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ABSTRACT
This paper studies under what conditions congestion con-
trol schemes can be both efficient, so that capacity is not
wasted, and incentive compatible, so that each participant
can maximize its utility by following the prescribed proto-
col. We show that both conditions can be achieved if routers
run strict priority queueing (SPQ) or weighted fair queueing
(WFQ) and end-hosts run any of a family of protocols which
we call Probing Increase Educated Decrease (PIED). A natu-
ral question is whether incentive compatibility and efficiency
are possible while avoiding the per-flow processing of WFQ.
We partially address that question in the negative by show-
ing that any policy satisfying a certain “locality” condition
cannot guarantee both properties.

Our results also have implication for convergence to some
steady-state throughput for the flows. Even when senders
transmit at a fixed rate (as in a UDP flow which does not
react to congestion), feedback effects among the routers can
result in complex dynamics which do not appear in the sim-
ple topologies studied in past work.

1. INTRODUCTION
Congestion control is a crucial task in communication

networks which occurs through a combination of mech-
anisms on end-hosts through protocols such as TCP;
and on routers and switches through use of queue man-
agement schemes such as Weighted Fair Queueing
(WFQ) [2, 24] or FIFO queueing. In the schemes used in
practice, most commonly TCP and FIFO queueing, it is
well known that senders can improve their throughput
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by misbehaving—for example, increasing their trans-
mission rate beyond that of TCP, thus inducing other
senders to back off. Thus, this suite of protocols lacks
incentive compatibility: the property that each partici-
pant can maximize its utility by following the prescribed
protocol. In a network such as the Internet, in which
senders are controlled by different entities which can
easily deviate from the protocol with limited repercus-
sions, incentive compatibility is a useful way to obtain
predictable performance. While other competitive as-
pects of congestion control such as fairness [2, 24] and
the price of anarchy [18] have been studied extensively,
little attention has been paid to incentive compatibility
in this context.

Incentive compatibility depends both on the end-host
protocol and the queueing scheme used by routers. FIFO
queueing, which treats all packets equally regardless of
the rate at which the sender is transmitting, is incentive
compatible only with the end-host protocol that sends
packets as quickly as possible. This behavior causes
packet loss and thus inefficiency in the network.

This paper contains contributions in two areas. First,
we study under what conditions both incentive compat-
ibility and efficiency can be obtained in arbitrary net-
works. Second, we study under what conditions flow
rates converge to a fixed point in arbitrary networks,
which is both a step in our incentive compatibility anal-
ysis and is of independent interest. We describe our
results in these two areas next.

Incentive compatibility. We present a family of end-
host congestion control protocols called Probing In-
crease Educated Decrease (PIED), in which the
source gradually increases its transmission rate until
it encounters packet loss, at which point it decreases
its sending rate to the throughput that the receiver
observed—unlike TCP, which backs off more dramat-
ically. We show that if each end-host runs a PIED pro-
tocol (not necessarily the same one), and the routers use
a queueing policy like WFQ or Strict Priority Queueing
(SPQ) (with coordinated weights or priorities), then the
network converges to a fixed point. Moreover, this fixed
point is efficient, in the sense that there is no packet
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loss and no needlessly unused link capacity. We show
that this convergence process is also incentive compat-
ible and collusion-proof: assuming that end-hosts care
about their throughput, no sender or coalition of con-
spiring senders can obtain a better throughput by run-
ning a protocol other than PIED. These results follow
intuitively from the isolation between flows provided by
WFQ and SPQ.

A natural question is whether incentive compatibil-
ity and efficiency are possible while avoiding the per-
flow processing of WFQ and SPQ. Consider, for exam-
ple, the following queueing policy, which we call local
weighted fair queueing (LWFQ): at each router, pack-
ets are grouped into “superflows” such that all pack-
ets in each superflow have the same previous and next
hops; then, WFQ is run among these superflows. LWFQ
clearly does not have the same fairness properties as
WFQ, but does it provide enough isolation to enable
incentive compatibility?

Unfortunately, this is not the case. In fact, we show
that any queueing scheme which is local — in the sense
that treatment of packets at each router depends only
on the portion of the packet’s path near the router —
cannot be both incentive compatible and efficient. The
intuition is that any local scheme can be made to be-
have like FIFO Queueing on some topologies. This in-
dicates that obtaining incentive compatibility requires
examination either of remote portions of the packet’s
path or of other information carried by the packet, as
in CSFQ [26].

Convergence. A key step in the above analysis, and
a fundamental property of independent interest, is con-
vergence of the network to an equilibrium, in terms of
the rates that packets are sent and received on end-
to-end flows. A long line of research has characterized
the dynamic behavior of various combinations of end-
host protocols and router queueing policies. The large
majority of past work focuses on the case of a single
congested router or on simple networks such as a series
of several congested routers [8]. In this paper, we study
the general case in which the network is arbitrary and
there may be multiple points of congestion.

Suppose each source in a network sends at a fixed
rate, such as a UDP flow which does not react to conges-
tion. One might expect that because the flow is sent at a
constant rate, it will therefore be received at a constant
rate (albeit at a lower rate than the flow was sent, if it
encounters congestion). This is true for simple networks
such as a single router or series of several routers. How-
ever, we show that complex feedback behavior among
routers, absent in the well-studied simpler topologies,
can arise in the general case. Our results for queueing
policies give a spectrum of convergence behavior:

• If routers use WFQ or SPQ with weights or pri-
orities that are not coordinated across routers (as

may occur, for example, due to a configuration
error or simply different policies in different au-
tonomous systems), flows’ throughputs may per-
manently oscillate. Throughputs may also con-
verge to one of multiple different equilibria de-
pending on initial conditions and timing.

• When routers use WFQ or SPQ and each flow has
the same priority or weight on all the links it tra-
verses, we show that the flows’ throughputs are
guaranteed to converge to a single fixed point in
finite time.

• If routers use FIFO Queueing or any other lo-
cal queueing policy (according to the above defi-
nition), only asymptotic worst-case convergence is
possible, unlike the exact convergence of WFQ and
SPQ. However, we show that a fixed point always
exists; and the network will converge asymptoti-
cally to this fixed point if there is only a single
“cycle of dependencies” (to be defined precisely
later). We leave open the question of whether con-
vergence is guaranteed in general.

Interestingly, our sufficient condition for exact con-
vergence (i.e., using WFQ or SPQ) is also sufficient for
incentive compatibility and efficiency; and our neces-
sary condition for exact convergence (i.e., non-locality)
is also necessary for incentive compatibility and effi-
ciency. Note, however, that there is a large gap between
these necessary and sufficient conditions.

Our results use a fluid-flow model for analysis. We
validate the model with a discrete-event simulation of
several of the convergence phenomena described above.
However, we do not claim that the convergence prob-
lems that we demonstrate are likely to be common in
real-world networks. Instead, we believe the importance
of this work is analogous to the fact that BGP routes
on the Internet may oscillate [27]: given the importance
of incentives, efficiency, and convergence, it is desirable
to know how a network designer can guarantee these
properties.

Organization of the paper. We introduce our model
of the network in Sec. 2. We analyze convergence with
fixed-rate senders in Sec. 3, and incentive compatibility
and efficiency in Sec. 4. We discuss related work in
Sec. 5 and conclude in Sec. 6.

2. MODEL

2.1 The Network Model
We represent the communication network by a di-

rected graph G = (V,E), where the set of vertices V
represents routers and end-hosts, and the set of edges
E represents data links. Each directed edge e ∈ E has
a capacity ce > 0 representing the link’s bandwidth.
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Each end-to-end connection (flow) in the network is de-
fined by a pair of source-destination vertices (the com-
municating hosts), and a path in the network through
which data flows between these end-hosts. The path
that connects two end-hosts is determined by under-
lying routing protocols, and is considered fixed in our
model. The transmission rate of each source vertex i is
bounded from above by some maximum possible influx
fi > 0.

At each point in time, the state of the network is
characterized by the transmission rate of each source
vertex and by the (real-valued) rate each flow has across
each link. At any given point in time, the rates of a
certain connection across several edges are not neces-
sarily consistent, as the flow at a point far from the
source is composed of packets that have been sent some
time ago, while closer links to the source carry newer
packets that may have been transmitted at a different
rate. Our first step is to determine, given arbitrary ini-
tial rates, whether the flow rates will converge, and if
so, to what values. These congestion control dynamics
are determined by two algorithms: the routers’ queue
management policies, which dictate how routers discard
excess traffic when links’ capacities are exceeded, and
the congestion control protocol executed by the end-
hosts, which dictates the way in which source nodes ad-
just their transmission rates. The timing of these pro-
cesses’ reactions depends on non-deterministic delays
due to processing, link latency, end-to-end packet ac-
knowledgements, and so on. To model this uncertainty,
our model assumes essentially arbitrary adversarially-
controlled timings.

More formally, we consider an infinite sequence of
discrete time steps t = 1, 2, . . . at which end-host and
router reaction occurs. These discrete moments denote
only ordering between events, rather than absolute real-
time values. In each time step t, some subset of the
end-to-end connections, and some subset of the links,
is activated. Each end-host that is activated adjusts
its transmission rate according to its congestion control
protocol. Each link activation represents the update of
connections’ flow rates along that link according to the
link’s queue management policy applied to the current
incoming flow rates at that link. We assume that the
timing of activations does not permanently starve any
end-host or link of activations, but is otherwise arbi-
trary.

Mapping this model onto the real world, intuitively,
an end-host is activated when it receives feedback from
the receiver causing an adjustment in transmission rate.
A link is activated when its incoming flow rate changes,
and would trigger downstream activations after a delay
due to the latency of the link.

2.2 Queue Management Policies

Routers’ queue management policies specify how a
link’s capacity is shared between the flows that reach
that link. We let K(e) denote the end-to-end connec-
tions whose paths go through edge e ∈ E, and let fi(u)
denote connection i’s flow at node u. We then define a
queue management policy as follows.

Definition 1. Let e = (u, v) ∈ E and let 1, . . . , k be
the connections in K(e). A queue management policy
for e is a function

Qe : (R+)k → (R+)k

that maps every k-tuple of incoming flows
f1(u), . . . , fk(u)) to a k-tuple of outgoing flows, or “ca-
pacity shares”, (f̃1(v), . . . , f̃k(v)), such that:

• ∀i ∈ {1, . . . , k} fi(u) ≥ f̃i(v) (a connection’s flow
leaving the edge cannot be bigger than that connec-
tion’s flow entering the edge); and

• ∑k
i=1 f̃i(v) ≤ ce (the sum of connections’ flows

leaving the edge cannot exceed the edge capacity).

We next define in the context of our model the queue
management policies that we will analyze later.

Strict Priority Queueing (SPQ). SPQ assumes that
types of traffic can be differentiated and assigned to sep-
arate FIFO queues with higher priority queues always
processed to completion before lower priority queues are
considered. More formally:

Definition 2. An edge e = (u, v) has a Strict Pri-
ority Queueing policy if it allocates capacity in the
following manner: There is some fixed order over the
connections in K(e), 1, . . . , k.

• If f1(u) ≥ ce then 1 is granted the entire capacity
of the edge, ce.

• Otherwise, connection 1 gets its full demand f1(u),
and the remaining capacity ce−f1(u) is allocated to
the remaining connections 2, . . . , k by recursively
applying the same procedure.

We say that the priorities of connections are coor-
dinated across links if, whenever connection A is pri-
oritized over another connection B in some link, A is
prioritized over B at all of their shared links.

Weighted Fair Queueing (WFQ). [24] WFQ en-
forces weighted max-min fairness among flows at a router.
In a fluid model, each flow with weight w at a link where
the flows’ weights sum to W is allocated a fraction w/W
of the link’s capacity; any spare capacity (resulting from
flows whose incoming rate is less than this fair share)
is then recursively allocated among the flows whose in-
coming rates are more than the fair share.
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Definition 3. An edge e = (u, v) has a Weighted
Fair Queueing policy if it allocates capacity in the
following manner: There are nonnegative real numbers
(“weights”) w1, ..., wk associated with the connections
1, ..., k in K(e).

• If, for each i ∈ K(e), fi(u) > wi·ce

Σr∈K(e)wr
, assign

each connection i a capacity share of wi·ce

Σr∈K(e)wr
.

• If, for some j ∈ K(e), fj(u) ≤ wj ·ce

Σr∈K(e)wr
, grant

connection j its full demand fj(u) and repeat the
same procedure recursively for the remaining ca-
pacity of ce − fj(u) and the remaining k − 1 con-
nections.

We say that connections’ weights are coordinated across
links if every connection has the same weight on each
edge on its path.

FIFO Queueing. FIFO Queueing is perhaps the
simplest and most common scheme: incoming packets
are placed in a queue and are sent in order of arrival.
Since each packet is treated identically regardless of the
incoming flow rate, a connection’s capacity-share is pro-
portional to its incoming flow:

Definition 4. The FIFO Queueing policy at edge
e = (u, v) allocates to each connection i ∈ K(e) the
capacity share fi(u)

Σj∈K(e)fj(u) .

Note that implementations of FIFO Queueing, namely
Drop Tail and RED, differ in how they drop packets as
the queue fills up. We discuss this more in Sec. 2.3.

Local Queue Management Policies. General queue-
ing policies such as WFQ and SPQ may require iden-
tification of each end-to-end flow. We now introduce a
property called locality which is a class of policies that
avoids this per-flow processing.

Informally, we call a policy local when the handling
of a connection depends only on its neighborhood at
a router, i.e., the previous and next hops. In other
words, at each router, flows are grouped into “super-
flows” according to (input port, output port) pair. An
arbitrary policy manages queueing among superflows,
and each individual connection receives a share of its
superflow’s bandwidth which is proportional to the con-
nection’s share at the input port.

Definition 5. An edge e = (u, v) has a local queue
management policy if the following holds: Let e1, ..., et

be u’s incoming edges in G. There is a function g :
(R+)t → (R+)t, such that for every ej, and every con-
nection i ∈ K(e) whose route goes through ej, i’s capacity-
share on e is fi(u)

Fej
· gj(Fe1 , . . . , Fet), where Fer denotes

the total sum of the flows at u of the connections in
K(e) whose paths traverse the edge er.

