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ABSTRACT
Increasing use of computers and networks in business, gov-
ernment, recreation, and almost all aspects of daily life has
led to a proliferation of online sensitive data about individ-
uals and organizations. Consequently, concern about the
privacy of these data has become a top priority, partic-
ularly those data that are created and used in electronic
commerce. Despite many careful formulations and extensive
study, there are still open questions about the feasibility of
maintaining meaningful privacy in realistic networked envi-
ronments. We formulate communication-complexity-based
definitions, both worst-case and average-case, of a problem’s
privacy-approximation ratio. We use our definitions to in-
vestigate the extent to which approximate privacy is achiev-
able in many well studied contexts: the 2nd-price Vickrey
auction [20], the millionaires problem of Yao [22], the pro-
visioning of a public good, and also set disjointness and set
intersection. We present both positive and negative results
and many interesting directions for future research.
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1. INTRODUCTION
Increasing use of computers and networks in business, gov-

ernment, recreation, and almost all aspects of daily life has
led to a proliferation of online sensitive data about individ-
uals and organizations. Consequently, the study of privacy
has become a top priority in many disciplines. Computer
scientists have contributed many formulations of the notion
of “privacy-preserving computation” that have opened new
avenues of investigation and shed new light on some well
studied problems.

One good example of a new avenue of investigation opened
by concern about privacy can be found in auction design,
which was our original motivation for this work. Traditional
auction theory deals extensively with the question of how
to incent bidders to behave truthfully, i.e., to reveal private
information that auctioneers need in order to compute op-
timal outcomes. More recently, attention has turned to the
complementary goal of enabling bidders not to reveal private
information that auctioneers do not need in order to com-
pute optimal outcomes. The importance of bidders’ privacy,
like that of algorithmic efficiency, has become clear now that
many auctions are conducted online, and Computer Science
has as much to contribute as Economics.

Our approach to privacy is based on communication com-
plexity. Although originally motivated by agents’ privacy
in mechanism design, our definitions and tools can be ap-
plied to distributed function computation in general. Be-
cause perfect privacy can be impossible or infeasibly costly
to achieve, we investigate approximate privacy. Specifically,
we formulate both worst-case and average-case versions of
the privacy-approximation ratio of a function f in order to
quantify the amount of privacy that can be maintained by
parties who supply sensitive inputs to a distributed com-
putation of f . We also study the tradeoff between privacy
preservation and communication complexity.

1.1 Our Approach
Consider an auction of a Bluetooth headset with two bid-

ders, 1 and 2, in which the auctioneer accepts bids ranging
from $0 to $7 in $1 increments. Each bidder i has a private
value xi ∈ {0, . . . , 7} that is the maximum he is willing to
pay for the headset. The item is sold in a 2nd-price Vick-
rey auction, i.e., the higher bidder gets the item (with ties
broken in favor of bidder 1), and the price he pays is the
lower bid. The demand for privacy arises naturally in such
scenarios [18]: In a straightforward protocol, the auction-



eer receives sealed bids from both bidders and computes the
outcome based on this information. Say, e.g., that bidder
1 bids $3, and bidder 2 bids $6. The auctioneer sells the
headset to bidder 2 for $3. It would not be at all surpris-
ing however if, in subsequent auctions of headsets in which
bidder 2 participates, the same auctioneer set a reservation
price of $5. This could be avoided if the auction protocol
allowed the auctioneer to learn the fact that bidder 2 was
the highest bidder (something he needs to know in order to
determine the outcome) but did not entail the full revelation
of 2’s private value for the headset.
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Figure 1: The minimal knowledge requirements for 2nd-

price auctions

Observe that, in some cases, revelation of the exact private
information of the highest bidder is necessary. For example,
if x1 = 6, then bidder 2 will win only if x2 = 7. In other
cases, the revelation of a lot of information is necessary, e.g.,
if bidder 1’s bid is 5, and bidder 2 outbids him, then x2 must
be either 6 or 7. An auction protocol is said to achieve perfect
objective privacy if the auctioneer learns nothing about the
private information of the bidders that is not needed in or-
der to compute the result of the auction. Figure 1 illustrates
the information the auctioneer must learn in order to deter-
mine the outcome of the 2nd-price auction described above.
Observe that the auctioneer’s failure to distinguish between
two potential pairs of inputs that belong to different rectan-
gles in Fig. 1 implies his inability to determine the winner
or the price the winner must pay. Also observe, however,
that the auctioneer need not be able to distinguish between
two pairs of inputs that belong to the same rectangle.

Using the “minimal knowledge requirements” described in
Fig. 1, we can characterize a perfectly privacy-preserving
auction protocol as one that induces this exact partition
of the space of possible inputs into subspaces in which the
inputs are indistinguishable to the auctioneer. Unfortu-
nately, perfect privacy is often hard or even impossible to
achieve. For 2nd-price auctions, Brandt and Sandholm [5]
show that every perfectly private auction protocol has expo-
nential communication complexity. This provides the moti-
vation for our definition of privacy-approximation ratio: We
are interested in whether there is an auction protocol that
achieves “good” privacy guarantees without paying such a
high price in computational efficiency. We no longer insist
that the auction protocol induce a partition of inputs exactly
as in Fig. 1 but rather that it“approximate”the optimal par-

tition well. We define two kinds of privacy-approximation
ratio (PAR): worst-case PAR and average-case PAR.

The worst-case PAR of a protocol P for the 2nd-price auc-
tion is defined as the maximum ratio between the size of a
set S of indistinguishable inputs in Fig. 1 and the size of
a set of indistinguishable inputs induced by P that is con-
tained in S. If a protocol is perfectly privacy preserving,
these sets are always the same size, and so the worst-case
PAR is 1. If, however, a protocol fails to achieve perfect pri-
vacy, then at least one “ideal” set of indistinguishable inputs
strictly contains a set of indistinguishable inputs induced
by the protocol. In such cases, the worst-case PAR will be
strictly higher than 1.

Consider, e.g., the sealed-bid auction protocol in which
both bidders reveal their private information to the auction-
eer, who then computes the outcome. Obviously, this naive
protocol enables the auctioneer to distinguish between every
two pairs of private inputs, and so each set of indistinguish-
able inputs induced by the protocol contains exactly one
element. The worst-case PAR of this protocol is therefore
8
1

= 8. (If bidder 2’s value is 0, then in Fig. 1 the auctioneer
is unable to determine which value in {0, . . . , 7} is x1. In the
sealed-bid auction protocol, however, the auctioneer learns
the exact value of x1.) The average-case PAR is a natural
Bayesian variant of this definition: We now assume that the
auctioneer has knowledge of some market statistics, in the
form of a probability distribution over the possible private
information of the bidders. PAR in this case is defined as
the average ratio and not as the maximum ratio as before.

