s are nodes that have permitted backup routes to d in Gs.

Observation 5.1. (possible color changes) If s, s′ ∈ S and s′ is reachable
from s via the best-response of a single node i then the possible color changes of
nodes between s and s′ are:



Weakly-Acyclic (Internet) Routing Games 13

– Node i’s color can (1) change from gray to white (if i has a backup route and
selects a primary route); and (2) change from black to gray/white (if i had
no route to d).

– Other nodes’ colors can only change from white/gray to black. This occurs
if i has a backup customer route and selects a primary peer/provider route,
thus making its new route non-exportable to peers and providers (under com-
mercial export policies).

The stabilization phase. The basic building block in our construction is the
following procedure called the “stabilization phase”. We start with a given strat-
egy profile, and activate nodes one by one and let nodes that want to move
select their best response, while not allowing black nodes to turn gray. We give
precedence to certain nodes as follows:

– First, let nodes that want to move to a primary customer route select new
routes.

– Only if no node wishes to move to a primary customer route, allow a node
that wants to move to a primary peer/provider route select a new route.

– Only allow a gray node that wants to move to (yet another) backup route to
move if no nodes that belong to the previous categories wish to select new
routes.

Observation 5.1 and the definition of the stabilization phase imply the fol-
lowing.

Observation 5.2. (non-gray nodes remain non-gray throughout the
stabilization phase) If a node i is not gray at some point in the stabilization
phase it shall not change its color to gray throughout the stabilization phase.

Claim. (the stabilization phase terminates) The stabilization phase termi-
nates regardless of the initial strategy profile.

Proof. Here we use the following important result by Gao and Rexford [7].

Theorem 5.2. [7] If all the edges are of one type (e.g., all primary edges),
then the routing game is a potential game.

Observations 5.1 and 5.2, and the definition of the stabilization phase, imply
that, from some moment in the stabilization phase onwards, each node’s selected
strategies are all primary edges or all backup edges. The game then is equivalent
to a game from which all other strategies are removed. Observe that, in this
new game, the distinction between primary and backup edges is meaningless
(as nodes are never faced with a choice between a primary route and a backup
route). Hence, according to Theorem 5.2 it is a potential game where every best
response dynamic converges. The claim follows. ⊓⊔

The iterative stabilization process. To construct a best-response improve-
ment path that reaches a PNE we start at with any strategy profile s and execute
the following “iterative stabilization process”:

Repeat the following steps until a PNE is reached.
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– Run the stabilization phase.
– Let V be the set of black nodes that can change colors to gray via best-

response. If V ̸= ∅ choose a black node i ∈ V and change i’s strategy to be
its best-response.

What are problematic structures? A stabilization phase will reach a PNE if at
the end of the phase, no more black nodes wish to move. We would like to
avoid cases in which nodes turn black during the stabilization phase. Hence, we
explore the reasons that may cause a non-black node to become disconnected
from d (thus turning black). According to Observation 5.1, the answer to this
question necessitates the study of the circumstances that can cause a gray node
with a customer route to move to a primary peer/provider route (and thus turn
white). We refer to such a move as a bad move. Our goal is to try to prevent the
repetition of bad moves. This shall be done by studying problematic structures
that may appear in Gs. We first characterize the problematic structures, and
then show that the iterative stabilization process eliminates such problematic
structures while not adding new ones. Finally, we will prove the connection
between problemtic structures and bad moves and conclude the proof.

We shall require the following definitions:

Definition 5.1. (primary components) We say that two source-nodes x and
y are in the same primary component if there is a path in G that leads from x to
y that does not violate the export constraint (i.e., in which no node goes through
a customer neighbor’s peer/provider route), such that all edges on the path are
primary edges.

Remark 5.1. (symmetry) Observe that if there is an exportable path that leads
from x to y in G then the same path reversed is also exportable and leads from
y to x. Hence, the order of x and y is insignificant.

Definition 5.2. (problematic structures) Let s be a strategy profile. We re-
fer to the two following events as “problematic structures” (in s):

– Type I: Let x and y be two nodes in the same primary component. Then, x
and y are said to form a problematic structure of type I if both x and y have
a backup customer route to d in s.

– Type II: Let x be a node in the same primary component as d. Then, x is
said to form a problematic structure of type II if x has a backup customer
route to d in s.

No new problematic structures are formed. In what follows we prove that the
iterative stabilization process is such that no new problematic structures are
formed during its execution. To set the ground for the proof, the following lemma
states a strong property of the iterative stabilization process.

Lemma 5.1. Suppose x is a node in the same primary component with a node
y that has a customer route (primary or backup) at time t, when a backup edge
is chosen as a best response by some node. Then,
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– If x has a customer path to y - then x has a primary customer route to
d just before t.

– If x has a peer/provider path to y - then x has a primary route to d or
a backup customer route just before t.

Proof. The proof is by induction on the length of the path between x and y. For
the base case, there is a primary edge between x and y. Hence,

– If x has a customer path to y - then x is a provider of y and since y has a
customer route to d, this route cannot pass through x. Moreover, y exports
its route to x, hence x can choose a primary customer route and must have
one just before t.

– If x has a peer/provider path to y - then x is a peer or a customer of y;
If, just before t, y’s customer route to d doesn’t pass through x, y exports its
route to x, and x can choose a primary route and must have one just before
t. If, just before t, y’s customer route to d passes through x, then since it is
a customer route, x itself must have a customer route.

Now assume that the lemma holds for primary paths of length ℓ. Let x and y
be nodes as described in the lemma, and specifically, assume there is a primary
path of length ℓ+1 between them. Let w be the first node after x on that path.
Notice that the lemma holds for w. Hence,

– If x is a provider of w - w must have a customer path to y. By the
induction hypotesis, w has a primary customer route to d just before t. This
route cannot pass through x. Moreover, w exports its route to x, hence x
can choose a primary customer route and must have one just before t.

– If x is a peer of w - w must have a customer path to y. By the induction
hypotesis, w has a primary customer route to d just before t. If this route
passes through x, then since it is a customer route, x itself must have a
customer route just before t. If this route doesn’t pass through x, w exports
its route to x, and x can choose a primary route and must have one just
before t.

– If x is a customer of w - By the induction hypotesis, w has a primary route
to d or a backup customer route just before t. If this route passes through
x, then since x is a customer of w, x itself must have a customer route just
before t. If this route doesn’t pass through x, w exports its route to x, and
x can choose a primary route and must have one just before t.

And the lemma follows. ⊓⊔

Claim. (problematic structures of type I are not formed) Let x and y be
two nodes in the same primary component. If at some point in the stabilization
phase x and w do not form a problematic structure of type I, they will not form
such a problematic structure later in the stabilization process.

Proof. Assume to the contrary that x and y form a problematic structure of
type I, and assume without loss of generality that x is the node that chooses a
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backup edge as its best response at time t. Then, at time t node y had a (backup)
customer route and by Lemma 5.1 x has a primary route or a backup customer
route just before time t. We get a contradiction. ⊓⊔

Claim. (problematic structures of type II are not formed) Let x be a
node that is in the same primary component as d. If, at some point x does not
form a problematic structure of type II, it will not form such a structure at a
later stage in the iterative stabilization process.

Proof. Assume to the contrary that x forms a problematic structure of type II
when it chooses a backup edge as its best response at time t. Then, at time t
node d has a (trivial) customer route to itself and by Lemma 5.1 x has a primary
route or a backup customer route just before time t. We get a contradiction. ⊓⊔

Concluding the proof. Recall, that we have defined “bad moves” as cases in which
nodes switch from backup customer routes to primary peer/provider routes, thus
possibly disconnecting nodes that are connected to d through them (by making
their new routes non-exportable). In Proposition 5.1 below, we prove that bad
moves are linked to the existence of problematic structures. Specifically, any bad
move in the stabilization phase can only occur if a problematic structure exists,
and after every such bad move a problematic structure ceases to exist. So, by
iteratively applying the stabilization phase, we remove problematic structures,
and add no new such structures along the way. Eventually, no bad moves will take
place. Once this happens, no non-black (connected) node will ever turn black
(disconnected) again. From that point, the number of iterations is bounded and
hence, the iterative stabilization process terminates. Consider the last iteration.
At the end of that iteration there are no black nodes (that can be connected
to d). Hence, in the last stabilization phase the constraint that nodes do not
change from black to gray is redundant. The stabilization phase must therefore
terminate at a PNE (using the same arguments as in the proof of Claim 5.2).

Proposition 5.1. (problematic structures and bad moves) Consider a
bad move where a gray node x moves from a backup customer route to a pri-
mary peer/provider route. Then, x is part of a problematic structure which is
eliminated by the bad move.

Proof. If x is in the same primary component as d, it forms a problematic struc-
ture of type II which stops existing once x turns white.

