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ABSTRACT
We provide tight information-theoretic lower bounds for the
welfare maximization problem in combinatorial auctions. In
this problem, the goal is to partition m items among k bid-
ders in a way that maximizes the sum of bidders’ values for
their allocated items. Bidders have complex preferences over
items expressed by valuation functions that assign values to
all subsets of items.

We study the “black box” setting in which the auctioneer
has oracle access to the valuation functions of the bidders.
In particular, we explore the well-known value query model
in which the permitted query to a valuation function is in
the form of a subset of items, and the reply is the value
assigned to that subset of items by the valuation function.

We consider different classes of valuation functions: sub-
modular, subadditive, and superadditive. For these classes,
it has been shown that one can achieve approximation ra-

tios of 1− 1
e
, 1√

m
, and

√
log m
m

, respectively, via a polynomial

(in k and m) number of value queries. We prove that these
approximation factors are essentially the best possible: For
any fixed ε > 0, a (1− 1/e + ε)-approximation for submod-
ular valuations or an 1

m1/2−ε -approximation for subadditive
valuations would require exponentially many value queries,

and a log1+ε m
m

-approximation for superadditive valuations
would require a superpolynomial number of value queries.

Categories and Subject Descriptors
F.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY
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1. INTRODUCTION
Combinatorial auctions are a central research area at the

intersection of economics, game theory, and computer sci-
ence. The welfare maximization problem in combinatorial
auctions is an abstraction of many computational and eco-
nomic resource-allocation problems. In this problem, an
auctioneer sells a set M of m items to a set of k bidders.
The value of bidder i for any subset (bundle) of items is
given by a valuation set function vi : 2M → R+, where vi(S)
represents i’s maximum willingness to pay for the bundle S.
The two standard assumptions on each vi are that if S ⊆ T
then vi(S) ≤ vi(T ) (monotonicity), and that vi(∅) = 0 (nor-
malization). The objective is to partition M into k disjoint
subsets S1, S2, . . . , Sk in a way that maximizes the expres-
sion

P
1≤i≤k vi(Si) (i.e., the social welfare).

Algorithms for maximizing welfare in combinatorial auc-
tions are required to be polynomial in the natural param-
eters of the problem, m and k. However, since the “input”
(the valuation functions) is of exponential size one must
specify how it can be accessed. Most works in this field
have taken a “black box” approach in which bidders’ val-
uation functions are accessed via oracles that can answer
specific type of queries. Three types of queries have been
considered [1, 2, 5]:

• Value queries: The query to a valuation function vi

is in the form of a bundle S ⊆ M , and the response is
vi(S).

• Demand queries: The query to a valuation function
vi is in the form of a price vector p = (p1, ..., pm) and
the response is the bundle T most demanded by vi

given these prices. That is, T = argmaxS⊆Mvi(S) −P
j∈S pj .

• General queries: We allow any type of query (to
each valuation function alone). This model captures
the communication complexity (between the bidders)
of the problem. Due to its strength it is mostly inter-
esting for proving lower bounds.

Value queries are strictly less powerful than demand queries,
which, in turn, are strictly less powerful than general queries [1,
2, ?]. In this paper we focus our attention on the value query
model.



It has been shown that computing an optimal solution for
social-welfare maximization requires an exponential number
of queries even in the general queries model [13]. Hence, we
are interested in the approximability of this problem. For
the general case, the approximability of the problem is well-
understood in all models [1, 13]. Researchers have also stud-
ied the approximability of the problem for restricted classes
of valuation functions. Two families of such classes, that
have natural economic interpretations [11, 5], have been con-
sidered: Subadditive functions, and superadditive functions.
A set function f : 2M → R+ is subadditive iff for any two
sets S and T , f(S) + f(T ) ≥ f(S ∪ T ), and is superadditive
iff for any two disjoint sets S and T , f(S)+f(T ) ≤ f(S∪T ).
An important special case of subadditive functions are sub-
modular functions. A set function f is submodular iff for
any two sets S and T , f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).
Submodular functions (that are monotone and normalized)
are also reasonable to consider from an economic perspec-
tive as they characterize functions with decreasing marginal
utilities [11].

We present tight information-theoretic lower bounds for
submodular, subadditive, and superadditive valuation func-
tions in the value query model. We prove the following the-
orems:

Theorem: For any fixed ε > 0, achieving an approximation
ratio of 1− 1

e
+ ε for welfare-maximization with submodular

functions requires an exponential number of value queries.

This matches the (1− 1
e
)-approximation (achieved with a

polynomial number of value queries) recently shown by Von-
drák [15], who improved over the 1

2
-approximation shown

by Lehmann et al. [11]. (We note that this problem can
be formalized as the problem of maximizing a submodu-
lar function subject to a matroid constraint. Hence, the
greedy algorithm developed by Fisher et al. [14] provides
a 1

2
-approximation for this problem). The only previously

known information-theoretic lower bound for this problem
was 1 − O( 1

m
) (see [13], in the general queries model. Our

lower bound strengthens the 1 − 1
e

+ ε lower bound depen-
dent on P 6= NP proven by Khot et al. [10]. We stress
that our lower bound is independent of any computational
complexity assumptions and holds even for algorithms of
unbounded computational power, that are bounded only in
terms of the number of value queries they can make. Also,
we remark that the same inapproximability result does not
hold in stronger query models – it is known that (1−1/e+ε)-
approximation is possible with polynomially many demand
queries [7].

Theorem: For any fixed ε > 0, achieving an approximation
ratio of 1

m
1
2−ε

for welfare-maximization with subadditive

functions requires an exponential number of value queries.

This matches the upper bound of 1√
m

presented by Dobzin-

ski et al. [5] (achieved using a polynomial number of value
queries). The previously known lower bound in the value
query model was 1

m
1
4

[4]. In fact, our lower bound holds

even for the more restricted subclass of fractionally subad-
ditive valuations [6], introduced in [12] under the name of
XOS.

Theorem: For any fixed ε > 0, achieving an approximation

ratio of log1+ε m
m

for welfare-maximization with superaddi-
tive functions requires a super-polynomial number of value
queries.

This nearly matches the upper bound of
√

log m
m

presented
by Holzman et al. [9] (achieved via a polynomial number of
value queries). A similar lower bound was known for general
valuation functions [1, 2]. We extend this lower bound to
the restricted class of superadditive functions. In fact, the
lower bound holds for a superadditive analogue of fraction-
ally subadditive functions (that is strictly contained in the
class of superadditive valuation functions).

2. VALUE-QUERY COMPLEXITY OF SUB-
MODULAR WELFARE MAXIMIZATION

In this section, we construct an example showing that
it is impossible to achieve an approximation factor better
than 1 − 1/e for submodular utility functions in the value
oracle model. We consider algorithms whose running time is
potentially unbounded, we only count the number of value
queries posed by the algorithm. More precisely, we prove
the following.

Theorem 2.1. For any fixed β > 0 and k ≥ 2, any (pos-
sibly randomized) (1 − (1− 1/k)k + β)-approximation algo-
rithm for m items and k players with submodular valuation
functions requires eΩ(m) value queries, otherwise it fails with
high probability.

Since 1− (1−1/k)k is arbitrarily close to 1−1/e for large
enough k, this implies the following.

Corollary 2.2. For any fixed ε > 0, there is no (1 −
1/e + ε)-approximation for an arbitrary number of players,
using a subexponential number of queries.

We note that our examples use the same submodular val-
uation function for all players, just like in the NP-hardness
result of [10]. Thus the problem is hard to approximate even
in the special case where all utility functions are equal. Our
construction is different from [10], however. While the hard-
ness reduction of [10] uses explicit coverage-type submodular
functions, our valuation functions are not exactly of the cov-
erage type. Our construction is inspired by a lower bound
developed by Feige et al. [8] for the problem of maximizing
non-monotone submodular functions.

Overview of the Proof.
Consider a k-uniform hypergraph H = (X, E) and a func-

tion f : 2X → R+ where f(S) is the number of hyperedges
incident with the set of vertices S. This is a coverage-type
submodular function. The idea is that it is hard to distin-
guish instances where H is a complete k-partite k-uniform
hypergraph (and allocating one part Xi to each player re-
sults in a “perfect solution”), and instances where H is a
complete k-uniform hypergraph (and then there is no “per-
fect solution”). Since vertices of the hypergraph could be
labeled arbitrarily on the input, it’s hard for any algorithm
to find a set of vertices significantly overlapping with any
Xi and hence it cannot distinguish these two cases.

In order to make the example work, we have to modify
the coverage-type functions slightly. We consider a ground
set X partitioned into X1 ∪ X2 ∪ . . . ∪ Xk. The functions



f(S) that we define depend only on the fractions of Xi that
S contains: xi = |S∩Xi|/|Xi|. To simplify the notation, we

work with continuous functions f̃(x1, . . . , xk). The following

lemma states the properties that we need f̃(x1, . . . , xk) to
satisfy.

Lemma 2.3. Let X = X1 ∪ X2 ∪ . . . ∪ Xk as above and
let f̃ : [0, 1]k → R be a function with continuous first par-
tial derivatives, and second partial derivatives almost every-
where. Define a discrete function f : X → R so that

f(S) = f̃

� |S ∩X1|
|X1| , . . . ,

|S ∩Xk|
|Xk|

�
.

1. If ∂f̃
∂xi

≥ 0 everywhere for each i, then the function f
is monotone.

2. If ∂2f̃
∂xi∂xj

≤ 0 almost everywhere 1 for any i, j, then

the function f is submodular.

Proof. For monotonicity, it’s sufficient to observe that if
∂f
∂xi

≥ 0, then f̃ is non-decreasing in each coordinate. Hence,

adding elements cannot decrease the value of f .
For the submodularity condition, fix an element in a ∈ Xi

and consider a set S parameterized by xi = |S ∩ Xi|/|Xi|.
The marginal value of a added to S is equal to

fS(a) = f̃(x1, . . . , xi +
1

|Xi| , . . . , xk)− f̃(x1, . . . , xi, . . . , xk)

=

Z 1/|Xi|

0

∂f̃

∂xi
(x1, . . . , xi + t, . . . , xk)dt.

We want to prove that fS(a) cannot increase by adding el-
ements to S, i.e. by increasing any coordinate xj . Because
∂f̃
∂xi

is continuous and its derivative along xj ,
∂2f̃

∂xi∂xj
, is non-

positive except at finitely many points, ∂f̃
∂xi

is non-increasing

in xj . By shifting the entire integral to a higher value of xj ,
the marginal value cannot increase.

Hence, we need our continuous functions to satisfy ∂f
∂xi

≥ 0

and ∂2f
∂xi∂xj

≤ 0 for all i, j ∈ [k], which implies monotonicity

and submodularity in the discrete case. We call such func-
tions smooth submodular. To shorten notation, we write
f(x) = f(x1, . . . , xk).

In each instance, all players have the same valuation func-
tion. We find two functions f, g such that we have f(x) =
g(x) whenever maxi,j |xi − xj | ≤ ε. As we show later, this
will imply that f and g are indistinguishable by a subexpo-
nential number of queries. We construct these two functions
as follows.

Lemma 2.4. For any β > 0 and integer k ≥ 2, there is
ε > 0 and two smooth submodular functions f, g : [0, 1]k →
R+ such that

• If maxi,j |xi − xj | ≤ ε, then f(x) = g(x) and the func-

tion value depends only on x̄ = 1
k

Pk
i=1 xi.

• max{Pk
i=1 f(xi1, . . . , xik) | xij ≥ 0 & ∀j;Pk

i=1 xij =
1} ≥ (1− β)k.

1To be more precise, on any axis-parallel line there are only

finitely many points where ∂2f̃
∂xi∂xj

is not defined.

• max{Pk
i=1 g(xi1, . . . , xik) | xij ≥ 0 & ∀j;Pk

i=1 xij =

1} ≤ (1− (1− 1/k)k + β)k.

Proof. We start by considering two smooth submodular
functions, motivated by the examples of k-uniform hyper-
graphs that we discussed above.

• f(x) = 1−Qk
i=1(1− xi).

• g(x) = 1− (1− x̄)k, where x̄ = 1
k

Pk
i=1 xi.

The optimal solution with valuation function f is xii = 1,
xij = 0 for i 6= j. This way, each player gets value 1 andP

i f(xi1, . . . , xik) = k. For g, on the other hand, the value
depends only on the average of the coordinates x̄. By the
concavity of g, the optimum solution is to set xij = 1/k for
all i, j, which gives total value

P
i g(xi1, . . . , xik) = k(1 −

(1− 1/k)k).
It remains to perturb the functions so that f(x) = g(x)

for vectors satisfying maxi,j |xi − xj | ≤ ε. Let h(x) denote
the difference of the two functions,

• h(x) = f(x)− g(x) = (1− x̄)k −Qk
i=1(1− xi).

Again, we denote x̄ = 1
k

Pk
i=1 xi. Also, let δ = maxi,j |xi −

xj |. First, we estimate h(x) and its first derivatives in terms
of x̄ and δ. We use very crude bounds, to simplify the anal-
ysis.

Claim..
1. h(x) ≤ kδ(1− x̄)k−1.

2. h(x) ≥ k−4δ2(1− x̄)k−2.

3. | ∂h
∂xj

| ≤ kδ(1−x̄)k−2, i.e. | ∂h
∂xj

| ≤ k3(1−x̄)k/2−1
p

h(x).

1.
We have h(x) = (1 − x̄)k −Qk

i=1(1 − xi). If kδ ≥ 1 − x̄,

we get immediately h(x) ≤ (1− x̄)k ≤ kδ(1− x̄)k−1. So let’s
assume kδ < 1− x̄. Then, since xi ≤ x̄ + δ for all i, we get

h(x) ≤ (1− x̄)k − (1− x̄− δ)k =

(1− x̄)k

�
1−

�
1− δ

1−x̄

�k
�
≤ (1− x̄)k kδ

1−x̄
.

2.
For a lower bound on h(x), suppose that δ = x2−x1. For

k = 2, we are done immediately since

h(x) = (1− x̄)2 − (1− x̄− δ/2)(1− x̄ + δ/2) =
1

4
δ2.

Hence, we assume k > 2 and define η = 1
k−2

(x̄ − 1
2
(x1 +

x2)). I.e., x1 = x̄− (k− 2)η − δ/2, x2 = x̄− (k− 2)η + δ/2,
and the average of the remaining coordinates is x̄ + 2η. By
the arithmetic-geometric mean inequality,

Q
i6=1,2(1− xi) is

maximized when these variables are all equal:

h(x) ≥ (1− x̄)k − (1− x̄− 2η)k−2

·(1− x̄ + (k − 2)η − 1

2
δ)(1− x̄ + (k − 2)η +

1

2
δ)

= (1− x̄)k − (1− x̄− 2η)k−2(1− x̄ + (k − 2)η)2

+
1

4
δ2(1− x̄− 2η)k−2.



Again by the arithmetic-geometric mean inequality, (1 −
x̄)k ≥ (1−x̄−2η)k−2(1−x̄+(k−2)η)2. If η ≤ 1

k
(1−x̄), we are

done because then the last term is at least 1
4e2 δ2(1− x̄)k−2.

So we can assume η > 1
k
(1− x̄). In this case, we throw away

the last term and write

h(x) ≥ (1− x̄)k − (1− x̄ + (k − 2)η)2(1− x̄− 2η)k−2

= (1− x̄)k

 
1−

�
1 + (k − 2)

η

1− x̄

�2�
1− 2η

1− x̄

�k−2
!

≥ (1− x̄)k

 
1−

�
1 +

η

1− x̄

�2(k−2)�
1− η

1− x̄

�2(k−2)
!

= (1− x̄)k

 
1−

�
1− η2

(1− x̄)2

�2(k−2)
!

≥ (1− x̄)k

 
1−

�
1− 1

k2

�2(k−2)
!
≥ 1

k2
(1− x̄)k

using k > 2 and η > 1
k
(1 − x̄). We observe it always holds

that δ ≤ k(1 − x̄): If the minimum coordinate is xmin, we
have x̄ ≤ 1

k
xmin + k−1

k
· 1, hence xmin ≥ kx̄ − (k − 1) and

δ ≤ 1− xmin ≤ k(1− x̄).
Consequently, h(x) ≥ k−2(1− x̄)k ≥ k−4δ2(1− x̄)k−2.

3.
Let δ = maxi,j |xi−xj |. We estimate the partial derivative

∂h

∂xj
=
Y
i 6=j

(1− xi)− (1− x̄)k−1.

Define η = 1
k−1

(xj− x̄). I.e., xj = x̄+(k−1)η and the aver-
age of the remaining coordinates is x̄−η. By the arithmetic-
geometric mean inequality,

∂h
∂xj

≤ (1− x̄ + η)k−1 − (1− x̄)k−1

= (1− x̄)k−1

��
(1 + η

1−x̄

�k−1

− 1

�
.

Since η = 1
k−1

(xj − x̄) ≤ 1
k−1

(1 − x̄), we can estimate (1 +
η

1−x̄
)k−1 ≤ 1 + 2k η

1−x̄
. Also, we know that all coordinates

differ from x̄ − η by at most δ, in particular xj = x̄ + (k −
1)η ≤ x̄− η + δ, hence kη ≤ δ and

∂h

∂xj
≤ (1− x̄)k−1 · 2k

η

1− x̄
≤ 2δ(1− x̄)k−2.

For a lower bound, it’s enough to observe that each coor-
dinate is at most x̄ + δ, and so

∂h

∂xj
≥ (1− x̄− δ)k−1 − (1− x̄)k−1

= (1− x̄)k−1

 �
1− δ

1− x̄

�k−1

− 1

!
≥ (1− x̄)k−1

�
−(k − 1)

δ

1− x̄

�
= −(k − 1)δ(1− x̄)k−2

assuming that (k − 1) δ
1−x̄

≤ 1; otherwise we get the same

bound directly from ∂h
∂xj

≥ −(1 − x̄)k−1. This finishes the

proof of the claim.

We return to our construction. We define f̃(x) = f(x)−
φ(h(x)) where φ : R → R is defined so that φ(t) = t for

small t ≥ 0, then φ(t) is increasing and concave with a con-
trolled second derivative and finally φ(t) is bounded by a
small constant everywhere. More precisely,

• For t ∈ [0, ε1], we set φ(t) = t. We choose ε1 = kε. I.e.,
for maxi,j |xi − xj | ≤ ε, we have h(x) ≤ ε1 by Claim 1

and then f̃(x) = g(x).

• For t ∈ [ε1, ε2], the first derivative of φ is continuous
at t = ε1 and its second derivative is φ′′(t) = −α/t for
t ∈ [ε1, ε2]. Hence,

φ′(t) = 1−
Z t

ε1

α

τ
dτ = 1− α ln

t

ε1
.

We choose α = 2/ ln 1
ε1

and ε2 =
√

ε1, so that φ′(ε2) =

0. Since 0 ≤ φ′(t) ≤ 1 everywhere, we have 0 ≤
φ(ε2) ≤ ε2.

• For t > ε2, we set φ(t) = φ(ε2).

Hence, we have 0 ≤ φ(t) ≤ ε2 everywhere and f̃(x) = f(x)−
φ(h(x)) ≥ f(x)− ε2. Next, we want to show that we didn’t
corrupt the monotonicity and submodularity of f too badly.
We have

∂f̃

∂xj
=

∂f

∂xj
− φ′(h)

∂h

∂xj
= (1− φ′(h))

∂f

∂xj
+ φ′(h)

∂g

∂xj
.

We have 0 ≤ φ′(h) ