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Abstract

The Combinatorial Public Projects Problem
(CPPP) is an abstraction of resource allocation
problems in which agents have preferences over al-
ternatives, and an outcome that is to be collectively
shared by the agents is chosen so as to maximize
the social welfare. We explore CPPP from both a
computational perspective and a mechanism design
perspective. We examine CPPP in the hierarchy
of complement-free (subadditive) valuation classes
and present positive and negative results for both
unrestricted and truthful computation.

1 Introduction

The Combinatorial Public Project Problem (CPPP),
introduced in [13], is an abstraction of resource allo-
cation environments in which an outcome, designated
to be collectively shared by a group of agents, is cho-
sen so as to maximize the agents’ social welfare. An
instance of CPPP consists of n agents, m resources,
a valuation function vi : 2[m] → R≥0 for each agent
i, and an integer k ∈ [m]. The goal is to choose a
set S of k resources for which the total social welfare
Σivi(S) is maximized. CPPP captures committee
elections, network design, etc. (see [13, 16]).

Exploring the boundary of tractability in CPPP
is a natural question from a computational perspec-
tive. Furthermore, this boundary plays a crucial
role in algorithmic mechanism design [12]: for so-
cial welfare maximization problems, such as CPPP,
computational tractability implies computationally-
efficient truthful implementation via the celebrated
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VCG mechanisms. Intractability, on the other hand,
can make truthful implementations with good ap-
proximation ratios impossible to obtain. This was
recently demonstrated in [13], where it was shown
for the first time, in the context of CPPP with sub-
modular agents, that even if constant approximation
ratios are achievable if one only cares about com-
putational efficiency or truthfulness, combining both
desiderata can lead to non-constant lower bounds.

Our aim here is to enable a computational and
mechanism design understanding of CPPP. For un-
restricted agent valuations, CPPP is known to be
NP-hard to approximate well [16]. Hence, seeking
interesting special cases of CPPP for which reason-
able approximation ratios are attainable is natural.
We consider the case where agents’ valuations are
complement-free, i.e., cases in which agents’ valu-
ations are subadditive set functions. The class of
complement-free, or subadditive, valuations encap-
sulates a rich hierarchy of valuation functions [9, 11]
(see Fig. 1.1), that has been the focal point of the
study of approximability in combinatorial auctions
(see, e.g., [2, 5, 6, 9, 17]).

In our study of the computational feasibility of
CPPP, we search for two thresholds:

1. the point in the complement-free hierarchy of
agents’ valuations at which CPPP ceases to be
tractable, and hence, for which computationally-
efficient truthful implementation is no longer
achievable via VCG mechanisms;

2. the point at which CPPP ceases to be approx-
imable within a constant factor (i.e., not in
APX), and so CPPP cannot be well approxi-
mated even from a purely computational per-
spective (disregarding incentives).

In our study of incentives in CPPP, we focus both
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Figure 1.1: The Complement-Free Hierarchy

on general truthful mechanisms and on the broad
class of “VCG-based”, or “maximal-in-range”, mech-
anisms, that have received much attention in algo-
rithmic mechanism design recently (see [3, 2, 8, 13]).

CPPP is closely related to combinatorial auctions,
that have gained the status of the paradigmatic prob-
lem in algorithmic mechanism design, and have been
extensively studied across the computer science, mi-
croeconomics and operations research disciplines over
past decades. To date, despite much research, big
questions regarding the interplay between computa-
tion and truthfulness in combinatorial auctions, and
in general, remain wide open. We believe that CPPP
is a more suitable arena for exploring the fundamen-
tal connections between computation and truthful-
ness. Indeed, the advances in [13] and [7], and our
results here, demonstrate the amenability of CPPP
to an algorithmic mechanism design examination.

1.1 Our Results

We now briefly and informally survey our main re-
sults and their implications:

Is CPPP tractable? For CPPP with n agents,
we show that even for the lowest (most restricted)
class of valuations in the complement-free hierarchy,
finding an optimal outcome is NP-hard. Specifically,
CPPP is hard even for “unit-demand” valuations,

in which every agent is only interested in getting a
single resource. Moreover, going up just one step
higher in the hierarchy, CPPP becomes hard even
for a constant number of agents.

On the positive side, we present an optimal (and
truthful via VCG payments) algorithm for an inter-
esting special case of CPPP.

Is CPPP approximable? Our main inapproxima-
bility result is the following: We consider the class of
fractionally-subadditive valuations, that is contained
in the class of complement-free/subadditive valua-
tions [5, 11]. We show that, unlike the case of CPPP
with submodular valuations [13], for fractionally-
subadditive valuations, no constant approximation
ratio is achievable (unless P is in quasi-NP). Our re-
sult is nearly tight [16], answers an open question
from [16], and is the first non-constant computational
complexity lower bound for this class (and for subad-
ditive valuations in general).

We present many other positive and negative ap-
proximability results: We show that the 1 − 1

e ap-
proximation ratio for CPPP with submodular valu-
ations [13] is tight even for the class of unit-demand
valuations. In contrast, we present improved ratios
for well-studied subclasses of submodular valuations.

Truthful mechanisms for CPPP. We present
both algorithmic and hardness results for truthful
computation. In particular, we present an inapprox-
imability result for truthful mechanisms for CPPP
that both strengthens and greatly simplifies the re-
sult in [13]. Surprisingly, our result holds even for the
case of a single agent, thus raising intriguing question
in algorithmic mechanism design. We also present a
truthful constant-approximation mechanisms for in-
teresting special cases of CPPP.

Finally, we present several inapproximability re-
sults for the class of “VCG-based”, or “maximal-in-
range”, truthful mechanisms. In particular, we show
that no constant approximation ratio is achievable for
such mechanisms even for CPPP with unit demand
valuations. Interestingly, we show that there exists
a constant-factor approximation truthful mechanism
for the same environment, thus establishing a gap be-
tween VCG-based and general truthful mechanisms.

Our results are summarized in the tables below
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(Fig. 1.2 and 1.3, which also suggest interesting di-
rections for future research).

1.2 Organization of the Paper

Each of the sections 2-6 focuses on exactly one
class in the complement-free hierarchy. In Sec. 2
we present our results for unit-demand valuations.
Sec. 3, 4, 5 and 6, deal with multi-unit-demand val-
uations, capped additive valuations, coverage valu-
ations, and fractionally-subadditive valuations, re-
spectively. We conclude and discuss our results in
Sec. 7. Proofs of results that do not appear in the
main body of the paper can be found in the appendix.

2 Unit-Demand: Hardness and
Truthfulness

Unit-demand valuations. The simple class of unit
demand valuations, in which every agent is only inter-
ested in getting a single resource, constitutes the low-
est level of the complement-free hierarchy (see [9, 11],
where unit-demand valuations are termed “XS”).

Definition 2.1 (unit-demand valuations). A valua-
tion function v is a unit demand valuation if v(S) =
maxi∈S v({i}), for every S ⊆ [m]. Such a valuation is
represented by a list of the m values v({j}), j ∈ [m].