If x is not in the same primary component as d, its newly selected route
to d must go through a backup edge e (by definition of primary components).
Observe that if e = (u, v) where v is u’s customer, then u must form (along
with x) a problematic structure of type I, that existed prior to the bad move.
This structure is eliminated by the bad move as x no longer uses a backup edge.
We shall now show that it must be the case that the backup edge e is indeed
a customer edge (that is, from a provider to a customer), thus concluding the
proof.
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Let y be x’s peer/provider through which x decides to send traffic in the bad
move. Let z be y’s next hop on x’s route through y. If z is y’s customer, since
(x, y) is a primary edge, the backup edge has to be a customer edge (and so we
are done). Consider the case that z is not y’s customer. It follows that y is x’s
provider and that y prefers x over z. However, this means that y wants to move
from z to x (or even a better response) at the same time that x wants to move
from its backup customer route to y. Hence, by the definition of the stabilization
phase we must give precedence to y, and so the bad move would not have even
taken place via z in that case – a contradiction. ⊓⊔

Computational complexity of finding a PNE. We now analyze the length of the
improvement path that is constructed in the stabilization process. Notice that
the number of possible problematic structures is polynomial, and so the number
of possible bad moves is polynomial as well. Thus, every node can turn black
only polynomially many times. This, in turn, implies that the number of stabi-
lization phases is polynomial as well. To complete the analysis we note that each
stabilization phase is equivalent convergence in the Gao-Rexford framework [7],
which entails at most a polynomial number of steps.

⊓⊔

We show (Appendix B) that commercial backup-routing games are, in fact,
not contained in the class of potential games.

Theorem 5.3. There exists a commercial backup-routing game which is not a
potential game.
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A Shortest-Path Routing Games with a Single Byzantine
Player are not Necessarily Potential Games

Consider the network G partially described by Fig. 2. We are interested in three
nodes: x, y and m, where m is the Byzantine node. The paths P1, P2, P3, P4 and
P5 are all disjoint, and their lengths are 8, 6, 2, 2 and 10 respectively.

Hence, x prefers the path (x,m)P4 (length 3) over P1 (8) which is preferred
over (x,m)P5 (11).

Also, y prefers the path (y, x)(x,m)P4 (length 4) over P2 (6) which is pre-
ferred over (y, x)P1 (9).

The Byzantine node m has the following preferences:

P3P2 <m P4 <m P5 <m P3(y, x)P1 .

We now present a better-response improvement cycle. In this cycle, all nodes
but x, y and m are fixed, and the paths P1, P2, P3, P4 and P5 are all valid routes
resulting from the fixed strategies of these nodes. Now, consider the following
sequence of transitions.

– x chooses P1, y chooses x and m chooses P3.
– x chooses P1, y chooses P2 and m chooses P3.
– x chooses P1, y chooses P2 and m chooses P4.
– x chooses m, y chooses P2 and m chooses P4.
– x chooses m, y chooses x and m chooses P4.
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Fig. 2. A shortest-path routing game with a single Byzantine player that is not a
potential game

– x chooses m, y chooses x and m chooses P5.
– x chooses P1, y chooses x and m chooses P5.
– x chooses P1, y chooses x and m chooses P3.

Observe that every strategy profile is reachable from the strategy profile that
comes before it via the better response of a single node in {x, y,m}, and that the
first strategy and the last strategy in this sequence are identical. Hence, there
exists a better-response improvement cycle and so this game is not a potential
game.

B Commercial Backup-Routing Games are not
Necessarily Potential Games

Consider the network in Fig. 3. There are 6 source nodes 1, 2, 3, a, b, c and a
unique destination node d. The business relationships between nodes, and the
classification of edges into primary edges and backup edges are described in
the figure. Each of the source nodes 1, 2, and 3 has a next-hop ranking, and
its preferences over next-hops are as in the figure (e.g., node 1 prefers all routes
through its peer a over the direct route to its customer d, over all routes through
its provider c). Each of the source nodes a, b, and c prefers routes through its peer
(to which it is connected via a primary edge) over routes through its customer
(to which it is connected via a backup edge). Observe that these rankings are
indeed backup/primary commercial rankings (each node prefers primary routes
over backup routes and, within each category of routes, prefers customer routes
to peer/provider routes). Each source node has a commercial export-all policy,
that is, it exports all routes to its customers and all customer routes to its
peers/providers.
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Fig. 3. A commercial backup routing game that is not a potential game

Observe that this routing game possesses (multiple) PNE, e.g., the routing
state in which nodes 1 and 2 forward traffic directly to d, and node 3 forward
traffic to node 1. We now show that the game is not a potential game by pre-
senting a better-response improvement cycle. Consider the case that each of the
source nodes a, b, and c’s strategy is fixed to be the outgoing link to its customer
(e.g., c sends traffic to 1). Now, consider the following sequence of transitions
between 3-tuples of source nodes 1, 2, and 3’s strategies (listed in that order):
((1d), (2d), (3c)) → ((1a), (2d), (3c)) → ((1a), (2d), (3d)) → ((1a), (2b), (3d)) →
((1d), (2b), (3d)) → ((1d), (2b), (3c)) → ((1d), (2d), (3c)). Observe that every 3-
tuple of strategies is reachable from the 3-tuple that comes before it via the
best-response of a single node in {1, 2, 3}, and that the first 3-tuple and last
3-tuple in this sequence are identical. Hence, there exists a best-response im-
provement cycle and so this game is not a potential game.