The simplest local queueing scheme is FIFO Queue-
ing. We also define Local Weighted Fair Queue-
ing (LWFQ), which is a local analogue of WFQ: Let
e = (u, v), and let e1, ..., et be u’s incoming edges. The
packets of the flows in K(e) traversing each incoming
edge ei are grouped into a “superflow”. Then, WFQ
is run among these superflows. Each connection gets
its proportional share in the capacity share allocated to
the superflow to which it belongs.

2.3 Simulator
To validate our fluid model, we tested several conver-

gence scenarios in a custom discrete-event simulator.
Although we tested several combinations of parameter
values, in the results presented here, links have a maxi-
mum queue size of 1000 packets, 100 Mbps bandwidth,
and 50 ms propagation delay. (This delay is rather large
for a single link, but could realistically represent a mul-
tihop path or VPN link. We observed similar results
for smaller delays and other bandwidth values; we chose
these values simply for ease of visualizing the results.)
Senders inject 1000-byte packets with Poisson interar-
rival times such that the mean sending rate is 100 Mbps.
Uniform-distributed interarrival times produced similar
results (not shown).

We tested FIFO Queueing with Drop Tail and ob-
served that the output flow rates were very sensitive
to the timings of the flows’ packet injections—a well-
known effect stemming from the fact that when the
queue is full, a packet is likely to be accepted into the
queue only if it happens to arrive just after a packet
leaves the queue. Our fluid model does not capture this
effect. However, as we will see, our model does accu-
rately predict simulations when instead of Drop Tail,
we use a slightly simplified version of Random Early
Detection (RED) [11]. This policy removes Drop Tail’s
strong dependence on precise packet timings, and all
the simulation results that we present use this strategy.
Specifically, if the queue is ≤ 80% full, the packet is al-
ways accepted; otherwise, it is dropped with probability
increasing linearly from 0 to 1 as the queue length in-
creases from 80% to 100% full. When using SPQ rather
than FIFO Queueing, we follow the same policy ex-
cept an arriving packet is always enqueued, and the least
priority packet in the queue (possibly the one that just
arrived) is the one that is probabilistically dropped.

3. CONVERGENCE WITH FIXED RATE
SENDERS

The main focus of this paper is to characterize incen-
tive compatibility and efficiency, which involves end-
host dynamics (see Sec. 4). However, to address this
question, we must first understand the network’s be-
havior in the seemingly simple scenario that all sources
are transmitting at a fixed rate. One might expect
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that fixed inputs lead directly to fixed (converged) out-
put rates. In Section 3.1 we give several simple exam-
ples that show that even when senders send at con-
stant rates, the system can have complex dynamics,
including multiple stable states and persistent oscilla-
tion. Hence, with a poor choice of router queueing poli-
cies, oscillations can be inherent to the network, rather
than being caused by the end-hosts. In Section 3.2 we
give strong guarantees for WFQ and SPQ with coordi-
nated weights and priorities: these policies have a sin-
gle fixed point to which they converge in finite time.
In Section 3.3 we show that local queueing policies in-
cluding FIFO Queueing have qualitatively different
convergence properties, in that they can only guaran-
tee asymptotic convergence. We also show that FIFO
Queueing does guarantee the existence of at least one
fixed point, and that in the special case that there is
a single cycle of dependencies, it will (asymptotically)
converge.

3.1 Convergence is Nontrivial
Example 1: Consider the network of Figure 1. There
are two connections C1, C2. All edge capacities are 1.
The links use SPQ with uncoordinated priorities such
that each link prioritizes packets that have traveled a
longer distance before arriving at that link. Thus, edge
(1, 2) prioritizes C2, and edge (3, 4) prioritizes C1.

Figure 1: A network
in which Strict Pri-
ority Queueing with
uncoordinated pri-
orities has infinitely
many stable states,
but may also oscillate
indefinitely.

Consider the case that C1 and C2 start transmitting
simultaneously at a fixed rate of 1. At first, all of C1’s
traffic would go through the edge (1, 2), and, similarly,
all of C2’s traffic would go through the edge (3, 4). Be-
cause each of the edges (2, 3) and (4, 1) is used by ex-
actly one connection (no competition), this means that
next all of C1’s flow would reach vertex 3, and all of
C2’s flow would reach vertex 1. However, observe that
because C1 is preferred at (3, 4) and C2 is preferred at
(1, 2), this implies that all traffic of the less preferred
connection on these edges will now be discarded. Hence,
after a while C1’s traffic will not reach vertex 3 and C2’s
traffic will not reach vertex 1, thus re-enabling C1 and
C2 to get the full capacities of (1, 2) and (3, 4), respec-
tively. Observe that this brings us back to the initial
state, and so this process can go on indefinitely, never
reaching a stable state.

We observe that in this small network there are in-

finitely many stable states: For any p ∈ [0, 1], the flow
pattern is stable when C1 is assigned capacity share p
on each edge on its path, and C2 is assigned a capacity
share of (1− p) on each edge on its path.
Example 2: The example of Figure 2 shows that oscil-
lations can occur even if a unique stable state exists in
the network. There are three connections C1, C2, C3.
All edge capacities equal 1. Once again, links run SPQ,
prioritizing packets that have traveled a longer distance
so far. The flow pattern in which every connection gets
a capacity share of 1

2 on each of the edges on its path is
stable. It is easy to show that this is, in fact, the unique
stable state in this network.

Figure 2: A network
in which Strict Priority
Queueing with uncoordi-
nated priorities has a sin-
gle stable state, but may
oscillate indefinitely.

Now, consider the case in which C1 and C2 start
transmitting simultaneously, at a rate of 1. Since C1

and C2 share the edge (1, 2) and since C1 is preferred
at that edge, it is given the full capacity 1, while all
packets that belong to C2 are discarded. Now, assume
that, at this point, C3 also starts sending 1 unit of flow.
Since C3 is preferred at edge (3, 1) and has no compe-
tition over the available capacity in (2, 3), it is given
precedence and suppresses the traffic of C1. This in
turn allows C2 to send flow freely and suppress C3, and
so on. This can go on indefinitely, never reaching a
stable outcome.

Both of the examples above can also be shown to
hold when the routers run WFQ with uncoordinated
weights. One way to see this is to notice that WFQ can
closely approximate SPQ by assigning a very large rel-
ative weight to more preferred connections. However it
is easy to produce similar oscillatory examples in WFQ
where weights differ by only a small constant factor (and
the magnitude of the oscillations is smaller).
Simulation: Fig. 3 shows the results of a simulation of
Example 1 using the simulation methodology of Sec. 2.3.
Fig. 3(a) indicates that when both senders begin send-
ing at their full rate at time 0, oscillations predicted by
the fluid model occur and persist. In Fig. 3(b), flows
begin at a small sending rate and increase linearly, but
with C1 increasing earlier than C2. After time 0.5 sec,
the rates are identical to the previous case, yet the net-
work stabilizes to a very different outcome, with the flow
rates roughly summing to 100 Mbps as predicted by the
model. This demonstrates the network’s sensitivity to
initial conditions when using SPQ with uncoordinated
priorities.