Our results in this section shall be proven for an
even more restrictive class of valuations: unit de-
mand valuation such that v({i}) ∈ {0, 1} for each
resource i, and each agent has a value of 1 for at
most 2 resources. We shall refer to this subclass of
unit-demand valuations as “2-{0,1}-unit-demand”.

Intractability. The following shows that CPPP is
hard even with 2-{0,1}-unit-demand valuations:

Theorem 2.1. CPPP with n unit-demand valua-
tions is NP-hard to solve optimally.

Theorem 2.2. No algorithm for CPPP with n unit-
demand valuations has an approximation ratio of 1−
1
e + ε unless P=NP (for any constant ε > 0).

We note that the above hardness of approximation
result is tight (a simple greedy algorithm obtains an

approximation ratio of exactly 1− 1
e ). Observe that if

there is only a constant number c of agents, one need
only consider

(
m

min(c,k)

)
∈ poly(m) sets of resources in

order to find one which maximizes the social welfare,
and hence CPPP with a constant number of unit-
demand agents can be solved in polynomial time.

VCG-based mechanisms. We next consider the
class of VCG-based, or maximal-in-range (MIR),
mechanisms. Informally, MIR mechanisms output,
for each possible input, the optimal outcome within
a fixed set of outcomes. That is, a MIR mechanismM
has fixed collection R of possible outcomes (subsets
of resources of size k) and, for each n-tuple of agents’
valuations (v1, . . . , vn), chooses a subset r ∈ R that
maximizes the social welfare Σivi over R. The col-
lection R is called “M ’s range”.

In [16], a computationally-efficient 1√
m

-
approximation MIR mechanism for CPPP with
subadditive valuations is presented. We show that
this approximation ratio is tight for MIR mechanisms
even for 2-{0,1}-unit-demand valuations.

Theorem 2.3. No computationally-efficient MIR
mechanism can approximate CPPP with n 2-{0,1}-
unit-demand valuations within m−( 1

2−ε) (for any con-
stant ε > 0) unless NP ⊂ P/poly.

General truthful mechanisms. Theorem 2.3
shows that no constant-approximation MIR mecha-
nisms exist even for CPPP with 2-{0,1}-unit-demand
valuations. In contrast, we present a simple 1

2 -
approximation non-MIR truthful mechanism for 2-
{0,1}-unit-demand valuations, thus establishing a
large gap between what is achievable via MIR and
general truthful mechanisms.

Theorem 2.4. There exists a computationally-
efficient and truthful mechanism for CPPP with 2-
{0,1}-unit-demand valuations that has an approxima-
tion ratio of 1

2 .

3 Multi-Unit-Demand: Opti-
mal Mechanism for 2 Agents

Multi-unit-demand valuations. Multi-unit-
demand valuations (termed “OXS” in [9, 11]) are a
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valuation class no. of agents appx. ratio r

unit-demand constant r = 1
n r = 1− 1

e [New]

multi-unit-demand

1, 2 r = 1 [New]
3 2/3 [New] ≤ r < 1 [New]
≥ 4 1− 1

e [10] ≤ r < 1 [New]
≥ 10 1− 1

e [10] ≤ r < 1− ε (FPTAS)[New]
n r = 1− 1

e [New]

capped additive
1 r = 1

constant ≥ 2 r = 1− ε (FPTAS) [New]
n r = 1− 1

e [New]

fractionally-subadditive constant r = 1

n max{ 1
n ,

1√
m
} [16] ≤ r ≤ 2−

log1−γ n
6 [New]

Figure 1.2: Computational Results

valuation class no. of agents Truthful appx. ratio r VCG-based appx. ratio r
2-{0,1} unit-demand n 1/2 ≤ r < 1 [New]

r = 1√
m

[New]

unit-demand n ?

multi-unit-demand 3 2/3 ≤ r < 1 [New]
n ?

capped-additive ≥ 2 ?
coverage 1 r = 1√

m
[New]

fractionally-subadditive n ?

Figure 1.3: Truthful Mechanism Results. Question marks indicate that the only bounds known are a 1√
m

lower bound based on the VCG-based mechanism in [16] and a purely computational upper-bound.

generalization of unit-demand valuations.

Definition 3.1 (multi-unit-demand). A valuation
function v is a multi-unit-demand valuation if there
exist unit demand valuations {v1, . . . , vw} such that,
for every S ⊆ [m],

v(S) = max
P={P 1,...,Pw}

∑
r∈[w]

vr(P r)

where the maximum is taken over all w-partitions
P = {P 1, . . . , Pw} of S. Such a valuation agent is
represented by a list of the w unit demand valuations.

How hard is CPPP with multi-unit-demand
valuations? Unit-demand valuations are a subclass

of multi-unit-demand valuations, and so our nega-
tive results in Sec. 2 for CPPP with n agents ex-
tend to multi-unit-demand valuations. What about
a constant number of agents? One can easily show
that CPPP with a single multi-unit-demand val-
uation is optimally solvable in a computationally-
efficient manner using maximum matching on a bi-
partite graph. Below, we shall prove that CPPP with
2 multi-unit-demand valuations is tractable. We now
present the following hardness result for CPPP with
3 multi-unit-demand valuations:

Theorem 3.1. CPPP with 3 multi-unit-demand
valuations is NP-hard to solve optimally.

Theorem 3.1 leaves open the possibility of a PTAS
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for any constant number of agents. We rule out this
possibility by presenting a hardness of approximation
result for 10 (or more) agents.

Theorem 3.2. There exists a positive constant ε
such that it is NP-hard to approximate the social wel-
fare in CPPP with 10 multi-unit-demand valuations
within a ratio of 1− ε.

Optimal mechanism for CPPP with 2 agents.
We now show CPPP with 2 multi-unit-demand valu-
ations can be optimally solved in a computationally-
efficient manner via minimum cost matching. Thus,
the use of VCG payments implies the existence of an
optimal truthful mechanism.

Theorem 3.3. There exists an optimal
computationally-efficient and truthful mechanism for
CPPP with 2 multi-unit-demand valuations.

Our mechanism uses minimum cost flow, for which
integral solutions can be found in polynomial time
[14]. Minimum cost flow is similar to network flow,
except that each edge has a cost and the goal is to
find a flow of value f with minimum total edge cost.
We now formally describe the mechanism:

Input: an instance of CPPP with two agents 1, 2,
where each agent i has a multi-unit-demand valuation
vi such that each vi is composed of wi unit-demand
valuations v1

i , . . . , v
wi
i (see Def. 3.1).

The mechanism:

1. Step I: add “dummy” unit-demand valua-
tions (that equal 0 for all subsets of resources)
if necessary to ensure that w1 = w2 = w ≥ k.