Thus, intuitively, PAR captures the effect of a protocol
on the privacy afforded to protocol participants. The best
that participants can hope for is that an observer of the
entire protocol transcript (e.g., an auctioneer) learns only
that their inputs are in the pre-image of the output. In this
best case, the PAR is 1. If the best case is impossible or
extremely costly to achieve, participants might still benefit
from a protocol in which an observer learns that their inputs
are in a subset of the pre-image; the larger (on average) this
subset is relative to the entire pre-image, the smaller the
(average-case) PAR. For example, the auctioneer must learn
the losing bidder’s private value, which is a lower bound for
the winning bidder’s private value. However, the auctioneer
could use a protocol that also allows him to learn a non-
trivial upper bound on the winning bidder’s value. If this
range of values isn’t too small compared to the set of all val-
ues that would produce the same winner and price, then the
bidders may view the effects of the protocol on their privacy
as reasonable (perhaps in exchange for reduced communica-
tion required by the protocol). To formalize and generalize
this intuitive notion of PAR, we make use of the machin-
ery of communication-complexity theory. Specifically, we
use the concepts of monochromaticity and tilings to make
formal the notions of sets of indistinguishable inputs and
of the approximability of privacy. We discuss other notions
of approximate privacy (probability-mass-based, semantic,
entropy-based, and more) in Sec. 8.

1.2 Our Findings
Yao’s millionaires problem and 2nd-price auctions.
We present both upper and lower bounds on the privacy-
approximation ratio for both the millionaires problem of
Yao [22] and 2nd-price Vickrey auctions with 2 bidders [20].
Our analysis of these two problems takes place within Yao’s



Problem Protocol Objective PAR Subjective PAR Ratio of
Subj. PARs

2nd-Price Auctionk All ≥ 1 ≥ 1 ≥ 1
English Auction 1 1 1

Bisection Auctiong(k)

g(k)+3
2
− 2g(k)

2k+1 + g(k)+5
4
− 1

2g(k)+2 +
g(k)

2k+2 —
1

2k+1 − 1
2g(k)+1
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2

+ 1 k+5
4

+ k−1
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Sealed-Bid Auction 2k+1

3
+ 1

3·2k
2k

3
+ 1− 1

3·2k ∼ 1

Public Goodk All ≥ 2k − 1
2

+ 2−(k+1) — —

Truthful Public Goodk,c All ≥ 1 + c3

22k+1 (1− 1
c2

) — —

Truthful Public Goodk All ≥ 2k−1 − 1
2

+ 1
2k — —

The Millionaires Problemk All ≥ 2k − 1
2

+ 2−(k+1) — —

Bisection Protocol 3
2
2k − 1

2
k
2

+ 1 1

Disjointnessk All ≥
(

3
2

)k
— —

Trivial ∼ 2k ∼ 2k ∼ 2k

1 First ∼ 2k ∼
(

3
2

)k ∼ 2
k

(
3
2

)k
Alternating ∼ 2k ∼ 3+2

√
2

2

(
1+
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2
2

)k
∼
√

2

Intersectionk All ≥
(

7
4

)k
— —

Trivial/1 First
(

7
4

)k (
3
2

)k (
3
2

)k
Alternating

(
7
4

)k 6
5

(
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)k 3
2

Table 1: Main PAR results; all are average-case with respect to the uniform distribution. Asymptotic results
are for k →∞.

2-party communication model [21], in which the private in-
formation of each party is a k-bit string, representing a value
in {0, . . . , 2k − 1}. In the millionaires problem, the two par-
ties (the millionaires) wish to keep their private information
hidden from each other. We refer to this goal as the preser-
vation of subjective privacy. In electronic-commerce envi-
ronments, each party (bidder) often communicates with the
auctioneer via a secure channel, and so the aim in the 2nd-
price auction is to prevent a third party (the auctioneer),
who is unfamiliar with any of the parties’ private inputs,
from learning “too much” about the bidders. We refer to
this goal as the preservation of objective privacy.

Informally, for both the 2nd-price Vickrey auction and the
millionaires problem, we obtain the following results: We
show that not only is perfect privacy impossible or infeasibly
costly to achieve, but even close approximations of perfect
privacy suffer from the same lower bounds. By contrast, we
show that, if the values of the parties are drawn uniformly
at random from {0, . . . , 2k − 1}, then, for both problems,
simple and natural communication protocols have privacy-
approximation ratios that are linear in k (i.e., logarithmic
in the size of the space of possible inputs). We conjecture
that this improved PAR is achievable for any probability
distribution on inputs. The correctness of this conjecture
would imply that, no matter what beliefs the protocol de-
signer may have about the parties’ private values, a protocol
that achieves reasonable privacy guarantees exists.

Importantly, our results for the 2nd-price Vickrey auc-
tion are obtained by proving a more general result about
a large family of protocols for single-item auctions, known
as bounded-bisection auctions, that contains both the cele-
brated ascending-price English auction and bisection auc-
tions [12,13]. In Cor. 4.4, we find the tradeoff between PAR
and communication for this family of protocols.

Provisioning a public good. We show that our results
for the millionaires problem extend to the classic economic
problem of provisioning a public good, in which the goal is
to determine whether the sum of participants’ private val-
ues (representing the benefits that these participants would
derive from a “public good” such as a bridge or a park) are
at least as great as the cost of the good. We observe that, in
terms of privacy-approximation ratios, the public-good and
millionaires problems are equivalent. We also present upper
and lower bounds on the privacy-approximation ratio for the
truthful version of provisioning a public good.
Set problems. Finally, we apply our PAR framework to
the intersection problem and to its decision variant, the
disjointness problem. From both the privacy perspective
and the communication-complexity perspective, these are
extremely natural problems to study. The intersection prob-
lem has served as a motivating example in the study of
privacy-preserving computation for decades, while the dis-
jointness problem plays a central role in the theory and ap-
plication of communication complexity. We consider three
natural protocols that apply to both problems; the objec-
tive and subjective PARs are exponential in all cases, but
we show that the protocol that is intuitively the best is quan-
tifiably (and significantly) more fair than the others in the
sense described below.
Summary of main PAR values. Table 1 contains our re-
sults for average-case PAR values for the various problems
and protocols that we consider here. (Because of space limi-
tations, we will not restate these results below as individual
theorems.) The rows labeled with “All” describe bounds for
all protocols for that problem (as reflected by the inequal-
ities). The ratios of the subjective PARs are obtained by
dividing the larger subjective PAR by the smaller one; so
this ratio is always at least 1. Asymptotic results are for



k → ∞; entries of “—” for bounds on subjective PARs in-
dicate that we do not have results beyond those implied by
the PARs for specific protocols.

1.3 Related Work on Privacy-Preserving Com-
putation

Our points of departure in defining approximate privacy
are the work of Chor and Kushilevitz [6] on characteriza-
tion of perfectly privately computable functions and that of
Kushilevitz [15] on the communication complexity of per-
fectly private computation. Starting from the same place,
Bar-Yehuda et al. [2] also provided a framework in which to
quantify the amount of privacy that can be maintained in
the computation of a function and the communication cost
of maintaining it. In Appendix A below, we show that the
formulations in [2] are significantly different from the ones
we present here. A full characterization of the relationship
between their formulations and ours is an interesting direc-
tion for future work (see Sec. 8). As in [2,6,15], we focus on
the two-party, deterministic communication model; as out-
lined in Sec. 8, this is just a first step in a more general
research agenda.

There are many formulations of privacy-preserving com-
putation, both perfect and approximate, that are not based
on the definitions and tools in [6,15]. We now briefly review
some of them and explain how they differ from ours.
Secure, Multiparty Function Evaluation. The most
extensively developed approach to privacy in distributed
computation is that of secure, multiparty function evalua-
tion (SMFE). Indeed, to achieve (perfect) agent privacy in
algorithmic mechanism design, which was our original mo-
tivation, one could, in principle, simply start with a strat-
egyproof mechanism and then have the agents themselves
compute the outcome and payments using an SMFE proto-
col. However, as previously explained by Brandt and Sand-
holm [5], who applied Chor and Kushilevitz’s tools to the
study of perfect privacy in auctions, SMFE protocols fall
into two main categories (information-theoretically private
protocols and multiparty protocols that use cryptography to
achieve privacy) that both have inherent disadvantages from
the point of view of mechanism design.