We also simulated Example 2, showing similar oscilla-
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tory behavior; we omit the results since they are similar
to Fig. 3(a).
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Figure 3: (a) Simulation demonstrating oscilla-
tory behavior in the example of Fig. 1. (b) The
same scenario with different initial conditions.

3.2 Coordinated WFQ and SPQ
The previous section showed that oscillations are pos-

sible when SPQ and WFQ use uncoordinated priorities
or weights. We now prove that for SPQ and WFQ with
coordinated parameters, convergence is guaranteed (for
any network topology). The proofs have a similar struc-
ture: We show that coordinated priorities/weights im-
ply an “isolation” between connections. This enables
a recursive proof technique in which connections/edges
are gradually removed from consideration.

Theorem 3.1. For any network topology, if all con-
nections transmit at a fixed rate, all routers use SPQ,
and connections’ priorities are coordinated across links,
then convergence to a stable flow pattern is guaranteed.

Proof. Consider the connection i that has the high-
est priority on all links it traverses (since priorities are
coordinated across links such a connection is bound to
exist). Let e be the link on i’s route with the smallest
capacity. There are two possible cases:

Case I: If i’s (fixed) transmission rate (initial influx)
fi is at most ce then i’s throughput is guaranteed to
be fi. In this case, Strict Priority Queueing will
allocate i a capacity share of fi on each link it tra-
verses, and share unused capacity between the other
flows in a recursive manner. Hence, after some time
goes by, the network is effectively equivalent, in terms
of convergence, to a network in which connection i is
removed and the capacity of each link on its route is
updated accordingly.

Case II: If i’s (fixed) transmission rate (initial influx)
fi is greater than ce then observe that i will be assigned
all of e’s capacity, and that, after awhile it will be as-
signed a capacity share of exactly ce on every edge that
comes after e on i’s route. Hence, after some time goes
by, the network is effectively equivalent, in terms of con-
vergence, to a network in which connection i’s route is
shortened and ends just before e, edge e is removed,
and the capacities of all links following e on i’s original
route are updated accordingly.

For both of the cases described above we show that,
after some time goes by, the network can be reduced to
a smaller network (by effectively removing an edge or
a connection). Every such reduction fixes the flow of a
connection across at least a single link. The same line
of argument can be recursively applied until all connec-
tions’ flows remain fixed on all edges.

A proof similar to that of Theorem 3.1 enables us to
show a similar result for WFQ:

Theorem 3.2. For any network topology, if all con-
nections transmit at a fixed rate, all routers use WFQ,
and connections’ weights are coordinated across links,
then convergence to a stable state is guaranteed.

Proof. Let e be the link in G for which the expres-
sion ce

Σr∈K(e) wr
is minimized. Let α denote this value.

We handle two cases:

Case I: If, for some i ∈ K(e), i’s (fixed) transmission
rate (initial influx) fi is at most wi ·α, then observe that
i’s throughput is guaranteed to be fi. This is because
on any other link the value of α would be greater, and
so the capacity allocated to i is greater. In this case,
Weighted Fair Queueing will allocate i a capacity
share of fi on each link it traverses, and share unused
capacity between the other flows in a recursive manner.
Hence, as in the proof of Theorem 3.1, the network is
effectively equivalent, in terms of convergence, to a net-
work in which connection i is removed and the capacity
of each link on its route is updated accordingly.

Case II: If, for every i ∈ K(e), i’s (fixed) transmission
rate (initial influx) fi is greater than wi ·α then observe
that each such connection i will be eventually be as-
signed a capacity share of wi ·α by link e and a capacity
share that is no smaller by any other link on its path
(by the definition of α). Therefore, after awhile each
i ∈ K(e) will be assigned a capacity share of exactly
wi · α on every edge that comes after e on i’s route.
Hence, after some time goes by, the network is effec-
tively equivalent, in terms of convergence, to a network
in which each such connection i’s route is shortened and
ends just before e, the capacity of all links following e on
i’s original route (including e) are updated accordingly,
and e is removed from the network.
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For both of the cases described above we show that,
after some time goes by, the network can be reduced to
a smaller network (by effectively removing an edge or a
flow). Every such reduction fixes the throughput of a
connection across at least a single link. This argument
can be recursively applied until all connections’ flows
on all edges remain fixed.

We observe that, if all routers use Fair Queueing,
then a re-examination of the above proof implies that:

Observation 3.3. If all connections transmit at a
constant rate, and if all routers use Fair Queueing,
then the network converges to an outcome that is max-
min fair. That is, the outcome reached is such that
the minimum throughput of a connection (taken over
all connections) is maximized.

3.3 FIFO and Local Queue Management

3.3.1 Convergence Properties
While SPQ and WFQ with coordinated weights con-

verge exactly, the following example shows that FIFO
Queueing may only approach its fixed point asymptot-
ically. While this may be acceptible in practice, it does
demonstrate a qualitative difference in the behavior of
FIFO vs. SPQ and WFQ. We also show that any local
queueing policy which is efficient (in the sense that it
uses all available bandwidth) is as bad as FIFO in this
regard.

Consider the example of Figure 1, now with FIFO
Queueing links. As before, all edge capacities and
connections’ fixed transmission rates are 1. Let a be
C1’s equilibrium capacity share on the link (1, 2); this
must also be C1’s capacity share on link (2, 3) since it is
the only connection using that link. Also observe that
because of symmetry, if C1’s share on (1, 2) is a then so
must C2’s share on (3, 4) be. Thus the two input rates
on link (1, 2) are 1 for C1 and a for C2; by the definition
of FIFO Queueing, we must have that C1’s share on
link (1, 2) satisfies a = 1

1+a , which has a single nonneg-

ative solution: a =
√

5−1
2 . (From this one can derive

that the flows’ final output rates are both
√

5−1√
5+1

.) We
argue that the irrationality of a implies that C1’s capac-
ity share on (1, 2) will never converge to a fixed number.
To see why this is true, simply observe that since the
transmission rates of both connections are rational, and
every router updates its flow rates using rational oper-
ations, it can never happen that a connection gets an
irrational capacity share on any link. Hence, C1 will
never get exactly a share of

√
5−1
2 on link (1, 2).

We simulated the above scenario using the method-
ology of Sec. 2.3. One trial is shown in Fig. 4. One
can observe the throughput oscillating about its final
equilibrium and converging towards it in “rounds” of
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Figure 4: Simulation of FIFO Queueing in the
topology of Fig. 1.

about 150 ms (the time it takes each flow to traverse
its three links). After several rounds, these changes be-
come small and are lost in the noise. Taking the mean
throughput over the last 10 seconds of a 20-second sim-
ulation and repeating this for 10 trials results in a mean
output rate of 3.832 Mbps (±0.126 Mbps at 95% con-
fidence), which is within 1% of the value predicted by
our fluid model,

√
5−1√
5+1

· 100 Mbps.
We now show that this example can easily be made

to hold for any efficient local queue management pol-
icy, where by saying that a queueing policy is efficient
we mean that there is no needlessly unused link capac-
ity (as is the case with Strict Priority Queueing,
Weighted Fair Queueing, and FIFO Queueing).
Replace each directed edge e in Fig. 1 by two consec-
utive edges, e1 and e2, such that e1 has a very big
capacity, and e2 is identical to e. Observe that this
construction guarantees that all traffic reaching e1 will
also reach e2 (as e1’s queue management policy is effi-
cient), and that e2 discards of excess traffic exactly as in
FIFO Queueing (by the efficiency and locality of and
e2’s queueing policy, and the fact that it only has one
incoming edge). Applying the above arguments to this
new network leads to the same conclusions as before.

