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ABSTRACT
We present a new framework for auction design and analysis
that we term “best-response auctions”. We use this frame-
work to show that the simple and myopic best-response dy-
namics converge to the VCG outcome and are incentive com-
patible in several well-studied auction environments (Gener-
alized Second Price auctions, and auctions with unit-demand
bidders). Thus, we establish that in these environments,
given that all other bidders are repeatedly best-responding,
the best course of action for a bidder is to also repeatedly
best-respond. Our results generalize classical results in eco-
nomics regarding convergence to equilibrium and incentive
compatibility of ascending-price English auctions. In addi-
tion, our findings provide new game-theoretic justifications
for some well-studied auction rules. Best-response auctions
provide a way to bridge the gap between the full-information
equilibrium concept and the usual private-information auc-
tion theory.
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1. INTRODUCTION

1.1 Why Best-Respond?
Arguably, the most striking application of“electronic mar-

kets and auctions” are the billions of penny “ad-auctions”
that bankroll much of the Internet as we know it. It is quite
an embarrassment that the pricing rule used in these auc-
tions, almost universally, is the “Generalized Second Price”
(GSP), rather than the more theoretically-motivated“Vickrey-
Clarke-Groves” (VCG) rule which basic mechanism design
theory would suggest1.

In the Generalized Second-Price (GSP) auction, there are
k slots that are to be sold. Each slot j has a click-through-
rate (CTR) αj such that α1 ≥ α2 ≥ . . . ≥ αk (“higher”
slots are clicked more often that “lower” ones). There are n
bidders (advertisers) and each bidder i has a private value
vi ∈ R+ per click (and thus his value for the j’th slot is
αjvi). GSP assigns the k slots to the k highest bidders (the
highest bidder gets the highest slot, etc.) and charges each
winning bidder a cost per-click that equals the bid of the
bidder that was assigned the slot below his.

Two early landmark papers on ad auctions [4, 7] provide
some explanation; they show that the theoretically moti-
vated VCG pricing emerges as an equilibrium of the GSP
rule. While at first sight this might lessen the embarrass-
ment, at second sight it makes it even worse: the type
of analysis under which this result is obtained is that of
full-information, i.e., this analysis is based on the implicit
assumption that all bidders know each other’s private val-
ues. That is, this explanation essentially reverts to classical
economic theory without taking any information-economics
considerations into account, disregarding the point of view
that is at the foundation of mechanism design.

In particular, showing that VCG prices are an equilibrium
of the GSP auction does not address the question of how
the bidders may reach this equilibrium without having the
required information. This issue was partially addressed by
Cary et. al. [1], who show that if the bidders participate

1Of course there are various non-game-theoretic reasons why
GSP was chosen, such as its simplicity relative to VCG,
but still one would expect some game-theoretic/economic
justification.



in a GSP auction repeatedly, and at each step best-respond
to the others’ previous bids, then the VCG equilibrium is
indeed reached. The actual theorem is a bit more delicate as
this only applies with high probability, when bidders’ turns
are chosen at random. This answer to the question “How?”,
begs the question“Why?”: Why would we expect the bidders
to repeatedly best-respond to the others?

While there is much intuitive appeal to the simple and
myopic repeated best-response strategy, we seek a game-
theoretic justification. Perhaps some other long-sighted strat-
egy could improve a bidder’s utility? Is the “repeated-best-
response” strategy really a best response overall, in the ex-
tended (multiple round) game? We present a positive an-
swer to this question. We show that if all bidders in the
GSP auction are repeatedly best-responding, then so should
you. This result allows us to resurrect some of the partial
information assumptions: there is no need to know the ex-
act values of bidders, only that they are best-responding
according to some values.

We put this result in a wider context of auctions for which
repeated-best-response converges to the full-information equi-
librium and does so in an incentive-compatible manner. A
companion paper [5] considers more general (non-auction)
mechanisms with this property. Our model bridges the gap
between the full-information equilibrium concept and the
usual private-information auction theory.

1.2 Illustration: Iterative Single-Item Auction
It is instructive to informally demonstrate the types of

results we get, via the first-price auction of a single item. It
is well known, though still quite intriguing, we believe, that
the full-information equilibrium of such a first-price auction
is achieved at the second price, that is, at the VCG outcome.

Consider a discretized setting where bids must belong to
some pre-defined discrete set {0, δ, 2δ, ...} (that is, δ is the
“minimal increment” for bids). In the full-information equi-
librium of the first-price auction in this discretized setting,
the highest bidder bids the lowest bid that exceeds the sec-
ond highest valuation for the item v2 and the second highest
bidder bids the highest bid that does not exceed v2. The as-
cending English auction, where bidders repeatedly increase
their bids by the minimal increment, and drop from the auc-
tion once their values are exceeded, can be regarded as an
effective mechanism for achieving exactly this outcome.

We suggest the following iterative auction mechanism.
The auction allows bidders to repeatedly announce bids,
based on the most recent bid announcements of the other
bidders. The prescribed strategy for each bidder is to re-
peatedly best-respond to the most recent bid announcements
of the others. Under the first-price auction base rule, this
means that when a bidder’s turn to act comes, if the bidder
can outbid the current winner without exceeding his value
for the item then he shall submit the minimal such bid (so
as to minimize his payment). In the event that a bidder can-
not outbid the current winner without exceeding his value,
we prescribe that the bidder break ties between the multiple
possible best-responses in favor of the highest bid that does
not exceed his value.

The auction terminates after all bidders consecutively“pa-
ss”, i.e., repeat their last bid, in which case the outcome is
according to the base auction rule on the final bids2. If the

2The fixed termination rule is important in our settings, and

auction does not terminate within a pre-determined number
of rounds then the item remains unallocated.

Observe that if the initial bids are all 0, then this best-
response dynamics proceeds with the sequence of minimally-
increasing prices, and thus mimicks the behavior of the ascen-
ding-price English auction. We show that in general, for
any starting vector of bids and every order of bidders’ best-
responses, the second-price equilibrium of the full-information
first-price auction is reached, provided that the tie-breaking
rule is chosen carefully.

Our main result for this restricted environment is that
repeated-best-response is indeed each bidder’s global best-
response to the others’ repeated-best-response strategies.
That is, given that all other bidders are following the pre-
scribed behavior and repeatedly best-responding, a bidder
cannot gain from not doing the same. Thus, the incentive
compatibility of the English auction is but a special case of
a more general result.