2. Step II: create a minimum-cost flow net-
work (see Fig. 3.1). In addition to the source
and target nodes s and t, the network contains
node pi,r corresponding to agent i’s rth unit-
demand valuation vri , and two nodes q1,j and
q2,j for each resource j ∈ [m]. The edge set con-
tains an edge from s to each node p1,j , and an
edge from each node p2,j to t. In addition, for
each j ∈ [m], create an edge from q1,j to q2,j .
Set the cost of each of these edges to be 1.

Let vmax be a positive real value that is strictly
higher than both agents’ values for each single

p1,1

p1,2

s t

q1,1

q1,2

q1,3

q2,1

q2,2

q2,3

p2,1

p2,2

Figure 3.1: example of minimum-cost flow network
construction for w = 2 and m = 3.

resource (say, vmax = maxi∈[2],j∈[m] vi({j}) + 1).
Create, for each j ∈ [m], r ∈ [t], an edge from
p1,r to q1,j of cost vmax − vr1({j}) and an edge
from q2,j to p2,r of cost vmax−vr2({j}). (Observe
that all costs are positive integers.)

Set the capacities of all edges to be 1.

3. Step III: compute a minimum-cost flow f
with flow value k and integer flow along each
edge (i.e., the flow along each edge is in {0, 1}).

4. Step IV: set S to be the subset of [m] such
that j ∈ S iff the flow in f along the edge
from q1,j to q2,j is positive. Observe that
the k units of flow in f emanating from s must
traverse exactly k edges of the form (q1,j , q2,j),
and hence |S| = k.

5. Step V: output the set of resources S
and the VCG payments. The VCG payment
for agent 1 can be easily calculated by repeat-
ing Steps I through IV with v1 set to 0 to ar-
rive at a set T , which results in a payment of
v2(T )− v2(S). The payment for agent 2 can be
found by reversing the roles of the agents.

Clearly, the mechanism is computationally efficient
(recall that the computation of minimum-cost flow
is tractable [14]). We are left with showing that
the mechanism outputs the social-welfare maximiz-
ing subset of resources (the truthfulness of the mech-
anism then immediately follows from the VCG pay-
ment scheme).

Lemma 3.4. The mechanism for CPPP with 2
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multi-unit-demand valuations outputs a subset of re-
sources of size k that maximizes the social welfare.

Proof. Observe that the k units of flow in f ema-
nating from s, and the k units of flow going into t
traverse edges that have a total cost of 2k, and that
the k units of flow along the edges from q1,j nodes to
q2,j nodes traverse edges that have a total cost of k.
Hence, the total cost of these edges is 3k regardless
of how the flow f is achieved.

Consider j ∈ S (computed in Step IV of the mech-
anism). Observe that because there is 1 unit of flow
traversing the edge (q1,j , q2,j), there must be exactly
one incoming edge leading to node q1,j , and exactly
one outgoing edge leaving node q1,j , on which the
flow in f is 1. Consider a specific edge (q1,j , q2,j) and
let (p1,r, q1,j) and (q2,j , p2,r′) be the edges through
which the flow in f equals 1. Observe that the total
cost of these two edges is 2vmax− vr1({j})− vr′2 ({j}).
We define c : S → Z+ to be the function that maps
each j ∈ S to the total cost of the incoming and out-
going edges to q1,j and q2,j (not including the edge
between them).

Now, for some pair of partitions of S P1 =
(P 1

1 , . . . , P
w
1 ) and P2 = (P 1

2 , . . . , P
w
2 ),

∑
j∈S

c(j) = 2kvmax −
w∑
r=1

vr1(P r1 )−
w∑
r=1

vr2(P r2 )

≥ 2kvmax − max
P=(P 1,...Pw)

w∑
r=1

vr1(P r)

− max
P=(P 1,...,Pw)

w∑
r=1

vr2(P r)

= 2kvmax − v1(S)− v2(S)

(the maxima in the above equations are taken over
w-partitions of S)

Therefore, the total cost of flow f (including the
edges leaving s, the edges entering t and the edges
leading from the q1,j ’s to the q2,j ’s) is at least
2kvmax + 3k minus the social welfare of the set S.
This lower bound is tight, as choosing the set maxi-
mizing the social welfare and the incoming and out-
going flows that correspond to the unit-demand valu-
ations that maximize each vi guarantees a total cost

of exactly 2kvmax + 3k minus the maximum social
welfare. Hence, the computation of the k-flow of
minimum cost determines the value of the social-
welfare maximizing outcome, and the set S produced
achieves this maximum.

Note that we can use this mechanism in a random-
ized fashion with 3 or more agents by selecting 2 of
the agents uniformly at random, then running the
mechanism on them.

Corollary 3.5. There is a randomized, universally
truthful mechanism for CPPP with 3 multi-unit-
demand agent that achieves a 2/3 approximation of
the social welfare in expectation.

VCG-based mechanisms. Theorem 3.3 shows
that there exists a computationally-efficient VCG
mechanism for CPPP with 2 multi-unit-demand val-
uations. In contrast, we prove the following hardness
of approximation result for CPPP with 3 or more
multi-unit-demand valuations.

Theorem 3.6. No computationally-efficient MIR
mechanism can approximate CPPP with 3 multi-
unit-demand valuations within m−( 1

2−ε) (for any con-
stant ε > 0) unless NP ⊂ P/poly.

4 FPTAS for CPPP With
Capped Additive Valuations

Capped additive valuations. Intuitively, a
capped additive valuation is a valuation function that
is additive (the value for each bundle of resources is
the additive sum of the per-resource values) but can-
not exceed some threshold.

Definition 4.1 (additive valuations). A valuation
function v is additive (linear) if v(S) = Σj∈S v({j}
for every S ⊆ [m]. Such a valuation is represented
by a list of the m values v({j}), j ∈ [m].

Definition 4.2 (capped additive valuations). A val-
uation function v is a capped additive valuation
if there exists an additive valuation a, and a real
value B > 0, such that, for each S ⊆ [m], v(S) =
min{a(S), B}. Such a valuation is represented by
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the budget value b, followed by a list of the m val-
ues v({i}), i ∈ [m].

NP-hardness and an FPTAS. 2-{0,1}-unit-
demand valuations are a subclass of capped additive
valuations (where B = 1), and so our negative results
in Sec. 2 for CPPP with n agents extend to capped
additive valuations. What about a constant number
of agents? Observe that finding the optimal outcome
for a single agent is trivially in P (simply take the
k most valued resources). We now show that, even
with 2 agents, this is no longer the case.

Theorem 4.1. CPPP with 2 capped additive valua-
tions is NP-hard.

However, using dynamic programming we obtain
an FPTAS for any constant number of agents.

Theorem 4.2. There exists an FPTAS for CPPP
with a constant number of capped additive valuations.

VCG-based mechanisms. We now show that MIR
mechanisms cannot obtain constant approximation
ratios even for CPPP with 2 capped additive valua-
tions.

Theorem 4.3. No computationally-efficient MIR
mechanism can approximate CPPP with 2 capped ad-
ditive valuations within m−( 1

2−ε) (for any constant
ε > 0) unless NP ⊂ P/poly.