3.3.2 Asymptotic Convergence of FIFO
The example of Sec. 3.3.1, while showing that for

FIFO and efficient local queueing polices exact worst-
case convergence is not possible, leaves open the pos-
sibility that convergence with FIFO may be achievable
in the limit. Here, we give positive results concerning
FIFO’s convergence. We start by proving the following
theorem:

Theorem 3.4. For any network, if all routers use
the FIFO policy, then there exists a stable flow pattern.

Proof. We prove the theorem using a fixed point
argument. We begin by defining the following function
F (~f) = F (f1

e1
, . . . , fm

en
) for each network configuration.

The parameters of this function are the values of flows of
all connections at each edge in the network. The func-
tion’s range is the same as its domain. F (~f) is defined
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as follows: given a vector of connections’ flows per edge,
F outputs, for every edge, the flows of the connections
on that edge that result from updating that edge’s ca-
pacity allocation according to FIFO Queueing., i.e.,
the amount of flow that each connection would have
on that edge after that edge alone is updated from the
state ~f . Observe that because FIFO Queueing is a
continuous function, so is F , and that the domain of
F (which is the same as its range) is a cartesian prod-
uct of simplexes (the allowed values for flows on the
same edge must sum to a number that is lower than
its cost – if there are k flows then this is simply the
k + 1-dimensional simplex).

Therefore, we have shown that F is a continuous func-
tion from a compact closed set to itself, and must there-
fore have a fixed-point ~f∗. Note that this fixed point is
also a stable state, since the flows on each edge will not
change their values when that edge alone is updated (by
the definition of F ).

It is still unclear whether there is always a unique
stable flow pattern in networks with FIFO Queueing.
In addition, we do not know whether from any initial
flow configuration the network would eventually con-
verge (in the limit) to a stable state under any timing.
These are left as intriguing open questions.

We take a first step towards answering these ques-
tions, by showing that convergence to a unique stable
state is guaranteed for topologies with at most a single
feedback cycle. We conjecture that this result actually
holds for all network topologies.

To better understand the dependencies between con-
nections we define the dependency graph to be a directed
graph Gd = (Vd, Ed) such that:

• Each vertex in Vd, f i
e, represents the flow of con-

nection i on link e in our network (where e is an
edge on connection i’s route).

• There is a directed edge e = (f i
e1

, f j
e2

) in Ed iff
e1 and e2 are two consecutive edges on i’s route
(where e2 comes directly after e1), and j’s route
goes through e2. Intuitively, an edge between two
vertices in Gd implies that the flow of some connec-
tion directly affects the flow of another connection.

We prove the following theorem, that applies to net-
works like the one depicted in Figure 1:

Theorem 3.5. If the dependency graph Gd contains
at most a single directed cycle, all sources transmit at
fixed rates, and all links use FIFO Queueing, then
there is a unique stable flow pattern, and the flow rates
on each link approximate it arbitrarily closely as time
advances.

The proof of Theorem 3.5 appears in Appendix A.

4. INCENTIVE COMPATIBILITY AND EF-
FICIENCY

In Section 3 we dealt with the case that sources trans-
mit data at a constant rate. We now move to the case
that sources adjust their transmission rates dynami-
cally. If sources are selfish in choosing these rates, when
can we guarantee that sources have incentive to follow
the protocol, the network would still converge to a fixed
point, and this point will be efficient?

4.1 Efficiency and Incentive-Compatibility vs.
Local Queueing Policies

It is fairly obvious that FIFO Queueing results in
inefficiency under selfish behavior. Consider the case
of two connections, C1 and C2, that send traffic over a
single edge e that uses FIFO Queueing. The maxi-
mal transmission rate of both C1 and C2 is 2, and the
capacity of e is 1. Observe that, no matter what con-
gestion control protocol C2 is using to determine how
to adjust its transmission rate, C1 can always increase
its throughput by transmitting at its maximal rate, if it
is not already doing so (because FIFO Queueing al-
locates C1 its proportional share). Therefore, the only
incentive-compatible end-host protocol in this case is
the protocol that instructs end-hosts to always send
packets as quickly as possible. This will, of course, re-
sult in packet loss.

We now re-use the construction presented in Sec. 3.3
to show that incentive-compatibility can lead to packet
loss for all local and efficient queueing policies: Substi-
tute the edge in this example by two consecutive edges,
e1 and e2, such that e1 has enormous capacity, and e2

is identical to e. Let us assume that both e1’s and e2’s
capacity is allocated according to some local and effi-
cient queueing policy. Observe that, by the efficiency of
the queueing policy of e1, we have that all traffic that
reaches e1 also reaches e2. Because e2 only has one
incoming link (namely, e1), the fact that its queueing
policy is local and efficient implies that the allocation
of its capacity between C1 and C2 is the same as in
FIFO Queueing. This, in turn, implies that each con-
nection is always rationally motivated to transmit at its
maximal rate, leading to packet loss.

In fact, observe that, using the exact same construc-
tion, it is possible to show that the same result holds
for local routing policies that only utilize a constant
fraction of the link in case of congestion (e.g., Random
Early Detection). It is also easy to extend the re-
sult to the case that the queueing policy is a function of
a larger neighborhood, such as the portion of the route
of each connection which is within O(1) hops.

4.2 WFQ and SPQ are Incentive Compatible

4.2.1 Probing Increase Educated Decrease

8



Figure 5: A graph in which a flow wastes net-
work resources needlessly

We now present a family of congestion control proto-
cols called “Probing Increase Educated Decrease”
(PIED). PIED protocols are motivated by examples
like the following one.

Consider the network graph in Figure 5. There are
two connections, C1 and C2, whose paths share a single
edge. All edges use Fair Queueing. The connections
attempt to send 4 units of traffic each. The flow of C1 is
immediately reduced to 3 units at the edge (s1, v1) while
C2 manages to transmit the full 4 units to vertex v1.
At this point, both connections receive an equal share
of 2 flow units along (v1, v2). Connection C1 therefore
has 2 units of flow arriving at the target node t1, while
connection C2’s flow is reduced further to only 1 unit
that arrives at t2. Notice however, that if C2 only sends
1 unit of flow then this unit reaches t2, and moreover,
C1 then has 3 units of flow arriving at the destination.
In this case, the overall network performance is better
as the two connections manage to get through 4 units
of flow rather than 3.

To avoid such undesirable scenarios, PIED protocols
are designed to ensure that a connection’s transmission
rate will (eventually) match its throughput. This is
achieved via the following simple rate-adjustment rule:
Each source gradually increases its transmission rate
until it encounters packet loss, at which point it de-
creases its sending rate to the throughput that the re-
ceiver observed. Different PIED protocols differ in the
increase factors of the senders, i.e., a sender may ad-
ditively increase its transmission rate by some constant
ε > 0, or multiply its transmission rate by some factor
as long as it does not encounter packet loss. All of our
results hold for all members of the family of PIED pro-
tocols, and even for cases in which different end-hosts
use different protocols within this natural family of pro-
tocols.

4.2.2 Convergence of PIED
We prove that for Weighted Fair Queueing and

Strict Priority Queueing with coordinated prior-
ities/weights, PIED protocols are guaranteed to con-
verge to an efficient fixed point. The proofs of these re-

sults are similar in spirit to the proofs of Theorems 3.1
and 3.2, respectively.

Theorem 4.1. For any network topology, and any
initial transmission rates, if all connections run PIED
protocols, and all routers use Strict Priority Queue-
ing with coordinated priorities, then the congestion con-
trol dynamics converge to an equilibrium point in which
all connections transmit at a constant rate. Moreover,
this fixed point is efficient (there is no packet loss and
no needlessly unused link capacity).

Proof. Consider the connection i that has the high-
est priority on all links it traverses (since priorities are
coordinated across links such a connection is bound to
exist). Let e be the link on i’s route with the smallest
capacity. There are two possible cases:

Case I: If i’s maximum possible influx fi is at most
ce then i’s throughput is guaranteed to eventually be
fi. This is because, by PIED, no matter what i’s ini-
tial transmission rate is, it will increase its transmission
rate until either encountering packet loss or reaching its
maximal transmission rate. Because fi ≤ ce, and every
router on i’s route prioritizes i over all other connec-
tions, i cannot eventually encounter packet loss. Hence,
after some time goes by (regardless of the transmission
rates of the other flows) Strict Priority Queueing
will allocate i a capacity share of fi on each link it tra-
verses, and share unused capacity between the other
flows in a recursive manner. From that moment forth,
the network is effectively equivalent, in terms of conver-
gence, to a network in which connection i is removed
and the capacity of each link on its route is updated
accordingly.

Case II: If i’s maximum possible influx fi is greater
than ce then observe that i will eventually be assigned
all of e’s capacity. This is because, by Strict Prior-
ity Queueing, and the fact that i is the top-priority
connection, i is guaranteed a capacity share of at least
ce on every edge it traverses (eventually). By PIED, if
i’s initial transmission rate is at most ce it will grad-
ually increase it until reaching ce (and encountering
packet loss), at which point its transmission rate will
remain fixed. If, on the other hand, i’s initial trans-
mission rate is greater than ce then it will immediately
encounter packet loss and go down to its thoughtput,
which is ce. Either way, after some time goes by, i has
a fixed transmission rate of ce (regardless of the actions
of the other connections). The network is then effec-
tively equivalent, in terms of convergence, to a network
in which connection i is removed and edges’ capacities
are updated accordingly.

For both of the cases described above we show that,
after some time goes by, the network can be reduced to a
network in which one of the connections is removed. Ev-
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ery such reduction fixes the flow of a connection across
its entire route. The same line of argument can be recur-
sively applied until all connections’ flows remain fixed.
Observe that, for every edge, the sum of the resulting
fixed connections’ flows on that edge cannot exceed its
capacity. This is because this would imply that at least
one of the connections is encountering packet loss and
yet is not decreasing its transmission rate – a contra-
diction to PIED.

Theorem 4.2. For any network topology, and any
initial transmission rates, if all connections run PIED
protocols, and all routers use Weighted Fair Queue-
ing, then the congestion control dynamics converge to
an equilibrium point in which all connections transmit
at a constant rate. Moreover, this fixed point is effi-
cient (there is no packet loss and no needlessly unused
link capacity).

Proof. Let e be the link in G for which the expres-
sion ce

Σr∈K(e) wr
is minimized. Let α denote this value.

We handle two cases:

Case I: If, for some i ∈ K(e), i’s maximum possible in-
flux fi is at most wi · α, then we show that, from some
moment onwards, i’s transmission rate is guaranteed to
be fi. This is because i’s weighted fair share on each
edge is at least wi ·α (by the definition of e). Therefore,
by PIED, i will gradually increase its transmission rate
until it reaches fi. Weighted Fair Queueing will al-
locate i a capacity share of fi on each link it traverses,
and share unused capacity between the other flows in
a recursive manner. Hence, from that moment forth,
the network is effectively equivalent, in terms of con-
vergence, to a network in which connection i is removed
and the capacity of each link on its route is updated ac-
cordingly.

Case II: If, for every i ∈ K(e), i’s maximum possible
influx fi is greater than wi · α then we show that each
such connection i will eventually be assigned a capacity
share of exactly wi · α on link e and a capacity share
that is no smaller on any other link on its path (by
the definition of e). This is because each i’s weighted
fair share on each edge on its path is at least wi · α
(by the definition of e) and so i will never encounter
packet loss as long as its transmission rate is at most
than wi · α. This fact implies that, after some time
goes by, PIED guarantees that all connections i that
go through e will transmit at a rate of at least wi ·α (by
gradually increasing their initial transmission rates if
they are less than this value). Because Σiwi ·α = ce, the
PIED rate-decrease rule implies that the transmission
rate of each connection i ∈ K(e) will then be exactly
wi · α (and will remain fixed henceforth). From that
moment forth, the network is effectively equivalent, in
terms of convergence, to a network in which each such

connection i is removed the capacity of all links on i’s
route are updated accordingly.

For both of the cases described above we show that,
after some time goes by, the network can be reduced
to a network in which (at least) one of the connections
is removed. Every such reduction fixes the flow of (at
least) one connection across its entire route. The same
line of argument can be recursively applied until all con-
nections’ flows remain fixed. Observe that, for every
edge, the sum of the resulting fixed connections’ flows
on that edge cannot exceed its capacity. This is because
this would imply that at least one of the connections is
encountering packet loss and yet is not decreasing its
transmission rate – a contradiction to PIED.

Similarly to Observation 3.3, by examining the proof
above we can make the following observation:

Observation 4.3. If all connections use PIED, and
if all routers use Fair Queueing, then the network
converges to an outcome that is max-min fair. That
is, the outcome is such that the minimum throughput
of a connection (taken over all connections) is maxi-
mized. Furthermore, within all such outcomes, the out-
come reached maximizes the throughput of the second-
lowest connection, and, within all such outcomes, the
outcome reached maximizes the throughput of the third-
lowest connection, etc.

4.2.3 Incentive Compatibility
We have shown that for SPQ and WFQ with coor-

dinated priorities/weights, PIED protocols are guaran-
teed to converge to an efficient state in which all connec-
tions transmit at a fixed rate. We now show that these
protocols are also incentive compatible. That is, we con-
sider the case that end hosts seek to maximize their
throughputs (at convergence). Incentive-compatibility
is a property of PIED that means that no sender can
obtain a better throughput by running a protocol other
than PIED.

A stronger requirement is that of collusion proofness,
which means that even a coalition of conspiring end-
hosts cannot strictly better the throughput of every
member by deviating from PIED.

Theorem 4.4. For any network topology, if all routers
use Strict Priority Queueing with coordinated pri-
orities, then PIED is collusion-proof.

Note that the definitions of incentive compatibility
and collusion-proofness leave open the possibility that
a sender may obtain throughput equal to that of PIED
by running a different protocol, such as sending as fast
as possible. However, a reasonable model of the sender’s
goals is that it primarily wants to maximize its through-
put, but subject to this condition it would like to send
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as few packets as possible (since, for example, sending
a packet slightly increases CPU utilization). Under this
assumption, the sending rates of PIED at convergence
are the unique rates which maximize a sender’s utility.

We now prove Theorem 4.4:

Proof. By contradiction, assume that there is a coali-
tion T (of size at least 1) of manipulative connections
that can deviate from PIED and better the throughput
of each member in the coalition.

Consider the connection i that has the highest pri-
ority on all links it traverses. We shall now show that
i /∈ T . Let e be the link on i’s route with the smallest
capacity. Observe that if i’s maximal transmission rate
fi is at most ce then, if all connections execute PIED,
i’s throughput is guaranteed to be fi from some moment
in time onwards. Hence, i cannot be in T because it is
impossible for i to better its throughput. We are left
with case that fi > ce. Observe that, in this case, if all
connections execute PIED, eventually i’s throughput
will be ce. However, in this case, too, it is impossible
for i to improve its throughput because it cannot pos-
sibly get a higher throughput than e’s capacity, and so
i /∈ T .

Now, consider the outcome reached after the devia-
tion from PIED. Observe that if i /∈ T , then i must
be running PIED, and so, after some time goes by, i is
guaranteed to obtain a throughput of exactly min{fi, ce},
which is the maximum feasible throughput for i no mat-
ter what the other connections do. PIED dictates that,
from that moment onwards, i’s transmission rate will
exactly equal its throughput, and so the network is ef-
fectively equivalent to a network from which i is re-
moved and all edge capacities along its route are up-
dated accordingly. We can now apply the same argu-
ments to show that the connection with the highest pri-
ority in the resulting network (that is, the connection
with the second-highest priority in the original network)
cannot be in T .

A repeated application of the above arguments shows
that no connection can be in T – a contradiction.

Theorem 4.5. For any network topology, if all routers
use Weighted Fair Queueing with coordinated weights,
then PIED is collusion-proof.

Proof. By contradiction, assume that there is a coali-
tion T (of size at least one) of manipulative connections
that can deviate from PIED and better the throughput
of each member in the coalition. We now prove that no
connection can be in T , thus reaching a contradiction.

Consider a connection i. Let α be the minimal value
of wi×ce

Σr∈K(e)
taken over all edges on i’s path. Observe that

if i’s maximal transmission rate fi is at most α, and all
connections are executing PIED, then i’s throughput
is guaranteed to be fi. This is because i’s (weighted)
fair share on each edge on its path is at least α. Be-

cause i can never obtain a thoughput that is higher than
its maximal transmission rate, we conclude that i /∈ T .
Now, consider the outcome reached after T ’s deviation
from PIED. Because i /∈ T it must be running PIED.
Observe that, the same arguments as before still imply
that i will eventually get a throughput of exactly fi. By
PIED, we know that i will then increase/decrease its
transmission rate so that it exactly matches its though-
put. From that moment onwards, the network is effec-
tively equivalent to a network in which i is removed,
and the edges’ capacities are updated accordingly. So,
from now on we can assume, without loss of generality,
that, when all connections are running PIED, every
connection gets a thoughput that is strictly bigger than
its maximal transmission rate.

Let e be the link in G for which the expression
ce

Σr∈K(e)wr
is minimized. Let β denote this value. For ev-

ery i ∈ K(e), WFQ guarantees that, regardless of what
the other connections do, i can obtain a fair share of at
least wi × β on each edge along its path. This implies
that every i ∈ K(e) that executes PIED is guaranteed
to get a throughput of at least wi×β. In addition, every
i ∈ K(e), that is also in T , is guaranteed (by the defini-
tion of T ) to get a thoughput that is strictly bigger than
wi × β. However, observe that Σi(wi × β) = ce. This
implies that no i ∈ K(e) can be in T (for otherwise the
capacity of e would be exceeded). Now, if all connec-
tions in K(e) are not in T if follows that they are exe-
cuting PIED. Therefore, each i ∈ K(e) will eventually
achieve a throughput of wi ·β, and increase/decrease its
transmission rate until it exactly equals its throughput.
We conclude that after some time goes by, the network
is effectively equivalent to a network without connec-
tion i, and in which the capacities of the edges on i’s
path are updates accordingly.

A repeated application of the above arguments shows
that no connection can be in T – a contradiction.

5. RELATED WORK
Over the past decade there has been much interest

in the computer science community in the application
of game theoretic concepts to computational environ-
ments. Nisan and Ronen [22] initiated the study of
incentive-compatible computational protocols. Incentive-
compatibility has been extensively studied in the con-
text of interdomain routing [4, 6, 13, 19]. In contrast,
to the best of our knowledge, this issue has received
little, if any, attention in the context of congestion con-
trol. Other game theoretic aspects of congestion control
have been studied: The price of anarchy [18] induced
by selfish end-host behavior was examined in [1], where
the degraded performance of the network in Nash equi-
libria, compared with the offline optimal solution, was
quantified. There has also been much work on fairness
in congestion control [2, 24]. Unlike these works, we
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are not concerned with the “quality” of the outcome
reached by congestion control dynamics, but in guaran-
teeing that compliant behavior in the convergence pro-
cess itself be in the best interest of each connection.
Our work thus falls within the framework of distributed
algorithmic mechanism design [5, 4, 7, 22].

A long line of research has studied the dynamic prop-
erties of congestion control protocols, including [3, 8, 9,
10, 12, 14, 16, 15, 17, 21, 20, 25]. The majority of these
study the case of a single congested router with mul-
tiple flows, or of multiple congested gateways, with no
cycles and hence no feedback effects [8, 3]. The topology
in [17] has a cycle and hence can demonstrate feedback.
The authors of [17] solved numerically for a fixed point
but did not analyze theoretically the existence of such
a point, or convergence to it.

We are unaware of any work analyzing the case of con-
vergence due solely to interactions between the routers
or switches themselves, with fixed-rate senders.

6. CONCLUSION
This paper developed a partial characterization of

when congestion control schemes can guarantee con-
vergence, incentive compatibility, and efficiency, leaving
several directions for future work.

An apparently nontrivial problem which we leave open
is to determine whether FIFO Queueing converges in
the general case. It would also be interesting to study
other queueing policies such as Fair Random Early
Drop (FRED) [23].

While we have given sufficient conditions and nec-
essary conditions for incentive compatibility and effi-
ciency, they are not tight. A very interesting direction
would be to derive conditions that are both sufficient
and necessary, or at least to narrow the gap between the
two sides. It would also be interesting to see whether in
doing so, qualitative differences in convergence remain
related to incentive compatibility, as we have demon-
strated in the difference between local queueing policies
(which can converge only asymptotically and cannot
guarantee both incentive compatibility and efficiency)
and WFQ and SPQ (which converge exactly and can
guarantee both properties).

Finally, the incentive compatibility and efficiency of
PIED protocols indicates that architecting the network
for selfish behavior permits simpler end-host protocols
(compared with TCP). While we believe this is a promis-
ing direction, more work is necessary to evaluate these
protocols in realistic scenarios.
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APPENDIX
A. PROOF OF THEOREM 3.4

Proof. First, notice that if there is no directed cy-
cle in the dependencies graph, then Gd induces a partial
order over the nodes, and every flow on every edge sta-
bilizes immediately after all of its predecessors in this
order have stabilized. Naturally, the first nodes in this
partial order are stable by definition since they are de-
termined by the (constant) influx of each connection
into the network.

Now, if there is a unique cycle in Gd, then any node
that is not part of the cycle belongs to one of two groups:
nodes that can be reached from the cycle and thus come
”after” the cycle, and nodes that come ”before” the
cycle, and cannot be reached from the cycle.

The nodes that are before the cycle form a directed
acyclic graph and all their dependencies are also nodes
that come before the cycle. Therefore, from some point
on, these values f i

e before the cycle will converge.
For the rest of the proof, we shall consider any ver-

tex in Gd that is not in the cycle but has a directed
edge into the cycle as if it is constant (i.e., its value has
converged).

The nodes after the cycle do not influence the conver-
gence of the cycle itself (since the cycle is unique and
there are no more feedback loops), and so we will not
consider them in the next part of the proof that con-
cerns the convergence of the feedback cycle itself. Once
the cycle converges, nodes after the cycle converge as
well. They form a directed acyclic graph that has de-
pendencies only in the cycle itself, and in the set of
nodes before the cycle (both of which have converged
at this point).

Let ~f = (f i
e)i,e denote some flow configuration for the

entire network, and let ~f∗ = (f i∗
e )i,e be another such

configuration. We define the distance between these
two configurations to be:

d(~f, ~f∗) = max
i,e

|f i
e − f i∗

e |

Our goal will be to show that for any fair activation
sequence of the edges, from some point on, the distance
between ~f and ~f∗ approaches 0. This will immediately
imply that any flow ~f approaches the constant fixed

point flow ~f∗ (the proof is correct for any pair of flows).
We shall treat all nodes leading into the cycle as con-
stant, while all nodes reachable from the cycle (that do
not belong to it) will be ignored for now.

let us observe two consecutive vertices in the cycle:
f i

e1 → f j
e2. The next lemma shows that an update of

the second vertex will usually have a smaller distance
than the pervious edge.

Lemma A.1. Let ~f, ~f∗ be two flow states in the net-
work. If the network topology contains only a single
cycle, then for any two consecutive nodes on the cycle
in Gd, f i

e1, f
j
e2, after node f j

e2 is updated:

• If the nodes are both from the same flow, and the
edge e2 is un-congested: |f j

e2 − f j∗
e2 | = |f i

e1 − f i∗
e1|

• Otherwise, |f j
e2 − f j∗

e2 | < γ · |f i
e1 − f i∗

e1| for some
0 < γ < 1

Proof of lemma. To abbreviate, we shall denote
the two vertices f i

e1, f
j
e2 by f1, f2 correspondingly. There

are two cases:

CASE I: i 6= j and the vertices belong to different
flows. We denote by fp the predecessor node of f2 that
does belong to the same flow, and by k the sum of all
other flows that affect f2 directly. Note that both fp

and k are constants and do not change between ~f and
~f∗

• if both f and f∗ are congested:

|f2 − f∗2 | =
∣∣∣∣

fp

f1 + fp + k
· c− fp

f∗1 + fp + k
· c

∣∣∣∣ =

=
c

(f1 + fp + k) · (f∗1 + fp + k)
· |fp · f∗1 − fp · f1| =

=
c

f1 + fp + k
· fp

f∗1 + fp + k
· |f∗1 − f1| <

< |f∗1 − f1|

• if only one of the two flows is congested (w.l.o.g.
this flow is ~f) then f∗2 = fp and:

|f2 − f∗2 | =
∣∣∣∣

fp

f1 + fp + k
· c− fp

∣∣∣∣ =

=

∣∣∣∣∣
fp · c− f2

p − fp · f1 − fp · k
f1 + fp + k

∣∣∣∣∣ =

=
fp

f1 + fp + k
· |c− fp − f1 − k| <

< |c− fp − f1 − k|
However, because one flow is congested and the
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other is not we have:

f∗1 ≤ c− fp − k < f1

which now implies:

|f2 − f∗2 | < |f1 − c + fp + k| = f1 − c + fp + k ≤

≤ f1 − f∗1 = |f1 − f∗1 |
• if both flows are un-congested then f2 = f∗2 = fp

and so

|f2 − f∗2 | = 0 ≤ |f1 − f∗1 |

CASE II: i = j. I.e., the vertices belong to the same
connection. Again, we denote f i

e1, f
j
e2 by f1, f2 to ab-

breviate, and also let us denote by k, the sum of all
other flows (besides f1) that directly affect f2. Once
again, let us observe the following subcases:

• both flows are congested.

|f2 − f∗2 | =
∣∣∣∣

f1

f1 + k
· c− f∗1

f∗1 + k
· c

∣∣∣∣ =

=
c

(f1 + k)(f∗1 + k)
· |f1 · k − f∗1 · k| =

c

f1 + k
· k

f∗1 + k
· |f1 − f∗1 | < |f1 − f∗1 |

• only one flow is congested (w.l.o.g this flow is ~f).

|f2 − f∗2 | =
∣∣∣∣

f1

f1 + k
· c− f∗1

∣∣∣∣
Now notice that because one flow is congested and
the other is not we have:

f1 + k > c ; f∗1 + k ≤ c

from this we can derive:
f1 > f∗1 and c− f∗1 > k which gives:

(c− f∗1 ) · f1 > k · f∗1 → f1 · c > f∗1 · f1 + k · f∗1 →

f1

f1 + k
· c > f∗1

And so we have:
|f2 − f∗2 | =

∣∣∣∣
f1

f1 + k
· c− f∗1

∣∣∣∣ =
f1

f1 + k
· c− f∗1 <

< f1 − f∗1 = |f1 − f∗1 |

• both flows are un-congested. In this case, f2 = f1

and f∗2 = f∗1 , and so we have:

|f2 − f∗2 | = |f1 − f∗1 |
Notice that this is the only case in which a strict

inequality was not achieved.

At every one of the in-equalities we are in fact able to
get an upper bound on the error of the form |f2−f∗2 | <
γ · |f1 − f∗1 | for some < 0γ < 1. This requires bounding
terms a bit more carefully than what was done in the
proof above. The main idea is that from some point
in time and onwards, all flows on all edges are strictly
greater than zero, and can be bounded from below. This
implies that terms such as k

f∗1 +k can be bounded from
above by γ.

Given Lemma A.1, we can see that the maximal dis-
tance between the two flows over the cycle in Gd never
increases. In fact, because each flow on its own does
not contain loops, it is impossible that all edges in the
cycle are between vertices from the same connection,
and for some edge in the cycle the difference between
the flows must strictly decrease. After this edge is acti-
vated, the reduced distance propagates along the cycle,
until it loops back. During the next activation of that
edge, the distance will be decreased even further.
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