Theorem: (Informal) Under the first-price auction base
rule, repeated best-response strategies (with a specific tie-
breaking rule) converge to the VCG outcome in an incentive
compatible manner.

1.3 GSP and Unit-Demand Auctions
As a generalization of the single item auction, we consider

a framework for auction design that we term “best-response
auctions”. Given a base auction rule, a best-response auc-
tion allows bidders to repeatedly announce bids in response
to the most recent bids of the others, and the prescribed
strategy for each bidder is to repeatedly best-respond (un-
der the base auction rule). A tie breaking rule specifies
which bid to choose in cases where there are several differ-
ent best-responses. This process goes on until (1) all bidders
consecutively pass, in which case the outcome is according
to the base auction rule on the final bids; or (2) the auc-
tion does not terminate within a pre-determined number of
rounds, in which case all goods on sale remain unallocated.

Under this framework, we consider two well-studied auc-
tion environments: the GSP auction mentioned above and
the auction of multiple heterogeneous items among unit-
demand bidders, which has received much attention since
the seminal paper of Demage, Gale, and Sotomayer (see [6]).
In the unit-demand setting, each bidder i has a value vi(j)
for each item j, and is interested in purchasing exactly one
item. We consider a base auction rule where each item is
sold individually in a first-price auction.

For both of these environments, we prove the general re-
sult that best-response dynamics converge to the optimal
allocation of items, and are also in global equilibrium, i.e.,
that each bidder is indeed best-off following the repeated-
best-response strategy if the others are also doing so. In
both cases, our best-response auction mechanism is random-
ized—in each round, a single bidder is selected uniformly at
random to act. (Our results for GSP auctions actually also
imply that deterministic repeated better -response dynamics
studied in [1] also converge to the optimal allocation and are
incentive compatible.)

our results do not hold without it. This is in contrast to the
results in our companion paper [5] that hold more generally.



Theorem: (Informal) Under the GSP auction base rule,
repeated best-response strategies (with a specific tie-breaking
rule) converge to the VCG outcome in an incentive compat-
ible manner.

Theorem: (Informal) Under our auction base rule for
unit-demand bidders, repeated best-response strategies (with
a specific tie-breaking rule) converge to the VCG outcome in
an incentive compatible manner.

We point out that generalized ascending-price English auc-
tion mechanisms that implement the VCG outcome in an
incentive-compatible manner exist in both GSP auctions [4]
and in auctions with unit-demand bidders [3]. As in the
single-item first-price auction, these mechanisms can be re-
garded as specific executions of best-response dynamics and
thus, as special cases of best-response auctions.

When designing best-response auctions we face two main
challenges: (1) establishing convergence—showing that best-
response dynamics reach a stable outcome (with probabil-
ity 1); and (2) establishing incentive compatibility—showing
that the stable outcome reached is such that no bidder has
incentive to deviate from the prescribed behavior. The focus
of our main effort in each of the two auction environments we
consider is different: in the case of the GSP auction, conver-
gence was known and our effort is concentrated on proving
incentives; in the unit-demand auction most of our effort is
focused on proving convergence. An independent and some-
what related study of convergence in the unit-demand case
is carried out in [2], though the emphasis in that work is on
revenue maximization.

1.4 Future Research
We view this work as a first step towards a more gen-

eral research agenda. Our results establish that in several
well-studied settings where the VCG outcome matches the
full-information equilibrium, repeated best-response dynam-
ics converge to the VCG outcome in an incentive compatible
manner. We still lack a general understanding of when such
results can be obtained (our results establish sufficient, but
not necessary, conditions). What more general principle un-
derlies our results? Specifically, under what conditions do
repeated best-responses lead to optimal outcomes and do so
in an incentive compatible manner?

Our results in this work pertain to convergence to optimal
outcomes (that is, to an allocation of resources for which
the overall social welfare is maximized). An interesting di-
rection for future research is understanding in what environ-
ments repeated best-response provides reasonable approxi-
mation guarantees (again, in an incentive compatible man-
ner). Answers to these questions could serve as the basis
for the design of natural and simple to implement auction
mechanisms.

In addition, our work focuses on a specific natural and
myopic update rule—repeated best-response. We believe the
examination of other dynamics (e.g., fictitious play, regret
minimization) from the perspective introduced here is also
of interest.

1.5 Organization
We present our game-theoretic framework and illustrate

our approach via single-item first-price auctions in Section 2.
We present our convergence and incentive compatibility re-
sults for single-item first-price auctions, GSP auctions, and

auctions with unit-demand bidders, in Section 3, Section 4,
and Section 5, respectively.

2. OUR FRAMEWORK: BEST-RESPONSE
AUCTIONS

A best-response auction can be regarded as a (finite time)
execution of best-response dynamics in a game determined
by the auction base rule. From this perspective, the outcome
of a best-response auction corresponds to a pure Nash equi-
librium of the game. We now present basic game theoretic
terminology and explain the connection to best-response
auctions.

2.1 Background: Games
We use standard game-theoretic notation. Let Γ be a

normal-form game with n players 1, . . . , n. We denote by Si

the strategy space of the ith player. Let S = S1 × . . . × Sn,
and let S−i = S1×. . .×Si−1×Si+1×. . .×Sn be the cartesian
product of all strategy spaces excluding Si. Each player i
has a utility function ui that specifies i’s payoff in every
strategy-profile of the players. For each strategy si ∈ Si,
and every (n−1)-tuple of strategies s−i ∈ S−i, we denote by
ui(si, s−i) the utility of the strategy profile in which player
i plays si and all other players play their strategies in s−i.
We will make use of the following definitions.

Definition 2.1 (Best-response strategies). A stra-
tegy si ∈ Si is a best response of player i to a strategy profile
s−i ∈ S−i of the other players if

si ∈ argmaxs′
i
∈Si

ui(s
′

i, s−i).