Note that we are using the phrase “perfect privacy” dif-
ferently from the way it is used in some of the SMFE lit-
erature. There, the terms “unconditional,” “perfect,” and
“information-theoretic” are sometimes used interchangeably
to describe protocols that preserve input privacy but do
not use cryptography (or, more generally, do not rely on
unproven complexity-theoretic assumptions). We use “per-
fectly private” (in contrast with “approximately private”)
to describe a protocol with privacy-approximation ratio 1
– nothing about the input is revealed except the fact that
it is in the pre-image of the output; proving that an SMFE
protocol has this property might require one to make an
assumption about a cryptographic primitive.

In certain scenarios, the demand for perfect privacy preser-
vation cannot be relaxed; for example, a protocol that re-
vealed two out of nine digits of a social-security number
might have a low privacy-approximation ratio but nonethe-
less be unacceptable in practice. In these cases, if the func-
tion cannot be computed in a perfectly privacy-preserving
manner without the use of cryptography, there is no choice
but to resort to a cryptographic protocol. There is an ex-
tensive body of work on cryptographic protocols, and we are

not offering our notion of PAR as an extension of that work
or an all-purpose substitute for it.

In ad exchanges and other natural e-commerce applica-
tions, however, perfect privacy may not be a realistic goal.
More generally, we argue that, in e-commerce and other real-
world scenarios, privacy preservation should be regarded as
one of several design goals, along with low computational
or communication complexity, protocol simplicity, incentive
compatibility, and more. (See, e.g., [17].) Therefore, it is
necessary to be able to quantify privacy preservation in or-
der to understand the tradeoffs among the different design
goals and to obtain “reasonable” (but not necessarily per-
fect) privacy guarantees. As with any measure of privacy, a
value of PAR that indicates good privacy (i.e., PAR close
to 1) does not provide guarantees about what an observer
might be able to deduce using auxiliary information.
Private Approximations and Approximate Privacy.
Here, we consider protocols that compute exact results but
preserve privacy only approximately. One can also ask what
it means for a protocol to compute approximate results in
a privacy-preserving manner; indeed, this question has also
been studied [3, 8, 14], but it is unrelated to the questions
we ask here. Similarly, definitions and techniques from dif-
ferential privacy [7] (see also [11]), in which the goal is to
add noise to the result of a database query in such a way
as to preserve the privacy of the individual database records
(and hence protect the data subjects) but still have the re-
sult convey nontrivial information, are inapplicable to the
problems that we study here.

1.4 Paper Outline
In the next section, we review and expand upon the con-

nection between perfect privacy and communication com-
plexity. We present our formulations of approximate privacy,
both worst case and average case, in Sec. 3; we present our
main results in Secs. 4–7. Discussion and future directions
can be found in Sec. 8.

Many proofs have been omitted because of space limi-
tations; all of them can be found in our two technical re-
ports [9, 10]. As noted above, we do not state here most of
the results from Table 1 as individual theorems, but we do
state some additional results below that are not included in
Table 1.

2. PERFECT PRIVACY AND
COMMUNICATION COMPLEXITY

We now briefly review Yao’s model of two-party com-
munication and notions of objective and subjective perfect
privacy; Kushilevitz and Nisan [16] give a comprehensive
overview of communication complexity theory. Note that
we only deal with deterministic communication protocols.
Our definitions can be extended to randomized protocols.

2.1 Two-Party Communication Model
There are two parties, 1 and 2, each holding a k-bit input

string. The input of party i, xi ∈ {0, 1}k, is the private
information of i. The parties communicate with each other
in order to compute the value of a function f : {0, 1}k ×
{0, 1}k → {0, 1}t.

A communication protocol P is said to compute f if,
for every pair of inputs (x1, x2), it holds that P (x1, x2) =
f(x1, x2). As in [15], the last message sent in a protocol



P is assumed to contain the value f(x1, x2) and therefore
may require up to t bits. The communication complexity of
a protocol P is the maximum, over all input pairs, of the
number of bits transmitted during the execution of P .

Any function f : {0, 1}k×{0, 1}k → {0, 1}t can be visual-
ized as a 2k× 2k matrix with entries in {0, 1}t, in which the
rows represent the possible inputs of party 1, the columns
represent the possible inputs of party 2, and each entry con-
tains the value of f associated with its row and column in-
puts. This matrix is denoted by A(f).

Definition 1. (Regions, partitions, and monochro-
maticity) A region in a matrix A is any subset of entries
in A (not necessarily a submatrix of A). A partition of A is
a collection of disjoint regions in A whose union equals A. A
region R in a matrix A is called monochromatic if all entries
in R contain the same value. A monochromatic partition of
A is a partition all of whose regions are monochromatic.

Of special interest in communication complexity are spe-
cific kinds of regions and partitions called rectangles, and
tilings, respectively:

Definition 2. (Rectangles, tilings, and refine-
ments) A rectangle in a matrix A is a submatrix of A. A
tiling of a matrix A is a partition of A into rectangles. A
tiling T1(f) of a matrix A(f) is said to be a refinement of
another tiling T2(f) of A(f) if every rectangle in T1(f) is
contained in some rectangle in T2(f).

Monochromatic rectangles and tilings are an important
concept in communication-complexity theory, because they
are linked to the execution of communication protocols: for
every pair of private inputs (x1, x2), every communication
protocol P for a function f terminates at some monochro-
matic rectangle in A(f) that contains (x1, x2). We refer
to this rectangle as “the monochromatic rectangle induced
by P for (x1, x2)”. We refer to the tiling that consists of
all rectangles induced by P (for all pairs of inputs) as “the
monochromatic tiling induced by P”.

2.2 Perfect Privacy
Informally, we say that a two-party protocol is perfectly

privacy-preserving if the two parties (or a third party observ-
ing the communication between them) cannot learn more
from the execution of the protocol than the value of the
function the protocol computes. (These definition can be
extended naturally to protocols involving more than two
participants.)

Formally, let P be a communication protocol for a func-
tion f . The communication string passed in P is the con-
catenation of all the messages sent in the course of the ex-
ecution of P . Let s(x1,x2) denote the communication string
passed in P if the inputs of the parties are (x1, x2). We are
now ready to define perfect privacy. The following two def-
initions handle privacy from the point of view of a party i
that does not want the other party (who is, of course, famil-
iar not only with the communication string, but also with
his own value) to learn more than necessary about i’s pri-
vate information. We say that a protocol is perfectly private
with respect to party 1 if 1 never learns more about party 2’s
private information than necessary to compute the outcome.

Definition 3. Perfect privacy with respect to 1 [6,
15] P is perfectly private with respect to party 1 if, for

every x2, x
′
2 such that f(x1, x2) = f(x1, x

′
2), it holds that

s(x1,x2) = s(x1,x
′
2).

Informally, Def. 3 says that party 1’s knowledge of the
communication string passed in the protocol and his knowl-
edge of x1 do not aid him in distinguishing between two
possible inputs of 2. Perfect privacy with respect to 2 is
defined similarly.

Observation 2.1. For any function f , the protocol in
which party i reveals xi and the other party computes the
outcome of the function is perfectly private with respect to i.

Definition 4. (Perfect subjective privacy)
P achieves perfect subjective privacy if it is perfectly private
with respect to both parties.

The following definition considers a different form of pri-
vacy—privacy from a third party that observes the commu-
nication string but has no a priori knowledge about the
private information of the two communicating parties. We
refer to this notion as “objective privacy”.

Definition 5. (Perfect objective privacy)
P achieves perfect objective privacy if, for every two pairs of
inputs (x1, x2) and (x′1, x

′
2) such that f(x1, x2) = f(x′1, x

′
2),

it holds that s(x1,x2) = s(x′
1,x

′
2).

Kushilevitz [15] was the first to point out the interesting
connections between perfect privacy and communication-
complexity theory. Intuitively, we can think of any monochro-
matic rectangle R in the tiling induced by a protocol P as a
set of inputs that are indistinguishable to a third party. This
is because, by definition of R, for any two pairs of inputs in
R, the communication string passed in P must be the same.
Hence we can think of the privacy of the protocol in terms
of the tiling induced by that protocol.

Ideally, every two pairs of inputs that are assigned the
same outcome by a function f will belong to the same mono-
chromatic rectangle in the tiling induced by a protocol for f .
This observation enables a simple characterization of perfect
privacy-preserving mechanisms.

Definition 6. (Ideal monochromatic partitions) A
monochromatic region in a matrix A is said to be a maxi-
mal monochromatic region if no monochromatic region in A
properly contains it. The ideal monochromatic partition of
A is made up of the maximal monochromatic regions. (For
each value in A, the maximal monochromatic region that cor-
responds to this value is unique; so the ideal monochromatic
partition of A is unique.)

Observation 2.2. (A characterization of perfectly
privacy-preserving protocols) A communication proto-
col P for f is perfectly privacy-preserving iff the monochro-
matic tiling induced by P is the ideal monochromatic par-
tition of A(f). This holds for all of the above notions of
privacy.

3. PRIVACY-APPROXIMATION RATIOS
Unfortunately, perfect privacy should not be taken for

granted. As shown by our results, in many environments,
perfect privacy can be either impossible or very costly (in



terms of communication complexity) to obtain. To mea-
sure a protocol’s effect on privacy, relative to the ideal—
but perhaps impossible to implement—computation of the
outcome of a problem, we introduce the notion of privacy-
approximation ratios (PARs).

3.1 Worst-Case PARs
For any communication protocol P for a function f , we de-

note by RP (x1, x2) the monochromatic rectangle induced by
P for (x1, x2). We denote by RI(x1, x2) the monochromatic
region containing A(f)(x1,x2) in the ideal monochromatic

partition of A(f). Intuitively, RP (x1, x2) is the set of inputs
that are indistinguishable from (x1, x2) to P . RI(x1, x2)
is the set of inputs that would be indistinguishable from
(x1, x2) if perfect privacy were preserved. We wish to asses
how far one is from the other. The size of a region R, de-
noted by |R|, is the cardinality of R, i.e., the number of
inputs in R.

We can now define worst-case objective PAR as follows:

Definition 7 (Worst-case objective PAR of P ).
The worst-case objective privacy-approximation ratio of com-
munication protocol P for function f is

α = max
(x1,x2)

|RI(x1, x2)|
|RP (x1, x2)| .

We say that P is α-objective-privacy-preserving in the
worst case.

Definition 8. (i-partitions) The 1-partition of a re-
gion R in a matrix A is the set of disjoint rectangles Rx1 =
{x1} × {x2 s.t. (x1, x2) ∈ R} (over all possible inputs x1).
2-partitions are defined analogously.

Intuitively, given any region R in the matrix A(f), if party
i’s actual private information is xi, then i can use this knowl-
edge to eliminate all the parts of R other than Rxi . Hence,
the other party should be concerned not with R but rather
with the i-partition of R.

Definition 9. (i-induced tilings) The i-induced
tiling of a protocol P is the refinement of the tiling induced
by P obtained by i-partitioning each rectangle in it.

Definition 10. (i-ideal monochromatic partitions)
The i-ideal monochromatic partition is the refinement of
the ideal monochromatic partition obtained by i-partitioning
each region in it.

For any communication protocol P for a function f , we
use RPi (x1, x2) to denote the monochromatic rectangle con-
taining A(f)(x1,x2) in the i-induced tiling for P . We de-

note by RIi (x1, x2) the monochromatic rectangle containing
A(f)(x1,x2) in the i-ideal monochromatic partition of A(f).

Definition 11. (Worst-case PAR of P with respect
to i) The worst-case privacy-approximation ratio with re-
spect to i of communication protocol P for function f is

α = max
(x1,x2)

|RIi (x1, x2)|
|RPi (x1, x2)|

.

We say that P is α-privacy-preserving with respect to i
in the worst case.

Definition 12. (Worst-case subjective PAR of P )
The worst-case subjective privacy-approximation ratio of
communication protocol P for function f is the maximum
of the worst-case privacy-approximation ratio with respect
to each party.

Definition 13. (Worst-case PAR) The worst-case ob-
jective (subjective) PAR for a function f is the minimum,
over all protocols P for f , of the worst-case objective (sub-
jective) PAR of P .

3.2 Average-Case PARs
As we shall see below, it is also useful to define an average-

case version of PAR. As the name suggests, the average-
case objective PAR is the average ratio between the size of
the monochromatic rectangle containing the private inputs
and the corresponding region in the ideal monochromatic
partition.

Definition 14. (Average-case objective PAR of P )
Let D be a probability distribution over the space of inputs.
The average-case objective privacy-approximation ratio of
communication protocol P for function f is

α = ED [
|RI(x1, x2)|
|RP (x1, x2)| ].

We say that P is α-objective privacy-preserving in the
average case with distribution D (or with respect to D).

We define average-case PAR with respect to i analogously,
and average-case subjective PAR as the maximum over all
players i of the average-case PAR with respect to i. We de-
fine the average-case objective (subjective) PAR for a func-
tion f as the minimum, over all protocols P for f , of the
average-case objective (subjective) PAR of P .

At first, it may seem more natural to define average-case
PAR as the ratio of the probability masses of the ideal region
and the induced rectangle (with respect to D) rather than
as the ratio of their cardinalities. We show in Sec. 8.1 below
that this intuition is wrong, because it fails to distinguish
two very different distributions on inputs with respect to a
natural set of protocols.

4. 2ND-PRICE AUCTIONS

4.1 Problem
A single item is offered to 2 bidders, each with a private

value for the item. The auctioneer’s goal is to allocate the
item to the bidder with the highest value. The fundamental
technique in mechanism design for inducing truthful behav-
ior in single-item auctions is Vickrey’s 2nd-price auction [20]:
Allocate the item to the highest bidder, and charge him the
second-highest bid.
Problem: 2nd-Price Auctionk
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each as a k-bit string)
Output: the identity of the party with the higher value, i.e.,
arg maxi∈{0,1} xi (breaking ties lexicographically), and the
private information of the of the other party.

Brandt and Sandholm [5] have shown that a perfectly
privacy-preserving communication protocol exists for 2nd-
Price Auctionk. Specifically, perfect privacy is obtained
via the ascending-price English auction: Start with a price
of p = 0 for the item. In each time step, increase p by 1



until one of the bidders indicates that his value for the item
is less than p (in each step first asking bidder 1 and then,
if necessary, asking bidder 2). At that point, allocate the
item to the other bidder for a price of p − 1. If p reaches a
value of 2k−1 (that is, the values of both bidders are 2k−1)
allocate the item to bidder 1 for a price of 2k − 1.

Moreover, it is shown in [5] that the English auction is
essentially the only perfectly privacy-preserving protocol for
2nd-Price Auctionk. Thus, perfect privacy requires, in
the worst-case, the transmission of Ω(2k) bits. 2k bits suf-
fice, because bidders can simply reveal their inputs. Can we
obtain “good” privacy without paying such a high price in
communication?

4.2 Objective Privacy PARs
We now consider objective privacy for 2nd-Price Auc-

tionk (i.e., privacy with respect to the auctioneer). Bisec-
tion auctions [12, 13] for 2nd-Price Auctionk are defined
as follows: Use binary search to find a value v that lies be-
tween the two bidders’ values, and let the bidder with the
higher value be bidder j. (If the values do not differ, we will
also discover this; in this case, award the item to bidder 1,
who must pay the common value.) Use binary search on the
interval that contains the value of the lower bidder in order
to find the value of the lower bidder. Bisection auctions are
incentive-compatible in ex-post Nash [12,13].

More generally, we refer to an auction protocol as a c-
bisection auction, for a constant c ∈ (0, 1), if in each step
the interval R is partitioned into two disjoint subintervals:
a lower subinterval of size c|R| and an upper subinterval
of size (1 − c)|R|. Hence, the Bisection Auction is a c-
bisection auction with c = 1

2
. We prove that no c-bisection

auction for 2nd-Price Auctionk obtains a subexponential
objective PAR:

Theorem 4.1. (A worst-case lower bound for c-
bisection auctions) For any constant c > 1

2k , the c-
bisection auction for 2nd-Price Auctionk has a worst-case

PAR of at least 2
k
2 .

By contrast, as shown in Table 1, reasonable privacy guar-
antees are achievable in the average case.

We note that the worst-possible approximation of objec-
tive privacy comes when the each value in the space is in
a distinct tile; this is the tiling induced by the sealed-bid
auction. The resulting average-case privacy-approximation
ratio is exponential in k.

Proposition 4.2. (Largest possible objective PAR)
The largest possible (for any protocol) average-case objective
PAR with respect to the uniform distribution for 2nd-Price

Auctionk is 1
22k

[∑2k−1
j=0 j2 +

∑2k−1
j=1 j2

]
= 2

3
2k + 1

3
2−k.

4.3 Bounded-Bisection Auctions
We now present a middle ground between the perfectly-

private yet highly inefficient (in terms of communication)
ascending English auction and the communication-efficient
Bisection Auction whose average-case objective PAR is
linear in k (and is thus unbounded as k goes to infinity): We
bound the number of bisections, using an ascending English
auction to determine the outcome if it is not resolved by the
limited number of bisections.

We define the Bisection Auctiong(k) as follows: Given
an instance of 2nd-Price Auctionk, and a integer-valued

function g(k) such that 0 ≤ g(k) ≤ k, run the Bisection
Auction as above but do at most g(k) bisection operations.
(Note that we will never do more than k bisections.) If the
outcome is undetermined after g(k) bisection operations, so

that both players’ values lie in an interval I of size 2k−g(k),
apply the ascending-price English auction to this interval to
determine the identity of the winning bidder and the value
of the losing bidder.

As g(k) ranges from 0 to k, the Bisection Auctiong(k)
ranges from the ascending-price English auction to the Bi-
section Auction. If we allow a fixed, positive number
of bisections (g(k) = b > 0), computations show that for
b = 1, 2, 3 we obtain examples of protocols that do not pro-
vide perfect privacy but that do have bounded average-case
objective PARs with respect to the uniform distribution.
We wish to see if this holds for all positive b, determine the
average-case objective PAR for general g(k), and connect
the amount of communication needed with the approxima-
tion of privacy in this family of protocols. The average-case
objective PAR of the Bisection Auctiong(k) with respect
to the uniform distribution allows us to do these things; this
is given by the following theorem and is also, like the corre-
sponding result for subjective PAR, shown in Table 1.

Theorem 4.3. For the Bisection Auctiong(k), the ave-
rage-case objective PAR with respect to the uniform distri-
bution equals

g(k) + 3

2
− 2g(k)

2k+1
+

1

2k+1
− 1

2g(k)+1
.

Proof. Fix k, the number of bits used for bidding, and
let c = g(k) be the number of bisections; we have 0 ≤ c ≤ k,
and we let i = k − c. Figure 2 illustrates the induced tiling
for k = 4, c = 2, and i = 2; as in Fig. 1 (which illustrates
the ideal tiling for k = 3), the input pair (0, 0) is in the
upper-left corner. Note that the upper-left and lower-right
quadrants have identical structure and that the lower-left
and upper-right quadrants have no structure other than that
of the ideal partition and the quadrant boundaries (which
are induced by the first bisection operation performed).

Figure 2: Illustration for the proof of Thm. 4.3

Our general approach is the following. The average-case
objective PAR with respect to the uniform distribution is

PAR =
1

22k

∑
(x1,x2)

|RI(x1, x2)|
|RP (x1, x2)| ,

where the sum is over all pairs (x1, x2) in the value space;
recall that RI(x1, x2) is the region in the ideal partition



that contains (x1, x2), and RP (x1, x2) is the rectangle in
the tiling induced by the protocol that contains (x1, x2).
We may combine all of the terms corresponding to points in
the same protocol-induced rectangle to obtain

PAR =
1

22k

∑
S

|S| |R
I(S)|
|S| =

1

22k

∑
S

|RI(S)|, (1)

where the sums are now over protocol-induced rectangles S
(we will simplify notation and write S instead of SP ), and
RI(S) denotes the ideal region that contains the protocol-
induced rectangle S. Each ideal region in which bidder 1
wins is a rectangle of width 1 and height at most 2k; each
ideal region in which bidder 2 wins is a rectangle of height 1
and width strictly less than 2k. For a protocol-induced rect-
angle S, let jS = 2k − |RI(S)|. Let ac,i be the total number
of tiles that appear in the tiling of the k-bit value space in-
duced by the Bisection Auctiong(k) with g(k) = c, and let
bc,i =

∑
S jS (with this sum being over the protocol-induced

tiles in this same partition). Then we may rewrite (1) as

PARc,i =
1

22k

∑
S

(2k − jS) =
ac,i2

k − bc,i
22k

. (2)

(Note that (1) holds for general protocols; we now add the
subscripts “c, i” to indicate the particular PAR we are com-
puting.) We now determine ac,i and bc,i.

Considering the tiling induced by c + 1 bisections of a
c+i+1-bit space (which has ac+1,i total tiles), the upper-left
and lower-right quadrants each contain ac,i tiles while the
lower-left and upper-right quadrants (as depicted in Fig. 2)
each contribute 2c+i tiles, so ac+1,i = 2ac,i + 2c+i+1. When
there are no bisections, the i-bit value space has a0,i =
2i+1−1 tiles, from which we obtain ac,i = 2c

(
2i(c+ 2)− 1

)
.

The sum of jS over protocol-induced rectangles S in the
upper-left quadrant is bc,i. For a rectangle S in the lower-
right quadrant, jS equals 2c+i plus jS′ , where S′ is the corre-
sponding rectangle in the upper-left quadrant; there are ac,i
such S, so the sum of jS over protocol-induced rectangles S
in the upper-left quadrant is bc,i+ac,i2

c+i. Finally, the sum

of jS over S in the lower-left quadrant equals
∑2c+i−1
h=0 h and

the sum over S in the top-right quadrant equals
∑2c+i

h=1 h.

Thus, bc+1,i = 2bc,i+ac,i2
c+i+22(c+i); with b0,i =

∑2i−1
h=0 h+∑2i−1

h=1 h, we get bc,i = 2c+i−1
(
(1 + 2c)

(
−1 + 2i

)
+ 2c+ic

)
.

Rewriting (2), we obtain

PARc,i =
c+ 3

2
− 2c

2c+i+1
+

1

2c+i+1
− 1

2c+1
.

Recalling that k = c+ i, the proof is complete.

For the protocols corresponding to values of g(k) rang-
ing from 0 to k (ranging from the ascending-price English
auction to the Bisection Auction), we may thus relate
the amount of communication saved (relative to the English
auction) to the effect of this on the PAR.

Corollary 4.4. Let g be a function that maps non-nega-
tive integers to non-negative integers. Then the average-
case objective PAR with respect to the uniform distribution
for the Bisection Auctiong(k) is bounded if g is bounded
and is unbounded if g is unbounded. We then have that the
Bisection Auctiong(k) may require the exchange of Θ(k+

2k−g(k)) bits, and it has an average-case objective PAR of
Θ(1 + g(k)).

Do Not Build

(3,1) (2,1)

(2,2)

(1,1)

(1,2)

(1,3)

(0,4)

(0,3)

(0,2)

(0,1)

(1,0)(2,0)(3,0)(4,0) (0,0)

Figure 3: Ideal partition of the value space for
Truthful Public Goodk,c with k = 3 and c = 4.

5. PROVISIONING PUBLIC GOODS
We consider the public-good problem. There are two tax-

payers, each with a private value in {0, . . . , 2k−1} that rep-
resents his benefit from the construction of a public project
(public good), e.g., a bridge.1 The goal of the social planner
is to build the public project only if the sum of the taxpay-
ers’ values is at least the cost of the bridge, where, as in [1],
the cost is set to be 2k − 1.
Problem: Public Goodk
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit
string)
Output:“Build”if x1+x2 ≥ 2k−1,“Do Not Build”otherwise.

We also consider a truthful version of this problem. Now,
in addition to determining whether to build the bridge, the
government incentivizes truthful disclosure of the private
values by requiring taxpayer i to pay c−

∑
j 6=i xj if

∑
j 6=i xj <

c but
∑
i xi ≥ c. (See, e.g., [19] for a discussion of this ap-

proach.) The government should thus learn whether or not
to build the bridge and how much, if anything, each tax-
payer should pay. The formal description of the function is
as follows.
Problem: Truthful Public Goodk,c
Input: c, x1, x2 ∈ {0, . . . , 2k−1} (each represented by a k-bit
string)
Output: “Do Not Build” if x1 +x2 < c; “Build” and (t1, t2) if
x1 +x2 ≥ c, where ti = c−x3−i if x3−i < c and x1 +x2 ≥ c,
and ti = 0 otherwise.

The corresponding ideal partition of the value space is
shown in Fig. 3, where regions for which the output is“Build”
are just labeled with the appropriate value of (t1, t2). It is
easy to show (via Observation 2.2) that no perfectly privacy-
preserving communication protocol exists for either Public
Goodk or Truthful Public Goodk,c. Therefore, we are
interested in the PARs for these problems. Table 1 shows
our bounds on the average-case objective PARs for these
problems.

6. THE MILLIONAIRES PROBLEM
Two millionaires want to know which one is richer. Each

millionaire’s wealth is private information known only to
him, and the millionaire wishes to keep it that way. The
goal is to discover the identity of the richer millionaire while
preserving the (subjective) privacy of both parties.

1This is a discretization of the classic public-good problem,
in which the private values are taken from an interval of
reals, as in [1, 4].



Problem: The Millionaires Problemk
Input: x1, x2 ∈ {0, . . . , 2k − 1} (encoded as k-bit strings)
Output: the identity of the party with the higher value, i.e.,
arg maxi∈{0,1} xi (breaking ties lexicographically).

There cannot be a perfectly privacy-preserving commu-
nication protocol for The Millionaires Problemk [15].
Hence, we are interested in the PARs for this well studied
problem. The following theorem shows that not only is per-
fect subjective privacy unattainable for The Millionaires
Problemk, but a stronger result holds:

Theorem 6.1. (A worst-case lower bound on sub-
jective PAR) No protocol for The Millionaires Prob-

lemk has a worst-case subjective PAR less than 2
k
2 .

By contrast to this worst-case result, we show that fairly
good privacy guarantees can be obtained in the average case.
We define the Bisection Protocol for The Millionaires
Problemk as follows: Ask each millionaire whether his value
lies in [0, 2k−1) or in [2k−1, 2k); continue this binary search
until the millionaires’ answers differ, at which point we know
which millionaire has the higher value. If the answers never
differ, the tie is broken in favor of millionaire 1. We may
exactly compute the average-case subjective PAR with re-
spect to the uniform distribution for this protocol applied to
The Millionaires Problemk (see Table 1). (As described
in [9], the i-induced tilings of the value space for The Mil-
lionaires Problemk induced by the Bisection Protocol
may be transformed to obtain the tiling induced by applying
the Bisection Auction to 2nd-Price Auctionk.)

Now consider a third party who observes the interaction
of the two millionaires. How much can this observer learn
about the private information of the two millionaires? Un-
like the case of subjective privacy, good PARs are unattain-
able even in the average case; as shown in Table 1, the
average-case objective PAR grows exponentially in k, and
the PAR of the Bisection Protocol grows at the same
rate but with a larger constant factor. There are numerous
different tilings of the value space that achieve the optimum
bound and that can be realized by communication protocols.

Note that the question of whether x1 ≥ x2 is equivalent,
in terms of tiling the input space, to the question of whether
x1 + x̂2 ≥ 2k − 1 for x̂2 = 2k − 1 − x2. As discussed in [9],
this allows us to use the same approach to this problem as
to Public Goodk.

7. DISJOINTNESS AND INTERSECTION

7.1 Problem and protocols
We define the Disjointnessk problem as follows:

Problem: Disjointnessk
Input: Sets S1, S2 ⊆ {1, . . . , k}
Output: 1 if S1 ∩ S2 = ∅, 0 if S1 ∩ S2 6= ∅

Figure 4 shows the ideal monochromatic partition of the
3-bit value space; inputs for which S1 ∩ S2 = ∅ are white,
and inputs for which S1 ∩ S2 6= ∅ are black.

We define the Intersectionk problem as follows:
Problem: Intersectionk
Input: Sets S1, S2 ⊆ {1, . . . , k}
Output: The set S1 ∩ S2

We will typically encode S ⊆ {1, . . . , k} as a k-bit string
so that 1011 encodes {1, 2, 4} ⊂ {1, 2, 3, 4}, and we will
abuse notation and identify x ∈ {0, 1}k with the subset of
{1, . . . , k} that it encodes.
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Figure 4: Ideal monochromatic partition for Dis-
jointnessk with k = 3.

We now turn to the three protocols that we consider here.
With slight variations in their termination, each can be used
for both Disjointnessk and Intersectionk.

Trivial protocol. In the trivial protocol, player 1 (with-
out loss of generality) sends his input to player 2, who com-
putes the output and sends this back to player 1. This re-
quires the transmission of k+ 1 bits for Disjointnessk and
2k bits for Intersectionk.

1-first protocol. In the 1-first protocol, player 1 an-
nounces a bit, and player 2 replies with his corresponding
bit if its value might affect the output; this continues until
the output is determined. In detail, player 1 announces the
most significant (first) bit of x1. After player 1 announces
his jth bit, if this bit is 0 and j < k, then player 1 announces
his (j + 1)st bit. If this bit is 0 and j = k, then the protocol
terminates (with, if computing Disjointnessk, output 1).
If this bit is 1, then player 2 announces the value of his jth

bit. If player 2’s jth bit is also 1, then for Disjointnessk the
protocol terminates with output 0, and for Intersectionk
the protocol continues (with k + 1− j in the output set); if
player 2’s bit is 0 and j < k, then player 1 announces his
(j + 1)st bit, while, if j = k, the protocol terminates.

Alternating protocol. In the alternating protocol, the
role of being the first player to announce the value of a
particular bit alternates between the players whenever the
first player to announce the value of his jth bit announces“0”
(in which case the other player does not announce the value
of his corresponding bit). This continues until the output
is determined. In detail, player 1 starts by announcing the
most significant (first) bit of x1. After player i announces
the value of his jth bit, if this bit is 0 and j < k, then the
other player announces his j + 1st bit; if i’s jth bit is 0 and
j = k, the protocol terminates (with output 1 if computing
Disjointnessk).

If i’s jth bit is 1 and the other player had previously an-
nounced his jth bit (which would necessarily be 1, else player
i would not be announcing his jth bit), then the protocol
terminates with output 0 if computing Disjointnessk, or it
continues with the other player announcing his (j + 1)st bit
(and with k+1−j being part of the output set). If i’s jth bit
is 1 and the other player had not previously announced his
jth bit, then the other player announces his jth bit; if that
bit is 0, then player i proceeds as above. If that bit is 1 and
Disjointnessk is being computed, the protocol terminates
with output 0; if the bit is 1 and Intersectionk is being
computed, then player i proceeds as above (and k+1−j will



be in the output set). Figure 5 shows the partition of the 1-,
2-, and 3-bit input spaces induced by the alternating pro-
tocol for Disjointnessk; each induced rectangle is labeled
with the corresponding transcript. (Note that some rect-
angles appear as non-contiguous regions in the figure.) We
note that both the ideal monochromatic partitions and the
monochromatic tilings induced by these protocols exhibit re-
cursive structure that is useful in proving PAR results for
these problems. (See [10].)
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Figure 5: Partition of the value space for k = 1 (top
left), 2 (bottom left), and 3 (right) induced by the
alternating protocol for Disjointnessk.

7.2 PARs
Table 1 shows our PAR results for Disjointnessk and

Intersectionk. (The trivial and 1-first protocols induce
the same tiling for Intersectionk and thus have the same
PARs; so those results are grouped together in Table 1.)
Both problems have exponentially bad average-case objec-
tive PARs. For Intersectionk, all three protocols provide
the best possible average-case objective PAR; for Disjoint-
nessk, we conjecture that the bound for the problem can be
tightened to equal the average-case objective PAR of these
three protocols. Although we do not know the average-
case subjective PARs of these problems, for each problem
all three protocols also have exponentially bad subjective
privacy. We conjecture that this is true for all protocols for
each of these problems.

Conjecture 7.1. The average-case subjective PAR of
both Disjointnessk and Intersectionk with respect to the
uniform distribution is exponential in k.

Intuitively, the alternating protocol seems better than the
other two protocols from a privacy perspective, because play-
ers take turns disclosing information about their inputs that
might not be matched by disclosure about the other player’s
input. However, the average-case objective and subjective
PARs do not reflect this. For both problems, though, we do
see a clear difference between the protocols when we con-
sider the ratio between the average-case PARs with respect
to each participant. In the trivial and 1-first protocols, the
average-case PAR with respect to player 2 is exponentially
worse than that with respect to player 1. However, for the
alternating protocol, these two PARs differ asymptotically
by only a constant factor (

√
2 and 3

2
). Even though the sub-

jective privacy is exponentially bad, the alternating protocol

is at least fairer than the others in the sense that it has a
similar effect on the players’ (subjective) privacy.

8. DISCUSSION & FUTURE DIRECTIONS

8.1 Other Notions of Approximate Privacy
By our definitions, the worst-case/average-case PARs of

a protocol are determined by the worst-case/expected value

of the expression |RI (x)|
|RP (x)| , where RP (x) is the monochro-

matic rectangle induced by P for input x, and RI(x) is
the monochromatic region containing A(f)x in the ideal
monochromatic partition of A(f). That is, informally, we
are interested in the ratio of the size of the ideal monochro-
matic region for a specific pair of inputs to the size of the
monochromatic rectangle induced by the protocol for that
pair. More generally, we can define worst-case/average-case
PARs with respect to a function g by considering the ra-

tio g(RI (x),x)

g(RP (x),x)
. Our definitions of PARs set g(R,x) to be the

cardinality of R. This captures the intuitive notion of the in-
distinguishability of inputs that is natural to consider in the
context of privacy preservation. Other definitions of PARs
may be appropriate in analyzing other notions of privacy.
We suggest a few here and discuss them in some more detail
in [10]. Further investigation of these and other definitions
provides many interesting avenues for future work.

Probability mass. Given a probability distribution D
over the parties’ inputs, a seemingly natural choice of g is the
probability mass. That is, for any region R, g(R) = PrD(R),
the probability (according to D) that the input corresponds
to an entry in R. However, a simple example illustrates that
this intuitive choice of g is problematic: Consider a problem
for which {0, . . . , n} × {i} is a maximal monochromatic re-
gion for 0 ≤ i ≤ n−1. Let P be the communication protocol
consisting of a single round in which party 1 reveals whether
or not his value is 0; this induces the monochromatic tiling
with tiles {(0, i)} and {(1, i), . . . , (n, i)} for each i. Now, let
D1 and D2 be the probability distributions over the inputs
x = (x1, x2) such that, for 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n,
PrD1 [(x1, x2) = (0, i)] = ε

n
, PrD1 [(x1, x2) = (j, i)] = 1−ε

n2 ,

PrD2 [(x1, x2) = (0, i)] = 1−ε
n

, and PrD2 [(x1, x2) = (j, i)] =
ε
n2 for some small ε > 0. Intuitively, any reasonable defini-
tion of PAR should imply that, for D1, P provides“bad”pri-
vacy guarantees (because w.h.p. it reveals the value of x1),
and, for D2, P provides “good” privacy (because w.h.p. it
reveals little about x1). In sharp contrast, choosing g to be
the probability mass results in the same average-case PAR
in both cases.

Other additive functions. In our definition of PAR and
in the probability-mass approach, each input x in a rectan-
gle contributes to g(R,x) in a way that is independent of
the other inputs in R. Below, we discuss some natural ap-
proaches that violate this condition, but we start by noting
that other functions that satisfy this condition may be of
interest. For example, taking g(R,x) = 1 +

∑
y∈R\x d(x,y),

where d is some distance defined on the input space, gives
our original definition of PAR when d(x, y) = 1 − δx,y and
might capture other interesting definitions (in which indis-
tinguishable inputs that are farther away from x contribute
more to the privacy for x). (The addition of 1 ensures that
the ratio g(RI ,x)/g(RP ,x) is defined, but that can be ac-
complished in other ways if needed.) Importantly, here and
below, the notion of distance that is used might not be a



Euclidean metric on the n-player input space [0, 2k − 1]n.
It could instead (and likely would) focus on the problem-
specific interpretation of the input space. Of course, there
are may possible variations on this (e.g., also accounting for
the probability mass).

Maximum distance. We might take the view that a
protocol does not reveal much about an input x if there
is another input that is “very different” from x that the
protocol cannot distinguish from x (even if the total num-
ber of things that are indistinguishable from x under the
protocol is relatively small). For some distance d on the
input space, we might than take g to be something like
1 + maxy∈R\{x} d(y,x).

Plausible deniability. One drawback to the maximum-
distance approach is that it does not account for the proba-
bility associated with inputs that are far from x (according
to a distance d) and that are indistinguishable from x under
the protocol. While there might be an input y that is far
away from x and indistinguishable from x, the probability
of y might be so small that the observer feels comfortable
assuming that y does not occur. A more realistic approach
might be one of “plausible deniability.” This makes use of a
plausibility threshold—intuitively, the minimum probability
that the “far away” inputs(s) (which is/are indistinguishable
from x) must be assigned in order to “distract” the observer
from the true input x. This threshold might correspond to,
e.g., “reasonable doubt” or other levels of certainty. We then
consider how far we can move away from x while still having
“enough”mass (i.e., more than the plausibility threshold) as-
sociated with the elements indistinguishable from x that are
still farther away. We could then take g to be something like
1+max{d0|PrD({y ∈ R|d(y,x) ≥ d0})/PrD(R) ≥ t}; other
variations might focus on mass that is concentrated in a par-
ticular direction from x. (In quantifying privacy, we would
expect to only consider those R with positive probability, in
which case dividing by PrD(R) would not be problematic.)
Here we use PrD(R) to normalize the weight that is far away
from x before comparing it to the threshold t; intuitively, an
observer would know that the value is in the same region as
x, and so this seems to make the most sense.

Relative rectangle size. One observation is that a bid-
der likely has a very different view of an auctioneer’s being
able to tell (when some particular protocol is used) whether
his bid lies between 995 and 1005 than he does of the auc-
tioneer’s being able to tell whether his bid lies between 5 and
15. In each case, however, the bids in the relevant range are
indistinguishable under the protocol from 11 possible bids.
In particular, the privacy gained from an input’s being dis-
tinguishable from a fixed number of other inputs may (or
may not) depend on the context of the problem and the in-
tended interpretation of the values in the input space. This
might lead to a choice of g such as diamd(R)/|x|, where
diamd is the diameter of R with respect to some distance d
and |x| is some (problem-specific) measure of the size of x
(e.g., bid value in an auction). Numerous variations on this
are natural and may be worth investigating.

Information-theoretic approaches. Information-the-
oretic approaches using conditional entropy are also natu-
ral to consider when studying privacy, and these have been
used in various settings. Most relevantly, Bar-Yehuda et
al. [2] defined multiple measures based on the conditional
mutual information about one player’s value (viewed as a
random variable) revealed by the protocol trace and knowl-

edge of the other player’s value. It would also be natural
to study objective-PAR versions using the entropy of the
random variable corresponding to the (multi-player) input
conditioned only on the protocol output (and not the input
of any player). Such approaches might facilitate the com-
parison of privacy between different problems.

8.2 Open Questions
There are many interesting directions for future research:

• Explore other definitions of PARs, along the lines dis-
cussed in the previous subsection.

• We have shown that, for both 2nd-Price Auctionk
and The Millionaires Problemk, reasonable aver-
age-case PARs with respect to the uniform distribu-
tion are achievable. Prove or disprove the conjecture
that our upper bounds for these problems extend to
all possible distributions over inputs.

• Prove lower bounds on the average-case PARs of prob-
lems for which we do not have them.

• Apply our PAR framework to other functions, and ex-
tend the framework to n-party communication.

• Starting from the same place that we did, namely [6,
15], Bar-Yehuda et al. [2] provided three quantifica-
tions of privacy. We show in Appendix A below that
the formulation in [2] is not equivalent to ours, but
there is more to do along these lines. The definition
in [2] that seems most relevant to the study of privacy-
approximation ratios is the notion of h-privacy. Deter-
mine when and how it is possible to express PARs in
terms of h-privacy and vice versa.
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APPENDIX
A. CONTRAST WITH BAR-YEHUDA

ET AL. [2]
Although the work presented here and that of Bar-Yehuda

et al. [2] have common roots, there are significant differences
in what the two frameworks capture. Specifically:

First, the results in [2] deal with what can be learned
by a party who knows one of the inputs. By contrast, our
notion of objective PAR captures the effect of a protocol on
privacy with respect to an external observer who does not
know either of the players’ private values.

Second, and more importantly, the framework of [2] does
not address the size of monochromatic regions. As illus-
trated by the following example, the ability to do so is neces-
sary to capture the effects of protocols on interesting aspects
of privacy that are captured by our definitions of PAR.

Consider the function f : {0, . . . , 2n − 1} × {0, . . . , 2n −
1} → {0, . . . , 2n−2} defined by f(x, y) = floor(x

2
) if x <

2n−1 and f(x, y) = 2n−2 otherwise. Consider the following
two protocols for f : In P , player 1 announces his value
x if x < 2n−1 and otherwise sends 2n−1 (which indicates
that f(x, y) = 2n−2); in Q, player 1 announces floor(x

2
) if

x < 2n− 1 and x if x = 2n− 1. Observe that both P and Q
induce 2n−1 + 1 rectangles.

Intuitively, P and Q have different effects on privacy. For
half of the input pairs, P reduces by a factor of 2 the number
of input pairs from which they are indistinguishable while
not affecting the indistinguishability of the other half of the
input pairs. Q does not affect the indistinguishability of the
input pairs affected by P , but it does reduce the number
of input pairs indistinguishable from any pair in which x ≥
2n−1 by at least a factor of 2n−2.

Our notion of PAR is able to capture the different effects
on privacy of the protocols P and Q. (With respect to the
uniform distribution, the average-case objective PAR of P
is constant, and that of Q is exponential in n.) By con-
trast, the three quantifications of privacy from [2]—Ic, Ii,
and Ic−i—do not distinguish between these two protocols;
we now sketch the arguments for this claim.

For each protocol, any function h for which the protocol is
weakly h-private must take at least 2n−1 +1 different values.
This bound is tight for both P and Q. Thus, Ic is unable to
distinguish between the effects of P and Q on f .

The number of rectangles induced by P that intersect each
row and column equals the number induced by Q. Consid-
ering the geometric interpretation of IP and IQ, as well as
the discussion in Sec. VII.A of [2], we see that Ii and Ic−i
(applied to protocols) cannot distinguish between the effects
of P and Q on f .