5 Coverage: Truthfulness With
One Agent is Hard!

Coverage valuations. Intuitively, in a coverage val-
uation each resource represents a set of elements in
some universe U , and the value of each set of re-
sources S ⊆ [m] equals the cardinality of the subset
of U that is covered by its resources (that is, by the
subsets of U represented by the resources in S).

Definition 5.1 (coverage valuations). A valuation
function v is a coverage valuation if there exists a
universe of elements U , subsets S1, . . . , Sm ⊆ U , and
a real number α > 0 such that v(S) = α|

⋃
j∈S Sj |,

for every S ⊆ [m]. Such a valuation is represented
by a list of the m sets S1, . . . , Sm.

The hardness of being truthful with a single
agent. [13] shows that no computationally-efficient
and truthful mechanism for CPPP with 2 submodu-
lar valuations can obtain an approximation ratio bet-
ter than 1√

m
(while a constant non-truthful approxi-

mation exists). [16] proves the tightness of this result
in [13] by presenting a 1√

m
-approximation mechanism

that is both computationally-efficient and truthful.
One might suspect that the hardness of truthful

computation in [13] stems from the conflict of inter-
ests between the two agents. When there is only one
agent, the interests of the mechanism designer and
the single agent are trivially aligned; both strive to
better the agent’s outcome (that is also the total so-
cial welfare). We now give the first evidence that,
surprisingly, algorithmic mechanism design can be
non-trivial even in single-player environments. We
believe that this result raises intriguing questions in
algorithmic mechanism design regarding the “right”
solution concept for such environments.
Inapproximability result. We strengthen the re-
sult in [13] (which we prove for n = 1 and for coverage
valuations). Our proof greatly simplifies the long and
complicated proof in [13].

Theorem 5.1. No computationally-efficient and
truthful mechanism for CPPP with one coverage val-
uation has an approximation ratio within m−( 1

2−ε)

(for any constant ε > 0) unless NP ⊂ P/poly.

Sketch. We first present a simple characterization of
truthful mechanisms for CPPP with a single agent,
that can easily be generalized to hold for all 1-player
mechanism design environments. Our characteriza-
tion shows that every truthful mechanism is an affine
maximizer (see [15, 13]).

Lemma 5.2. If M is a truthful mechanism for
CPPP with a single agent 1, then there exists a col-
lection O of subsets of resources of size k, and a real
number wo ∈ R for each o ∈ O such that, for each val-
uation function v1 of agent 1, the outcome o(v1) ∈ O
that M outputs for v1 is in argmaxo∈O(v1(o)− wo).

Importantly, the proof of the above lemma is trivial
and does not follow in the footsteps of Roberts [15]
(as in all proofs of this genre, including that in [13]).
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Next, we show that, w.l.o.g., we can safely ignore
the outcome weights (the wo’s) and restrict our at-
tention to MIR mechanisms. We now use the con-
nections between MIR mechanisms and the VC di-
mension (pointed out in [13]) to prove the following
lemma (that concludes the proof of the theorem):

Lemma 5.3. No MIR mechanism for CPPP with
with one coverage valuation achieves an approxima-
tion ratio of at least m−( 1

2−ε) unless NP ⊆ P/poly.

6 Fractionally-Subadditive: In-
approximability Result

Fractionally-subadditive valuations. Intuitively,
a valuation is fractionally-subadditive (termed
“XOS” in [9, 11]) if it is the maximum of a collec-
tion of additive (linear) valuations (valuations where
the value of each set is simply the additive sum of the
per-resource values.

Definition 6.1 (fractionally subadditive). A valua-
tion function v is fractionally subadditive) if there
exist additive valuations {a1, . . . , at} s.t. v(S) =
maxj∈t vj(S). Such a valuation is represented by a
list of the t valuations vj , j ∈ [t].

Constant number of agents We show that CPPP
with a constant number of fractionally-subadditive
valuations allows for a polynomial time algorithm.

Theorem 6.1. CPPP with a constant number of
fractionally-subadditive valuations can be solved in
polynomial time.

Inapproximability result. We now give a re-
duction from LABEL-COVERmax to CPPP with
n fractionally-subadditive valuations which preserves
an approximation gap. First, we define LABEL-
COVERmax and discuss the complexity of its approx-
imation. A LABEL-COVERmax instance consists of
a regular bipartite graph G = (V1, V2, E), a set of
n labels N = {1, . . . , n} and for each edge e ∈ E a
partial function Πe : N → N . We say that the edge
e = {x, y} for x ∈ V1, y ∈ V2 is satisfied if x is labeled

with l1 and y with l2 such that Πe(l1) = l2. The
goal of LABEL-COVERmax is to find an assignment
of labels to the nodes in V1 and V2 such that each
node has exactly one label and as many edges as pos-
sible are satisfied. It was shown in [1] that LABEL-
COVERmax is quasi-NP-hard to approximate.

Theorem 6.2 ([1]). For any sufficiently small
constant γ > 0, it is quasi-NP-hard to distin-
guish between the following two cases in LABEL-
COVERmax: (1) YES case: all edges are covered,
and (2) NO case: at most a 2− log1−γ n fraction of the
edges are covered, where n is the size of the LABEL-
COVERmax instance.

We make use of Theorem 6.2 to show a sim-
ilar hardness result for CPPP with fractionally-
subadditive valuations.

Theorem 6.3. Obtaining an approximation ratio of
2

log1−γ b
6 for CPPP with fractionally-subadditive val-

uations where b is the size of the CPPP instance is
quasi-NP-hard.

Proof. We prove this using a gap-preserving reduc-
tion from LABEL-COVERmax: We are given an in-
stance of LABEL-COVERmax consisting of a graph
G = (V1, V2, E), a set of labels N and a set of partial
functions Πe for each e ∈ E. We create a CPPP
instance with |V1| agents, one corresponding to each
node in V1. The resource set is V2 ×N . We now de-
fine the fractionally-subadditive valuation vi of each
agent i. For every label l ∈ N , we define the additive
valuation function ai,l.

ai,l({(j, l′)}) =
{

1, {i, j} ∈ E and Π{i,j}(l) = l′

0, otherwise .

So ai,l(S) represents how many edges incident with i
are covered if we choose label l for vertex i ∈ V1 and
the best label from the set {l′ : (j, l′) ∈ S} for vertex
j ∈ V2.

The fractionally-subadditive valuation of agent i is
defined by

vi(S) = max
l∈N
{ai,l(S)}.

So agent i gets the value for the best possible choice
of a single label for vertex i given the label choices
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for V2 implied by S. We set the size of the set of
resources to be chosen in our CPPP instance to be
|V2|.

If the LABEL-COVERmax instance is a YES case,
we can find a set of resources with social welfare |E|.
Simply take any labeling that covers every edge and
for every j ∈ V2, choose the resource (j, l′), where j is
labeled by l′ in the labeling. Call this set S. Clearly,
vi(S) equals the degree of node i, as if we choose l
such that i is labeled by l, Π{i,j}(l) = l′ for each
(j, l′) ∈ S. So the social welfare given these resources
is |E|.

We now show that if the LABEL-COVERmax in-
stance is a NO case, the maximum social welfare
is bounded by 2−

log1−γ n
6 |E| for sufficiently large n.

Note that if n′ is the size of the LABEL-COVERmax

instance, our construction guarantees n ≤ (n′)2. So
our bound is at least

2−
log1−γ [(n′)2]

6 |E| ≥ 4 · 2−
log1−γ n′

3 |E|

for sufficiently large n′. In order to simplify our ex-
pressions in the rest of the proof, let α = 2−

log1−γ n
6 .

Using the above bound, we see

α ≥ 4 · 2−
log1−γ n′

3 . (1)

Suppose by way of contradiction that we reduced
from a NO case, but the maximum social welfare is
at least α|E|.

Let S be a set of resources in the CPPP instance
with a social welfare of at least α|E|. Recall also
that each agent i’s fractionally-subadditive valuation
vi is defined as the pointwise maximum over a set of
additive valuations. Let ai,l be the additive valuation
in the set of valuations making up vi for which ai,l(S)
is maximized (and so vi(S) = ai,l(S)). If we fix a
choice of j, ai,l assigns a value of 1 to at most one
of the resources (j, l′) for l′ ∈ N . Moreover, ai,l can
only assign value to a resource (j, l′) if {i, j} ∈ E. We
say that an edge between vertex i ∈ V1 and vertex
j ∈ V2 is satisfied by the set S if (j,Π{i,j}(l)) ∈ S.
Observe that the total social welfare value of S equals
the number of edges satisfied by S.

Let d be the number of incoming edges of a vertex
in V2. Since G is a regular bipartite graph, d = |E|

|V2| .

Let V ′2 denote all vertices v ∈ V2 in which the number
of edges incident on v satisfied by S is at least α

2 d. A
counting argument shows that |V ′2 | ≥ α

2 |V2|. If |V ′2 |
were less than α

2 |V2|, the number of satisfied edges
incident upon vertices in V ′2 is at most |V ′2 |d < α

2 |E|,
and the number of satisfied edges incident upon ver-
tices outside of V2 would be less than |V2|α2 d = α

2 |E|.
So summing these, we would see that the number of
satisfied edges is less than α|E|, a contradiction. So
|V ′2 | ≥ α

2 |V2|.
If S contains ` resources of the form (j, l) for a fixed

j and ` different values l ∈ N , we say that j is labeled
` times by S. Since there are |S| = |V2| resources, at
most α

4 |V2| of the nodes j ∈ V2 are labeled more than
4
α times by S. So letting V ′′2 be the subset of V ′2 which
is labeled at most 4

α times by S, |V ′′2 | ≥ α
4 |V2|.

Since S labels each j ∈ V ′′2 at most 4
α times, and S

satisfies at least α
2 d edges incident upon each vertex

in V ′′2 , we can find a single sj ∈ S that satisfies at
least α/2

4/αd = α2

8 d of the edges incident upon j. So if
we label each j ∈ V ′′2 according to Sj and label each
i ∈ V1 by the l such that vi(S) = ai,l(S), we have a
labeling that satisfies at least |V ′′2 |α

2

8 d = α3

32 |E| edges,
regardless of how the vertices in V2−V ′′2 are labeled.
This contradicts that we had a NO case, as we can
see by (1) that α3

32 |E| > 2− log1−γ n′ |E|.
Thus, we see that the maximum social welfare of

our CPPP is at least |E| if we reduced from a YES
case and at most α|E| if we reduced from the NO
case. Therefore it is quasi-NP-hard to achieve an
approximation ratio of α = 2−

log1−γ n
6 .

7 Discussion and Open Ques-
tions

In our exploration of CPPP we have presented pos-
itive and negative results for truthful and unre-
stricted computation. Our results highlight inter-
esting phenomena in algorithmic mechanism design,
and improve our understanding of the tractability-
intractability boundary for this natural computa-
tional and economic environment.

The focus in algorithmic mechanism design is on
the tension between computation and truthfulness.
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Our results for CPPP identify extremely simple com-
binatorial environments where the two desiderata
clash, and that are therefore a natural arena for the
investigation of the complex interplay between com-
putational efficiency and incentive compatibility.

We leave many important questions wide open.
We still lack a good understanding of the power
of computationally-efficient and truthful mechanisms
for CPPP (see Fig. 1.3), and leave bridging the
approxmability gaps between the upper and lower
bounds in Fig. 1.2 as an open question.
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A Unit-Demand Valuations

We show that approximating the social welfare of
a combinatorial public project with n unit-demand
agents to a factor of 1 − 1/e + ε is NP-hard for any
ε > 0 with a reduction from MAX-t-COVER.
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Definition A.1 (MAX-t-COVER). MAX-t-COVER
takes as input a collection of subsets F of a set A and
an integer t. The goal is to find t sets in F which have
a union of maximum cardinality.

It was shown in [4] that MAX-t-COVER cannot be
approximated to within 1− 1/e+ ε for any constant
ε > 0 unless P = NP .

Theorem A.1. For any constant ε > 0, is NP-hard
to approximate the social welfare of CPPP with n
unit-demand agents to within 1− 1/e+ ε.

Proof. We will now show an approximation pre-
serving reduction from MAX-t-COVER. Consider
a MAX-t-COVER instance over set A with F =
{S1, . . . , S`} and number of sets to be chosen t. We
create a CPPP instance with resource set F and |A|
agents, one corresponding to each element of A. The
agent corresponding to element a values each item
Si ∈ F as

va(Si) =
{

1, a ∈ Si
0, otherwise .

So the value for agent a is 1 if a is covered by the
chosen set and 0 otherwise. Thus, the social welfare
is number of covered items, or the cardinality of the
union of the chosen sets. By setting the number of
resources allowed to be chosen to k = t, we see that
if we can approximate the social welfare to within
any factor α, we get an α-approximation of MAX-
t-COVER as well. So by [4], an approximation of
1− 1/e+ ε is not achievable.

Note that the above proof required |F| agents, each
with very simple 0/1 valuation functions. It may be
tempting to try to reduce the number of agents at the
expense of using more complicated valuation func-
tions. This can only go so far though, as if there are
only a constant number c of agents, one need only
consider

(
m

min(c,k)

)
∈ poly(m) sets of resources in or-

der to find one which maximizes the social welfare.

Theorem A.2. No computationally-efficient MIR
mechanism can approximate CPPP with n 2-{0,1}-
unit-demand valuations within m−( 1

2−ε) (for any con-
stant ε > 0) unless NP ⊂ P/poly.

Proof. We begin by noting that in [13] it was shown
that any algorithm for CPPP which achieves an ap-
proximation ratio of at least m1/2−ε has a range
of size Ω(em

ε

). This proof required that for any
V ⊆ [m], it is possible to create a set of agents such
that the social welfare is v(S) = |V ∩S|. This is easy
to do with n 2-{0,1}-unit-demand agents, resulting
in the following useful lemma:

Lemma A.3. Any maximal-in-range mechanism
for CPPP with n 2-{0,1}-unit-demand agents which
achieves an approximation ratio of at least m1/2−ε

must have a range of size Ω(em
ε

).

From this, we can use the Sauer-Shelah lemma to
see that the range has a VC dimension at least mα for
some constant α > 0. This large range allows us to
perform reductions similar to the ones we usein our
NP-hardness proofs to show inapproximability. We
begin with the modified unit-demand reduction.

As shown above, any maximal-in-range mechanism
which approximates better than m1/2−ε must have a
range with VC-dimension at least mα. Re-order the
items such that the mα corresponding to this VC-
dimension are the set [mα]. We show a reduction
from vertex cover with mα/2 edges. Let k′ < k be
the target size of the vertex cover. The first |V | items
correspond to the vertices.

The first 2|E| = mα agents correspond 2 to each
edge, and have valuation 1 if the corresponding edge
is covered by one of the vertices corresponding to an
item chosen from [mα], we have m−mα agents, one
corresponding to each item outside of [mα] where the
agent corresponding to item i has valuation

vi(S) =
{

1, i ∈ S
0, otherwise .

If a single edge is unsatisfied, more social welfare
can be obtained by adding an item from [mα], where
some item adds at least 2 to the social welfare than
by adding an item from [m]− [mα], which only con-
tributes 1. So if the minimum vertex cover has size
k∗, the maximum social welfare is 2|E|+(k−k′). Fur-
thermore, M will find this maximum, as it’s range
includes every subset of [mα], padded out with arbi-
trary elements from [m]− [mα] to reach size k. Thus,
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M can be used to find the size of the minimum ver-
tex cover and therefore cannot run in polynomial time
unless NP ⊂ P/poly.

Theorem A.4. There exists a computationally-
efficient and truthful mechanism for CPPP with 2-
{0,1}-unit-demand valuations that has an approxima-
tion ratio of 1

2 .

Proof. The mechanism :

1. for each resource j let sj = |{i : vi({j}) = 1}|.

2. sort the m resources in decreasing order by the
value of sj , breaking ties in favor of resources
with lower indices.

3. output the set S consisting of the k first re-
sources in the above ordering.

This is clearly an efficient algorithm, as sort only
requires O(n log n) time, and in this case bucket sort
can be used to achieve a linear time mechanism.

The mechanism as described essentially allows
agents to vote for 2 resources, then chooses the k
with the most votes. An agent only benefits from
adding votes to the 2 resources that he actually de-
sires, as adding other items to the top k does not
improve his social welfare. As the two resources are
desired equally, there is no advantage to voting for
one of the resources the bidder desires and not the
other. So there is never an incentive for an agent to
not declare his valuation truthfully.

We will now see that this has an approximation
ratio of 1/2. Every agent has a value of either 0 or
1 for the chosen set. If an agent has a value of 1, we
call that agent satisfied. For each resource j, let sj
be the number of agents satisfied by j. For any set
T ,
∑
j∈T sj is an upper bound on the social welfare

of T . Clearly, S maximizes
∑
j∈S sj for sets of size

k, so
∑
j∈S sj is an upper bound on the maximum

social welfare. Furthermore, each agent is satisfied
by at most 2 items in S, so the social welfare of S is
at least

∑
j∈S sj/2 = 1/2

∑
j∈S sj , which is at least

1/2 the maximum social welfare.

B Multi Unit-Demand Valua-
tions

Theorem B.1. CPPP with 3 multi-unit-demand
valuations is NP-hard to solve optimally.

Proof. We reduce from 3-Dimensional Matching
(3DM). Given a 3DM instance M ⊆ [q] × [q] × [q],
the goal is to determine whether there exists a set
M ′ ⊂ M of size q such that no to members of M ′

share a coordinate. Our reduction is as follows. The
set of items is M . The number of items to be chosen
is k = q.

The ith agent values set S by the number of differ-
ent values for the ith coordinate in set S. This val-
uation is multi-unit-demand because it can be built
out of the q unit-demand valuations that value 1 to
any set containing an item with a j in the ith coor-
dinate, for any 1 ≤ j ≤ q. By partitioning the items
by their jth coordinate, we see that the correspond-
ing multi-unit-demand valuation is just the sum of
these unit-demand valuations, which is the number
of different values of the ith coordinate.

The maximum social welfare of this auction is 3q iff
the 3DM instance is positive. Clearly, any set M ′ of
size q will have social welfare 3q iff none of the items
in the set share a coordinate, as the maximum value
of q is achieved by each agent none of the items share
the coordinate corresponding to that agent.

Definition B.1 (MAX-3SAT-5). MAX-3SAT-5 is
the maximization version of 3SAT in which each vari-
able appears in exactly 5 clauses.

[4] showed that there exists a constant ε > 0 it
is NP-hard to distinguish between the case that all
clauses are satisfiable and that a 1− ε fraction of the
clauses are satisfiable in a MAX-3SAT-5 instance.

Theorem B.2. There exists a positive constant ε
such that it is NP-hard to approximate the social wel-
fare of CPPP with 10 multi-unit-demand agents to a
ratio of 1− ε.

Proof. Consider an instance of MAX-3SAT-5 with
clauses c1, . . . , c`. Because each clause has 3 variables
and each variable is contained in 5 clauses, there are

12



3`/5 variables v1, . . . , v3`/5. We will start by reduc-
ing to an instance with n unit-demand agents, then
demonstrate that these agents can be compressed
into 10 multi-unit-demand agents without changing
the social welfare function.

There are 6`/2 items, 2 corresponding to each vari-
able. For each variable vi, we will have two items
labeled i and i. Choosing i corresponds to setting vi
to true, while choosing i corresponds to setting vi to
false. We allow k = 3`/5 items to be chosen, so that
one value can be chosen for each variable.

There are two classes of agents. The first class has
` agents, one corresponding to each clause. The agent
corresponding to clause ci has value 1 for each item
j such that vj is in ci and 1 for each item j such that
¬vj is in ci. Thus, these agents have value 1 if their
clause is satisfied and 0 otherwise.

The second class of agents has 5 · (3`/5) = 3`
agents, 5 for each variable. The 5 agents for each
variable are identical, and the agents corresponding
to vi have value 1 for items i and i and 0 for all other
items. If there is some item i for which both i and
i are chosen, then by the pigeonhole principle, there
is some j for which neither j nor j is chosen. This
leads to a loss of 5 to the social welfare from these
agents compared to replacing one of i, i with one of
j, j, while having both i and i adds at most 5 to the
social welfare of the clause agents compared to keep-
ing just one of these. So these agents allow us to
modify any choice of items such that only one of i, i
is chosen for each i without reducing the social wel-
fare. Thus, we will assume WLOG that all choices
correspond to an assignment to the variables of the
MAX-3SAT-5 instance.

Let δ be a positive constant such that it is NP-
hard to distinguish between the case that all clauses
are satisfiable in a MAX-3SAT-5 instance and that
only a 1 − δ fraction are. Choose any positive con-
stant ε < δ/4. If all ` clauses are satisfiable, then by
choosing the items corresponding to the assignment
that satisfies them, we get a maximum of ` social
welfare from the clause agents and 3` social welfare
from the rest for a total of 4`. So if we approximate
the social welfare to 1 − ε, we get a social welfare
of at least (1 − ε)4` > 4` − δ`. As argued above, we
can assume that 3` comes from the second class of

agents described, so more than (1− δ)` social welfare
comes from the clause agents, telling us that there is
an assignment satisfying more than a 1 − δ fraction
of the clauses, allowing us to distinguish between the
case that all clauses are satisfiable and the case that
at most a 1 − δ fraction are. This is NP-hard, so
approximating the social welfare to within 1 − ε is
NP-hard as well.

Finally, we show how these 4` unit-demand agents
can be compressed into 10 multi-unit-demand agents.
We do so by combining groups of unit-demand agents
that don’t value any of the same items into a sin-
gle multi-unit-demand agent. Then the multi-unit-
demand value to that agent of any set is the sum
of the values of each of the individual unit-demand
agents, as we can partition the items according to
which agent value which items. Note that we can as-
sume WLOG that there is no i for which the clause
agents only value either i or i as we can simply re-
move any such i, then perform a 1− ε approximation
and add the i back knowing whether to choose i or i
and resulting in an improved approximation. Thus,
for each item i or i, there are only 4 clause agents
that value the item.

We combine the unit-demand agents greedily,
starting with the clause agents. For each unit-
demand agent, simply add its valuation to any multi-
unit-demand agent which does not yet have value for
any of the items the unit-demand agent values. Since
each item is valued by at most 3 other clause agents
and there are three items valued by any clause agent,
there are at most 3 · 3 = 9 multi-unit-demand clause
agents with values for these 3 items. Thus, one of
the 10 multi-unit-demand agents can accommodate
the value of this unit-demand agent.

Now, we add the second class of agents, which for
each i value items i and i. There are 5 such agents for
each i. Similarly, for each i, there are 5 unit-demand
agents which value either i or i. So the 5 agents
from the second class can be added to the valuations
of the 5 multi-unit-demand agents that do not yet
value items i or i from the clause valuations.

Thus, we can compress these valuations into 10
multi-unit-demand agents in such a way that a 1− ε
approximation allows for distinguishing between the
case that all clauses can be satisfied and that at most
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a 1− δ fraction can.

This demonstrates that, unlike in combinatorial
auctions, the number of multi-unit-demand agents
can determine the complexity of social welfare maxi-
mization in CPPP.

Corollary B.3. There is a randomized, univer-
sally truthful mechanism for CPPP with 3 multi-unit-
demand agent that achieves a 2/3 approximation of
the social welfare in expectation.

Proof. Consider choosing 2 of the agents uniformly
at random, then running the mechanism from Theo-
rem 3.3 on them. This is universally truthful, as the
agents not selected are ignored and thus have no in-
centive to lie, and the mechanism is truthful for the
two selected agents. For 3 agents, this gives an ex-
pected 2/3 approximation of the social welfare, as the
ignored agent contributes 1/3 of the maximum social
welfare in expectation.

Theorem B.4. No computationally-efficient MIR
mechanism can approximate CPPP with 3 multi-
unit-demand valuations within m−( 1

2−ε) (for any con-
stant ε > 0) unless NP ⊂ P/poly.

Proof. The proof here is essentially the same as that
of Theorem 2.3, in that the proof of NP-hardness
can be modified to make use of the smaller range by
setting each of the items outside of [mα] to add 1/2 to
the social welfare. In this case, we can fold this value
in to the multi-unit-demand valuation of one of the
agents without affecting the social welfare gain from
the items in [mα]. Running M in this case yields a
social welfare of 3q + (k − q)/2 iff there is a set of q
items from [mα] with social welfare 3q, corresponding
to a 3-dimensional matching. So M cannot run in
polynomial time unless NP ⊂ P/poly.

C Capped Additive Valuations

Theorem C.1. The Combinatorial Public Projects
problem with 2 budget additive agents is NP-hard.

Proof. We reduce from Subset Sum, where we are
given a set of positive integers v1, . . . , v` and a tar-
get t, and the goal is to find a subset of v1, . . . , v`

that sums to t. Given an instance of Subset Sum, we
construct an instance to our problem with m = 2` re-
sources, k = `, and 2 agents with valuations v1(S) =
min{

∑
j∈S 2̄v1j , 2t} and v2(S) = min{

∑
j∈S v2j , B},

where B = k ·maxj vj and v̄1j , v̄2j are:

v̄1j =
{

2vj , j ≤ `
0, otherwise

v̄2j =
{
B/k − vi, j ≤ m
B/k, otherwise .

Observe that if there exists a subset S s.t.∑
i∈S ai = t, by choosing the set of resources S′ =

S∪{`+1 . . . 2`−|S|} we have v1(S′)+v2(S′) = B+t.
Conversely, consider a subset of resources in our

problem of size m with social welfare of at least B+t.
Consider the set of items with index at most `. If the
corresponding items summed to more than t, then
agent 2 would have total value less than B − t, while
agent 1 would have value of only 2t, for a total value
of less than B+t. If the corresponding items summed
to less than t, then the social welfare would be B, plus
the sum of the corresponding set, which is less than
B+t. So the subset must have a sum of exactly t.

Theorem C.2. No computationally-efficient MIR
mechanism can approximate CPPP with 2 capped ad-
ditive valuations within m−( 1

2−ε) (for any constant
ε > 0) unless NP ⊂ P/poly.

Proof. Since the reduction for budget additive agents
did not rely on minimizing the number of items re-
quired to match the social welfare of the set of all
items, we cannot rely on the same trick here as in the
above two theorems. Instead, we rely on the struc-
ture of the reduction. The number of items which are
valued by agent 1 at 0 and agent 2 at B/k doesn’t
affect the proof (as long as it’s larger than ` and at
least k), so we just add m −mα more of these. The
particular value of k also doesn’t matter, as long as
it’s at least `, so losing control of how k relates to mα

isn’t an issue. Thus, using the same reduction after
this modification, we see thatM can be used to solve
subset sum instances of size mα, and is therefore does
not run in polynomial time unless NP ⊂ P/poly.
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Theorem C.3. For the Combinatorial Public
Projects problem with a constant number of budget
additive agents there is a FPTAS.

Proof. We will use a dynamic programming proce-
dure. For b = maxi∈n bi, we divide the interval [0, b]
into n·m

ε segments, each of length εb
n·m , and denote

p(x) = bx · mn/εbc. We will maintain an n dimen-
sional table with (n·mε )n entries, denoted A, where in
each entry aij...k we will store a subset S for which
p(vn(S)) = k, p(v2(S)) = j, . . . p(vn(S)) = k, if such
a subset exists. For convenience, for a given subset
S we will denote A(S) to be its corresponding entry
in the table.

Assume some arbitrary ordering {1 . . .m} over the
set of resources, and consider the following procedure.
We initialize the table with the empty set in all en-
tries. At stage j, for each subset S ∈ A, s.t. |S| < k,
let T = A(S∪{j}). If |S∪{j}| ≤ |T | or T = ∅, we set
A(S ∪ {j}) = S ∪ {j}. After the mth stage we iter-
ate over al entries in the table, and choose the subset
with highest social welfare. The procedure runs in
O(m · (mnε )n) steps, which is polynomial in m and
1/ε as required.

Let O denote the optimal solution, Oj = {i ≤ j|i ∈
O}. By induction on the stage of the algorithm, we
can show that at stage ` there is a subset S` s.t. S` ∈
A(O`), |S| ≤ |O`| and for every agent i we have that
vi(O`)−vi(S`) ≤ `· εbm·n . For ` = 1 the claim is trivial.
For a ` ≤ m, if ` /∈ O`, the claim trivially holds
from the inductive hypothesis. Otherwise, there is a
subset S`−1, s.t. |vi(O`)−vi(S`−1∪{`})| = |vi(O`−1∪
{`})− vi(S`−1 ∪ {`})| ≤ (`− 1) · εb

m·n for every i, and
|S`−1| ≤ |O`−1|. If another subset S′ 6= S ∪ {`} is
stored in A(O`) then |vi(S ∪ {`}) − vi(S′)| ≤ εb

m·n ,
|S′| ≤ |S ∪ {`}|, and the claim holds.

D Coverage Valuations

Theorem D.1. No computationally-efficient and
truthful mechanism for CPPP with one coverage
valuation obtains an approximation ratio within
m−( 1

2−ε) (for any constant ε > 0) unless NP ⊂
P/poly.

Proof. We first present a simple characterization of

truthful mechanisms for CPPP with a single agent,
that can easily be generalized to hold for all 1-player
mechanism design environments. Our characteriza-
tion shows that every truthful mechanism is an affine
maximizer (see [15, 13]).

Lemma D.2. If M is a truthful mechanism for
CPPP with a single agent 1, then there exists a col-
lection O of subsets of resources of size k, and a real
number wo ∈ R for each o ∈ O such that, for each val-
uation function v1 of agent 1, the outcome o(v1) ∈ O
that M outputs for v1 is in argmaxo∈O(v1(o)− wo).

Proof. Let O be the collection of outcomes (subsets of
[m] of size k) that agent 1 can achieve (i.e., outcomes
that the mechanism outputs for some valuation of 1).
In truthful mechanisms, the payment of a player is
independent of his own valuation function, and can
only depend on the outcome and on the valuations
of the other players. Because we are dealing with
a single-player environment, we can associate each
outcome o ∈ O with the payment that M outputs
for that outcome wo. Now, M ’s truthfulness implies
that, if M outputs the outcome o ∈ O for the valua-
tion v1, then it must hold v1(o) − wo ≥ v1(o′) − wo′
for each o′ ∈ O (otherwise, 1 is better off lying and
announcing the valuation for which M outputs o′).
The lemma follows.

We now prove an inapproximability result for
truthful mechanisms. Let M be a truthful mecha-
nism. We now know that there exists a collection
O of subsets of resources of size k, and per-outcome
“weights” (the wo’s), such that M exactly optimizes
1’s value over O, given the outcome weights. Let
α = maxo∈O 2|wo| + 1. Observe that for every
S, T ∈ O such that v1(S) 6= v1(T ) it holds that
|v1(S) − v1(T )| > |wS − wT |. So we can safely ig-
nore the outcome weight, as maximizing v1(S)− wS
also maximizes v1(S). Hence, from now on, we need
only consider MIR mechanisms (that for each pos-
sible v1 output an outcome o(v1) ∈ O that is in
argmaxo∈Ov1(o)). The following lemma concludes
the proof of the theorem.
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Lemma D.3. No MIR mechanism for CPPP with
with one coverage valuation achieves an approxima-
tion ratio of at least m−( 1

2−ε) unless NP ⊆ P/poly.

Proof. Let M be a MIR mechanism that obtains an
approximation ratio better than m−( 1

2−ε). [13] shows
that the VC dimension of M ’s range (that is, O) must
be at least mα for some constant α > 0 (using es-
sentially the arguments used in the proof of Theo-
rem 2.3).

We now show a reduction the NP-hard t-
COVER [4] with mα sets. In t-COVER, the input
is mα subsets of a universe E, T1, . . . , Tmα , and an
integer t, and the objective is to determine whether
there are t sets that cover E. We now construct the
valuation function of agent 1. We create a universe
U that consists of two disjoint copies of E, E1 and
E2, plus a set of m − t additional elements, E3. To
define the coverage valuation v1 we need to define the
sets S1, . . . , Sm ⊆ U (see Def. 5.1). Re-order the re-
sources such that the mα resources corresponding to
this VC-dimension are the set [mα]. For each j ∈ mα

let the set Sj be the subset of U that covers all ele-
ments in E1 and E2 that are covered by Tj . For each
j ∈ {mα + 1, . . . ,m} let Sj be a set that covers a
single unique element in E3.

Observe that if the minimal number of sets needed
to cover E in t-COVER is r, then any optimal out-
come in our CPPP instance is one that contains r re-
sources corresponding to r covering sets in t-COVER,
and k− r additional resources from E3 (chosen arbi-
trarily). The output of M thus determines the value
of r. If r ≤ t then there exist t sets in MAX-t-
COVER that cover E, otherwise no such t sets exist.
Observe that the reduction is polynomial, yet is not
uniform (because of the non-constructiveness of the
Sauer-Shelah Lemma), and hence our result is de-
pendent on the computational assumption that NP
is not contained in P/poly.

E Fractionally-Subadditive
Valuations

Although multi-unit demand agents are a special case
of fractionally subadditive agents in general, this
leads to an exponential blowup in description size
with our choice of representation. So while 3 multi-
unit demand agents creates an NP-hard problem, a
constant number of fractionally subadditive agents
allow a polynomial time algorithm.

Theorem E.1. CPPP with a constant number of
fractionally-subadditive valuations can be solved in
polynomial time.

Proof. Each fractionally-subadditive valuation is the
maximum over linearly many additive valuations. If
one of these additive valuations is chosen for each
agent, the resulting auction can be trivially solved in
polynomial time. This solution gives a lower bound
on the maximum social welfare. If the additive val-
uations chosen happen to be the ones that exhibit
the maximum in an optimal allocation, the solution
found will also be optimal. Thus, by enumerating
over all possible choices, an optimal allocation can be
found. If there are c agents with at most ` additive
valuations each, there are O(`c) ⊆ poly(`) choices to
enumerate over. Thus, the solution to the auction
can be found in polynomial time.
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