Definition 2.2 (Pure Nash equilibria). A strategy
profile s is a pure Nash equilibrium if, for every player i, si

is a best response of i to s−i

Under best-response dynamics, players take turns in best-
responding to other players’ current strategies. The process
proceeds as follows: Start from some arbitrary strategy pro-
files and allow players to best-respond, one by one in some
order, to the current strategy profile. This goes on un-
til a pure Nash equilibrium is reached. We refer to best-
response dynamics in which the order of players’ activa-
tions is cyclic as “round-robin best-response dynamics” and
to best-response dynamics in which players are chosen uni-
formly at random to best-respond as“randomized best-response
dynamics”.

2.2 Best-Response Auctions and Games
Under a best-response auction, bidders repeatedly best-

respond (given the auction base-rule) to the most recent
bids of others. This goes on until a “stable state” is reached,
or “sufficiently long” time has passed. Therefore, a best-
response auction can be regarded as a finite-time execution
of best-response dynamics in a game determined by the auc-
tion base-rule.

To illustrate this point, let us revisit the example of a
single-item first-price auction discussed in the Introduction.
We consider a discretized setting where there is a single item
for sale and n bidders 1, . . . , n. Each bidder i has a private
value vi ∈ [0, Mδ] (where M > 0 is fixed and δ is some small
real number) for getting the item. The goal is to assign the
object to the bidder that values it the most (breaking ties
lexicographically if there are multiple such bidders).



Our best-response single-item auction can be regarded as
round-robin best-response dynamics in the following game.

The 1st-price auction game: The bidders are the players.
Each bidder’s strategy space Si is a predetermined discrete
set {0, δ, 2δ, ..., Mδ}. The utility of player i from a strategy
(bid) tuple b = (b1, . . . , bn) is ui(b) = vi−bi if i is the highest
bidder (breaking ties lexicographically) and 0 otherwise.

Best-response single-item auctions: Under our best-
response auction, players take part in round-robin best-response
dynamics until a pure Nash equilibrium is reached, in which
case the item is allocated to the highest bidder who is charged
his bid, or until n2M rounds have passed, in which case the
item remains unallocated.

To fully specify the best-response single-item auction we
must determine how bidders break ties between multiple
best responses. Importantly, this tie-breaking rule must be
“uncoupled”, i.e., depend solely on the player’s private in-
formation (utility function) and not on information that is
unavailable to him. Our tie-breaking rule in the 1st-price
auction game context has the following simple form: fix, for
each player i, an a-priori full order ≺i on Si (that can depend
on ui), and instruct player i to break ties between multiple
best-responses according to ≺i, i.e., if both si and s′i are
best responses to s−i and s′i ≺ si then si will be played.

Tie-breaking rules for the 1st-price auction game:
Each player i’s tie breaking rule ≺i is as follows: ∀s, t ∈ Si,
if s > vi ∨ t > vi then s ≺i t iff s > t. Otherwise, s ≺i t iff
s < t.

In Section 3, we prove that the best-response single-item
auction converges to the (discretized) outcome of the second-
price Vickrey auction in an incentive compatible manner.

3. WARMUP: BEST-RESPONSE
SINGLE-ITEM AUCTION

We now present our results for the single item first-price
auction rule. Specifically, we show that for any starting
vector of bids, and every round-robin order of bidders’ best-
responses, the second-price equilibrium of the full-informa-
ion first-price auction is reached, given our tie-breaking rule.
Moreover, repeated-best-response is indeed each bidder’s glo-
bal best-response to the others’ repeated-best-response stra-
tegies.

Theorem 3.1. The best-response single-item auction con-
verges to the (discretized) outcome of the second-price Vick-
rey auction in an incentive compatible manner.

Proof. To prove the theorem we first establish conver-
gence to the VCG outcome. We then prove the incentive
properties of the auction.

Convergence: Assume all players are following the re-
peated best-response strategy with the prescribed tie break-
ing rules, and that the auction evolves from some arbitrary
initial profile of bids. We will observe the dynamics in it-
erations of n rounds, during which every player is activated
once. Notice that after the first such iteration, no bidder
bids above his private value. This is because a bid above
one’s value is never a best response: Any winning bid above
the value is strictly worse than bidding below it, and all los-
ing bids above the value have the same utility, but our tie

breaking rules prescribe a preference for bidding below the
value in this case. For the same reasons, no player will ever
bid above his value again. We say that a player is “out of
the race” if from some point on, he bids his value exactly,
and never changes his bid.

The proof continues by showing that as time progresses,
players eliminate certain bids and will never bid them again:
Let us look first at the weakest player, that has all ties bro-
ken against him. We argue that he will never bid 0 after the
first iteration of activations, unless his value happens to be
0, in which case he will be out of the race. A bid of 0 by that
player will always be a losing bid, and so, if it is under the
player’s value it will never be a best response to the bids of
others (tie breaking rules prefer higher losing bids as long as
they are under the valuation). If the weakest player is out
of the race, then the second weakest player will, for similar
reasons, never bid 0 after the following iteration or he will
drop out of the race. This goes on either until we remain
with only one player that is still in the race, or until the
weakest player bids at least δ (and continue to bid at least
that much during the rest of the process). In the latter case,
after the next iteration, all other players will bid at least δ,
and will do so during the rest of the process (as the weakest
player in the race is never going to bid below that). Again,
the weakest player still in the race will either drop out of the
race or from this point on or never bid anything below 2δ.
This line of reasoning goes on until we are left with only a
single player in the race. At that point all other players bid
their valuation and never change their bids. The remaining
player will therefore bid the second price (or δ above that
to break ties) and will never change his bid – this is his best
response. All players will then pass, and we have converged.

Incentive Compatibility: Let us assume that some player
i deviates from the repeated best-response strategy and gains
by doing so. We argue that the player can only gain from
the deviation if he wins the item because of it (otherwise his
utility is 0, and before the deviation he did no worse). In
particular, all players must have passed in the last iteration,
as the mechanism would not allocate the item otherwise. If
player i gains by deviating, then he must be getting the item
at a price p that is lower than the price without the devia-
tion. Since the price is lower, both the highest and second
highest bidder (only one of whom might be player i) still
wish to purchase the item at price p and so the final bidding
profile cannot be stable, and at least one player would not
pass. We therefore reach a contradiction.

4. BEST-RESPONSE GSP AUCTIONS
The following “GSP game” was presented in [4, 7]. Our

best-response GSP auction can be regarded as randomized
best-response dynamics in this game.

The Game. There are k slots with click through rates
α1 > α2 > . . . > αk that are being auctioned. The bidders
are the players. Each bidder’s strategy space Si is some pre-
determined discrete set {0, δ, 2δ, . . . , Mδ} of possible bids,
for some arbitrarily small δ. The bidders are awarded slots
in decreasing order of their bids, so that the highest bid-
der is awarded the top most slot with click through rate α1,
and lower bidders get the slots with lower rates. For every
bid-vector b = (b1, . . . , bn) ∈ S, πj(b) denotes the bidder
that is awarded the j’th slot. The utility of the bidder that



gets slot j when the bid-vector is b = (b1, . . . , bn) is thus
uπj (b) = αj(vπj (b) − bπj+1(b)), which reflects the fact the
winner of slot j pays (for each click) the bid of the winner
of slot j + 1.

Tie-breaking rules: Consider the case that bidder i’s best-
response results in bidder i getting slot j. Then, i should
select the bid bi such that αj ·(vi−bπj+1(b)) = αj−1 ·(vi−bi).
Intuitively, i should choose a bid bi such that i is indifferent
between getting the j’th slot and paying the next highest
bid, or getting the (j − 1)’th slot and paying bi. If none
of bidder i’s best-responses result in i getting a slot, then i
should bid his highest feasible bid, i.e, the maximal bid bi

that does not exceed vi.

Convergence: Cary et al. [1] study convergence of deter-
ministic and randomized best- and better-response dynam-
ics to the VCG outcome in GSP games and prove two posi-
tive results for convergence to the VCG outcome: (1) prob-
abilistic convergence for best-response dynamics (with the
above tie-breaking rules); and (2) deterministic convergence
for specific better-response dynamics.

Incentive compatibility: We now show that the positive
results in [1] are actually achieved in an incentive-compatible
manner (no bidder is motivated to deviate from repeated
best- and better-response). To establish this, we prove that
there does not exist a“bad state” in GSP games, in the sense
that there is no strategy profile from which all players but
(possibly) a single player i do not wish to deviate, and that
i strictly prefers to the pure Nash equilibrium that would
be reached if all players follow the repeated best-response
strategies. Observe that the nonexistence of such a bad state
is indeed sufficient (and is clearly necessary) to establish
the incentive compatibility of best-response auctions for this
environment.

Proposition 4.1. Let N be the unique pure Nash equilib-
rium (under tie-breaking) in a GSP game (this is a VCG out-
come). Then, there does not exist a state b = (b1, . . . , bn) ∈
S, and player i ∈ [n], such that ∀j 6= i, bj is a best-response
(under tie-breaking) to b and ui(b) > ui(N).

For ease of notation in our proof of the above proposition,
let b ∈ S denote the bad state; σj is the bidder that is
allocated the j’th slot when the bid-vector is b; πj is the
bidder that gets slot j in the VCG outcome, and V CGj is
that bidder’s bid in the VCG outcome. Observe that if the
unstable bidder does not win a slot then his utility is 0 and
so he is certainly not better off than in the unique pure Nash
equilibrium outcome. Thus, the unstable bidder is awarded
some slot j. Our proof of Proposition 4.1 will follow easily
from the following lemma.

Lemma 4.2. For each bidder i that wins a slot lower than
j (that is, a slot r > j) vi is at least as high as that of the
bidder that got the same slot in the VCG outcome, and bi

is at least as high as the bid of the bidder that got the same
slot in the VCG outcome. That is,

∀r > j V CGr ≤ bσr and vπr ≤ vσr .

Proof. In the VCG outcome the n−k losing bidders are
the bidders with the lowest values and they bid these values.
Observe that in b the losing bidders are the n − k bidders

with the lowest bids, and these bids are equal to their values,
and thus for all i ≥ k + 1, we have that vσi

≥ vπi
.

The lemma now follows easily by induction: assuming that
for all i ≥ r ≥ j+2, it holds that vσi

≥ vπi
, and bσi

≥ V CGi.
Consider the bidder σr−1, since this bidder is following the
prescribed best-responses, his value must be at least vσr ,
and thus his value must be in the top r − 1 valuations, and
thus vσr−1

≥ vπr−1
. Additionally, he will bid the prescribed

“indifference price”;

bσr−1
= vσr−1

−
αr−1

αr−2

�
vσr−1

− bσr

�
≥ vπr−1

−
αr−1

αr−2

�
vπr−1

− bσr

�
≥ vπr−1

−
αr−1

αr−2

�
vπr−1

− bπr

�
= V CGr−1,

where the second and third lines above follow from noting
that the indifference price in the first line is an increasing
function of both vσr−1

and bσr .

Proof of Proposition 4.1: The above lemma shows that
the “unstable” bidder σj is forced to pay for the j’th slot a
price that is at least as high as the payment of the bidder
who gets that slot in the VCG outcome, and thus the un-
stable bidder would prefer to be allocated the jth slot in the
VCG allocation. To conclude, since the VCG outcome en-
sures that each bidder gets at least as much utility from his
allocation as he would get were he to receive the allocation
allotted to another player, the unstable bidder gets at most
the utility he would get were to to get item j in the VCG
outcome, which gives at most as much utility as he would
get in the actual VCG outcome. 2

5. BEST-RESPONSE UNIT-DEMAND AUC-
TIONS

Our best-response auction for unit-demand bidders can be
regarded as best-response dynamics in the following class of
games.

The 1st-price unit-demand auction game: The bidders
are the players. Each bidder’s strategy is a vector of non-
negative bids b = (b1, . . . , bm), where each bj represents the
bid for item j and belongs to some predetermined discrete
set {0, δ, 2δ, . . . , Mδ} for some arbitrarily small δ, which we
refer to as the discretization parameter. Given an n-tuple
of bid vectors (i.e., players’ strategies) (b1, . . . , bn), the in-
duced price-vector −→p = (p1, . . . ,pm) is such that ∀j ∈ [m],
pj = maxi∈[n] b

i
j , where bi

j is bidder i’s bid for item j. To
complete the specification of the game we need the following:

Definition 5.1 (overdemanded sets). Given an n-
tuple of bid vectors b = (b1, . . . , bn), and the induced price
vector p, ∀j ∈ [m], B(j) := {i ∈ [n]| bi

j = pj} (that is, the set

of highest bidders for j); ∀i ∈ [n], T (i) := {j ∈ [m]| bi
j = pj}

(that is, the set of items bidder i is a highest bidder for).
X ⊆ [m] is overdemanded if |{i| T (i) ⊂ X}| > |X|. We say
that such a set of items X is a minimal overdemanded set
if no subset of X is overdemanded.

Given an n-tuple of bid vectors b = (b1, . . . , bn), the allo-
cation of items Γ(b) is defined as follows: (1) all items that
are in minimal overdemanded sets remain unallocated; (2)



allocate bidder i the item with the lowest index for which i
is the single highest bidder, if such an item exists; and (3)
allocate all remaining items so that item j be given to a
bidder i such that i ∈ B(j), breaking ties among such allo-
cations lexicographically, and allocating at most one item
to each bidder. We are now ready to describe the util-
ity function ui of each bidder, i. Given an n-tuple of bid
vectors b = (b1, . . . , bn), let Γi(b) be the set of items allo-
cated to i in Γ(b), and note that |Γi(b)| ∈ {0, 1}. Then if
|Γi(b)| = 1, ui(b) = viΓi(b) − pΓi(b), and ui = 0 otherwise,
where −→p = (p1, . . . , pm) is the price vector associated with
bids b.

Our main theorem is that there exist tie-breaking rules un-
der which the randomized best-response auction converges
and is approximately incentive-compatible, in that by uni-
laterally deviating from the prescribed best-responses, one
can increase one’s utility by at most a factor proportional
to the discretization parameter δ.

Theorem 5.2. there exist tie-breaking rules under which
the randomized best-response auction converges and is ap-
proximately incentive-compatible. Specifically, in an instance
of the unit-demand auction game with n players, m items,
with player valuations vij , for i ∈ [n], j ∈ [m], and dis-
cretization parameter δ, given any initial configuration of
bids,

• After at least k ≤ n+m+(m2+mn)·maxi∈[n],j∈[m] vij/δ,

turns, with probability at least 1/nk, the unit-demand
auction game is at a strategy profile for which no player
has a prescribed best-response that deviates from his
current bid.

• Given any strategy profile of the unit-demand auction
game for which no player has a prescribed best-response
that deviates from his current bid, the utility that each
player receives is within δ(m+2) of the utility they re-
ceive in the VCG allocation of the corresponding unit-
demand auction.

Our proof of the above theorem consists of three main
components. In Proposition 5.3, we show that all the pure
Nash equilibria of the unit-demand auction game (under the
prescribed tie-breaking rules) are similar to the VCG out-
come, in that the final prices are close to the VCG payments
from which it follows that the utility each player receives is
similar to the utility that the player would receive under
the VCG outcome. In Proposition 5.10, we show that given
any configuration, there exists a prescribed sequence of at
most k ≤ n + m + (m2 + mn) · maxi∈[n],j∈[m] vij/δ players
such that after such a sequence of players best-responding,
the game will be at a pure equilibrium, and no player will
henceforth wish to deviate from his current strategy. The
final component of our proof of Theorem 5.2 is Proposi-
tion 5.11, which shows that the above convergence occurs
in an incentive-compatible manner, in that by unilaterally
deviating from the prescribed best responses, no player can
increase his utility by more than δ(m + 2).

Before proceeding further, we shall motivate the prescribed
tie-breaking rules, and rigorously state them. In short, a
player first chooses the/an item that he desires most at the
lowest price he would need to bid for that item in order to
receive it, given everyone else’s bids. His bid for that most-
desired item, say item i, is then the lowest bid he would

need to make for that item so as to receive it; his bid for
all other items is such that he would receive δ more utility
if he is allocated any of these other items at the prices he
bids, than he would receive for his “most-desired”, namely
his bids bj for all items j 6= i satisfy vj − bj = vi − bi + δ,
where vj denotes that player’s valuation for item j.

Motivated by the Hungarian method, and similar approa-
ches to computing efficient allocations (optimal weighted
matchings), it is intuitively clear that players should roughly
bid “level prices”—prices such that the player is indifferent
to which item he receives at the prices he bids. Addition-
ally, there must be some mechanism that allows the prices
to fall in the case that, for example, an efficient matching
has been found, yet the prices are all elevated (say the VCG
allocation and the VCG prices increased by some constant);
as we will see, by having each player bid δ less than his “level
prices” for all but the most-desired item, we allow the prices
to both rise, and fall, ultimately eventually finding a near-
efficient allocation, with prices roughly the VCG prices. We
note that finding tie-breaking that induce this behavior of
best-responses is somewhat delicate; while many choices of
tie-breaking rules will result in a competitive equilibrium,
ensuring that the prices will fall to the VCG prices is more
difficult. We now formally define the tie-breaking rules.

Tie-breaking rules. Given an n-tuple of bid vectors b =
(b1, . . . , bn), let pΓi(b) denote the price i pays for Γi(b) (and
Γi(b) = ∅ if i is not allocated any items); ∀j ∈ [m], p∗

j

denotes the minimum bid i must place on item j (while
bidding 0 on all other items) so as to receive j in the resulting
allocation. Bidder i should break ties as follows.

• If maxr∈[m](vir − p∗

r) < 0, then bid max(0, vir − δ) for
all items.

• If maxr∈[m](vir − p∗

r) ≥ 0, and either Γi(b) = ∅ or
viΓi(b) − pΓi(b) < maxr∈[m](vir − p∗

r), then do the fol-
lowing. Let s := argmaxr∈[m](vir − p∗

r). Bid p∗

s for
item s, and max(0, vis − vir + p∗

r − δ) for all items
r 6= s. Throughout, we shall call item s (the most de-
sired item at the time of bidding) the “target item” for
bidder i.

• If viΓi(b) − pΓi(b) = maxr∈[m](vir − p∗

r), bid pΓi(b) for
item Γi(b), and max(0, vir − viΓ(b) + pΓi(b) − δ) for all
items r 6= Γi(b).

5.1 Equilibria of Unit-Demand Auctions
In this section we prove that all pure Nash equilibria of the

unit-demand auction game are “close” to the VCG outcome.
The proof relies fundamentally on the well-known fact that
the VCG outcome and prices are the minimal competitive
equilibrium prices. In particular, to show that the prices
at an equilibrium in the unit-demand auction game can-
not be much lower than the VCG prices, we show that no
δ-approximate competitive equilibrium can have prices too
much lower than the VCG prices. Our proof that the equi-
librium prices can not be too much higher than the VCG
prices is slightly more involved, though at its core, leverages
the fact that given any competitive equilibrium for which
the prices are higher than the VCG prices, there exists some
way of reallocating the items and decreasing some subset of
the bids that only increases each player’s utility.



Proposition 5.3. Let G be a unit-demand auction game,
with discretization parameter δ. Then, all pure Nash equi-
librium in G under the above tie-breaking rules are close to
the VCG outcome.

Specifically, letting −→q = (q1, . . . , qm) denote the VCG
prices, and uV CG

1 , . . . , uV CG
n the associated utilities of each

bidder in the VCG outcome, then if bid vectors b = b1, . . . , bn

are at equilibrium in the unit-demand auction game, then the
associated allocation Γ(b) and price vector −→p = (p1, . . . , pm)
satisfy:

• ∀i ∈ [m], |pi − qi| ≤ (m + 1)δ.

• ∀i ∈ [n], |ui(b) − uV CG
i | ≤ (m + 2)δ.

We assume that ∀i, j, vij ≥ 0. We begin by making two
basic observations:

Observation 5.4. At equilibrium b, with associated prices
−→p = (p1, . . . , pm), for all bidders i ∈ [n],

ui(b) ≥ max
j∈[m]

(vij − pj) − δ

Observation 5.5. If bidder i’s target item was item j,
and in the current allocation Γi(b) 6= {j}, then i has a best-
response that deviates from his bid bi.

We now begin our proof of Proposition 5.3.

Lemma 5.6. If bid vectors b = b1, . . . , bn with associ-
ated prices −→p = (p1, . . . , pm) are at equilibrium in the unit-
demand auction game, then every item i such that pi ≥ δ is
allocated in Γ(b).

Proof. Assume for the sake of contradiction that this is
not the case, and some item i ∈ [m] has pi ≥ δ but is unallo-
cated. Let B(i) be the set of bidders with the highest bid for
item i. Since i is unallocated, every bidder in B(i) that is
not allocated an item must be bidding δ less than their value,
but if there is such a player, then by bidding his value he
would get the item; thus all bidders in B(i) must already be
allocated an item, which, because b is at equilibrium, must
be each player’s ‘target’ item (by Observation 5.5). But this
is also a contradiction, since a player in B(i) would value
item i at price pi δ more than the item he receives, and thus
the best-response dynamics would prescribe him to change
his target item to item i, and bid pi for item i and drop his
other bids accordingly.

Lemma 5.7. Let −→q = (q1, . . . , qm) denote the VCG prices.
If bid vectors b = b1, . . . , bn with associated prices −→p =
(p1, . . . , pm) are at equilibrium in the unit-demand auction
game, then pi − qi ≤ (m + 1)δ.

Proof. Assume for the point of contradiction that there
is some item i such that pi − qi ≥ (m + 2)δ. We split the
argument into two cases: the case where there is some item
j for which pj ≤ qj + δ, and the case where pj ≥ qj + 2δ in
every coordinate.

In the first case, by the pigeon-hole principle, there must
exist some set I ⊂ [m] such that ∀i ∈ I, pi − qi ≥ 2δ, and
additionally, for all j 6∈ I, pi−qi ≥ 2δ+pj −qj . For example,
if we sort the items in decreasing order according to pi − qi,
there must be two items in consecutive order for which their
respective values of p − q differ by at least 2δ.

Now, consider the set of bidders B(I) who have the highest
bid for some item of I, and let Q(I) denote the bidders who
receive items in I in the VCG allocation. We claim that
B(I) = Q(I). First, note that |B(I)| ≥ |I |, since all items in
I have price at least 2δ, and thus by Lemma 5.6 are allocated.
Since |B(I)| ≥ |I | ≥ |Q(I)|, it suffices to show that for each
i ∈ B(I), bidder i receives some item in I in allocation Q.
First, note that bidder i must receive some item in allocation
Q, since ∃j ∈ [m] such that vij −pj ≥ 0, and thus vij − qj ≥
pj − qj ≥ 2δ, so bidder i would not be content without an
item given prices −→q . Let j ∈ [m] denote an item such that
i ∈ B(j). From our definition of the set I, it follows that
bidder i must receive some item that is also in set I , since
for any item k 6∈ I , pj − qj − 2δ ≥ pk − qk, but because the
procedure terminated, we know that vij − pj ≥ vik − pk − δ.
Adding these two equations yields vij −qj ≥ vik−qk +δ, and
thus bidder i must receive an item in I in allocation Q, and
thus B(I) = Q(I); that is, the highest bidders for items in
the set I must be the set of bidders who are allocated items
in I (in both allocation Γ(b) and the VCG allocation Q).

To conclude this case, consider the directed graph (with
no self-loops) whose vertex set is B(I), and where there is
a directed edge from i to i′ if bidder i′ has a highest bid for
the item that i is allocated in Γ(b). Because the protocol
terminated, and the conclusion of the previous paragraph
(that the highest bidders for items in the set I must be the
set of bidders who are allocated items in I), each vertex must
have out-degree at least one, and thus there must be some
directed cycle C in the graph. The allocation Γ′ induced
by modifying the allocation Γ(b) according to the cycle C
would be a valid matching with fewer bidders receiving their
target items than in Γ(b), and thus at least one bidder would
have a best response (which would get him the utility he
would get in Γ′).

We now consider the case that ∀j ∈ [m], qj ≤ pj −2δ. The
set of bidders having a highest bid in −→p must be the set of
bidders receiving items in the allocation Q, because for such
a bidder i, there is an item j such that vij ≥ pj ≥ qj + 2δ.
Now, the same argument as in the previous case (in which a
directed graph as above with a cycle is constructed) yields
the desired contradiction.

We now prove the other direction—that the equilibrium
prices can be at most (m + 1)δ less than the corresponding
VCG prices.

Lemma 5.8. Let −→q = (q1, . . . , qm) denote the VCG prices.
If bid vectors b = b1, . . . , bn with associated prices −→p =
(p1, . . . , pm) are at equilibrium in the unit-demand auction
game, then qi − pi ≤ (m + 1)δ.

Proof. We first argue that there is some item j ∈ [m]
such that pj ≥ qj − δ. Assume otherwise, and note that any
bidder i ∈ [n] who does not receive an item in allocation
Γ(b) must have valuations vij ≤ pj + δ ≤ qj − δ, for all
items j, and thus will not receive or desire an item in the
VCG allocation Q. Additionally, since all bidders receiv-
ing items in allocation Q must also receive items in Γ(b)
(because otherwise, they would desire an item, and have a
best-response), and all m items must be allocated in the
VCG outcome since qi > 2δ for all i, we conclude that the
set of bidders receiving an item in allocation Γ(b) must be
the same as the set receiving an item in allocation Q. De-
creasing every component of −→q by δ and keeping allocation



Q would yield a smaller competitive equilibrium, since every
bidder receiving an item would still be at equilibrium given
prices −→q − δ, and any bidder i who does not receive an item
will still not desire an item, since, as noted above, it must be
the case that vij ≤ qj − δ. This contradicts the minimality
of the competitive equilibrium prices −→q .

Given that there is some item j ∈ [m] such that pj ≥ qj−δ,
we now argue that maxj∈[m](qj − pj) ≤ (m + 1)δ. Assume
otherwise, and consider the set of items I such that ∀j ∈
I, k 6∈ I, qj − pj ≥ 2δ + qk − pk, and qj − pj ≥ 2δ. Such a set
exists and is nonempty by the pigeonhole principle, the fact
that some item j satisfies pj ≥ qj − δ, and our assumption
that some item k satisfies qk − pk ≥ (m + 2)δ.

Note that Q(I) = ΓI(b), since bidders who get an item of
I in allocation Q would not be at equilibrium at prices −→p
unless they got an item of I . Next, for a bidder i who does
not receive an item in allocation Γ(b), it must be the case
that i 6∈ Q(I), and for item j ∈ I, vij ≤ qj − δ. For a bidder
i who receives an item j 6∈ I in allocation Γ(b), for any
item k ∈ I, we must have (vij −pj)− (vik −pk) ≥ −δ, which
from the definition of the set I implies that (vij−qj)−(vik−

qk) ≥ δ. Thus the price vector
−→
q′ defined by decreasing every

coordinate of −→q by δ will also be a competitive equilibrium,
which is a contradiction, as desired.

Proposition 5.3 now follows from the above two lemmas,
and the observation that if the equilibrium price vector sat-
isfies |pi − qi| ≤ (m + 1)δ, and for all bidders i ∈ [n],
viΓi(b) − pΓi(b) ≥ maxj∈[m](vij − pj) − δ, then the utility
that bidder i derives from the outcome associated with b is
at most (m + 2)δ different than the utility he would receive
in the VCG outcome.

5.2 Convergence of Repeated Best-Response
We first show that round-robin best-response dynamics

can oscillate indefinitely in unit-demand auction games. We
then consider randomized best-response dynamics; a single
player is chosen to play uniformly at random at each turn.
In this randomized setting, to show convergence, it suffices
to show that given any initial conditions, there exists some
finite prescribed sequence of players such that after the pre-
scribed sequence of players best-response, an equilibrium
will be reached. At a high-level, we prescribe such a list
of players so that the dynamics of the prices have two gen-
eral phases. In the first phase, the prices of all items only
increase. This first phase resembles an“ascending-price auc-
tion” amongst some subset of the players. The second phase
then closely resembles a“descending-price auction,” in which
the price of every item can only decrease.

Proposition 5.9. There exists an initial configuration of
the unit-demand auction game, such that if bidders perform
best-responses in round-robin order, the dynamics cycle in-
definitely.

Proof. Consider the auction with bidder set {A, B, C}
and two items x, y. Let each bidder value each item for
2 units. Consider the initial values with bidder A bidding
1, 1+ǫ for items x, y respectively, bidder B bidding 1+ǫ, 1+
2ǫ, for the two items, and bidder C bidding 1+ ǫ, 1. Suppose
the round-robin order has A responding first, then B, then
C. We now consider the dynamics: let (·, ·)A denote the
vector of bids for player A response, and correspondingly
for (·, ·)B and (·, ·)C . It is easy to verify that the prescribed
best-responses will be as follows:

(1 + 2ǫ, 1 + ǫ)A, (1, 1 + ǫ)B , (1 + ǫ, 1 + 2ǫ)C , (1 + ǫ, 1)A

(1 + 2ǫ, 1 + ǫ)B , (1, 1 + ǫ)C , . . .

We now see that after two full rounds of bidding, the con-
figuration of bids is exactly as it was prior to the first best-
response, except with the bids for items x switched with
those for item y. Thus, by the symmetry of the bidders’ val-
uations, and the fact that at every step, they have a unique
most-desired item, after four complete rounds of bidding we
will be in the exact same configuration as prior to the first
best-response.

Proposition 5.10. Let n be the number bidders, and m
the number of items. Given any initial configuration, after
k = n + m +(m2 +mn) ·maxi∈[n],j∈[m] vij/δ best-responses,
in which the player best-responding at each turn is chosen
uniformly at random from [n], the probability that an equi-
librium has been reached is at least 1/nk.

Proof. It suffices to show that that given any initial con-
figuration, there exists at least one sequence of players of
length at most k such that if the bidders are chosen ac-
cording to that sequence, an equilibrium is reached. For
any initial configuration, we will describe such a sequence of
players; roughly, we will select the players such that dynam-
ics will have two phases: the ‘ascending phase’, in which the
vector of prices −→p associated with the bids b will only in-
crease (as in an ascending auction with reserve prices), and
the ‘descending phase’ that will resemble a descending-price
auction. Let −→p t = (pt

1, . . . , p
t
m) denote the vector of max-

imum prices at time t, and say t = 0 corresponds to the
initial configuration.

We first let each player make a single best-response bid.
Observe that after this initial set of n turns, each bid is at
most maxi∈[n],j∈[m] vij . We now begin the ‘ascending phase’
of the dynamics at time t = n. At each time step, we choose
a player i ∈ [n] to best-response who has the property that
prior to his turn, he was not allocated an item, but after
his turn, he will be allocated an item (and we say that the
‘ascending phase’ has ended when no such bidder can be cho-
sen). Since no price can ever decrease, after at most m steps
of the ‘ascending phase’, either the price for some item was
increased by at least δ, or all items are allocated, in which
case the next bidder must increase the price of some item.
Thus by time t = n + m2 · maxi∈[n],j∈[m] vij/δ turns the as-
cending phase will have terminated (since otherwise at least
one of the m items would have a price above the maximum
value of any item to any bidder, which is impossible). Fi-
nally, we let each player who is not allocated an item have
a turn. Let time t = t1 be at the completion of this extra
set of turns. At this time, every bidder who could derive at
least δ utility from receiving some item j ∈ [m] and paying
price pt1

j is allocated an item. Additionally, for every item
j, all players i ∈ [n] who are not allocated an item at time
t1 are bidding vij − δ.

We now begin the ‘descending phase’ of the dynamics. At
each time step we choose a bidder i ∈ [n] who has a best-
response bid that differs from their current bid, provided
that they are allocated an item in the timestep prior to their
turn. Thus at each turn, no bid will ever be increased, and
at least one bid will drop by at least δ, and thus this stage
will terminate after at most nm · maxi∈[n],j∈[m]vij

/δ turns.
Next, we argue that a player i who is not allocated an item



at time t > t1 must be bidding vij − δ for all items. This
is clearly true at time t1. Now, note that if bidder i′ best-
responses at time t+1 and does not increase any of his bids,
every bidder receiving an item at time t will also receive one
at time t + 1, and thus at every time t ≥ t1, it must be the
case that the players who are not allocated an item must
not have been allocated an item at time t1.

Finally, any additional players whose best-responses differ
from their current bids are given turns. We claim that the
only players who have best-responses during this stage are
players who are not allocated any item, but who share the
highest bid for some item with at least one other such player.
Consider the first player, i, to play in this stage; he must
not be allocated an item prior to his turn (otherwise his
turn would have been part of the ‘descending phase’), and
thus he must bid vij − δ for all items prior to his turn, and
his best-response bid must be to increase his bid for some
item j to vij , and he must be allocated item j as a result
of his turn. Assume for the sake of contradiction that there
is some other bidder i′ with a bid of vij for item j. i′ must
not be allocated item j prior to the best response of bidder
i (otherwise i would not have been able to get item j unless
i′ also had a highest bid for a non-overdemanded item j′,
in which case i′ would have had a best-response that should
have taken place as part of the ‘descending phase’). But if
i′ was not allocated item j prior to the turn of i, but i is
allocated j after his turn, then either j was not the target
item of i′, in which case i′ would have had a best-response as
part of the descending phase (in which he made j his target
item and decreased his other bids), or item j was his target
item, in which case he would also have a best-response as
part of the descending phase. Thus after the best-response
of i, he is the unique bidder to bid vij for item j, and all his
other bids are unchanged; thus the above arguments hold for
all additional players who best-response in this final stage.

To conclude, note that the final stage does not affect any
bidder who was allocated an item prior to this final stage,
and thus all bidders receiving an item after this stage still
satisfy the property that they do not have a best-response
deviation from their current bid. Additionally, all bidders
i who do not receive an item are bidding vij − δ for all
items, and additionally raising their bids to vij will not re-
sult in their getting an item. Thus an equilibrium has been
reached.

5.3 Incentive Compatibility
In this section we show that if any player unilaterally devi-

ates from the prescribed best-responses in the unit-demand
auction game, he can not significantly increase his utility,
thus completing our proof of Theorem 5.2 to establish that
the randomized best-response mechanism is incentive com-
patible.

Our proof approach is simple: we show that if, by deviat-
ing from the prescribed best-responses, player i induces the
dynamics to converge to some outcome b, it is the case that
the outcome is, in fact, a pure Nash equilibrium of a related
instance of the unit-demand auction game. Thus by Propo-
sition 5.3 it follows that the outcome is close to the VCG
outcome of this modified game. We then argue that player
i can not prefer the VCG outcome of the modified game
to the VCG outcome of the original game, and thus there
is no incentive to deviate from the prescribed best-response
dynamics.

Proposition 5.11. Let N be a pure Nash equilibrium (un-
der tie-breaking) in a unit-demand auction game with dis-
cretization parameter δ. There does not exist a state b =
(b1, . . . , bn) ∈ S, and player i ∈ [n], such that ∀j 6= i,
bj is a best-response (under tie-breaking) to b and ui(b) >
ui(N) + 2(m + 2)δ.

Proof. Let G denote the instance of the unit-demand
auction game. Assume for the point of contradiction that
there is some bidder i ∈ [n], and some configuration b such
that all bidders j 6= i have no best-response deviation from
their bids bj , but for which ui(b) > ui(N) + 2(m + 1)δ. Let
−→p denote the corresponding vector of prices associated to
b. For ease of exposition, assume without loss of generality
that i = 1.

First, note that Γ1(b) 6= ∅ We will now construct a related
game G′ whose set of bidders is {c∗, 2, . . . , n, c1, . . . , cm},
and whose set of items is [m]. The valuations are defined as
follows: for all i ∈ {2, . . . , n}, the valuations are identical to
those of the corresponding players in game G. Let vc∗Γ1(b) =
pΓ1(b), and for all items j 6= Γ1(b), vc∗j = pj + δ. For the
remaining bidders ci, let vcii = pi + δ, and vcij = 0 for
all j 6= i. Define bids b′ for game G′ as follows: each player
i ∈ {2, . . . , m} bids as in b, bidder ci bids pi for item i and 0
for all other items, and bidder c∗ bids −→p . Note that bids b′,
induce the same price vector as b in game G. Additionally,
bids b′ are at equilibrium, and induce allocation Γ as in
game G (except with bidder c∗ replacing bidder 1. Thus
by Proposition 5.3, the utility that bidder c∗ gets is within
(m + 2)δ of the VCG outcome in auction G′.

The valuations in G′ for bidders 2, . . . , n are as in game
G, and since adding additional players can only increase the
VCG prices, the VCG prices for game G′ are at most the
VCG prices in game G′′ which is defined to be identical to
game G but with player 1 replaced by player c∗. To conclude,
since the VCG mechanism is truthful, bidder 1 would not
prefer the VCG outcome of game G′′ (item Γ1(b) at price
pΓ1(b)) to the true VCG allocation of game G, which is at
most (m + 2)δ more profitable than the equilibrium that
would be reached were he to best-respond.
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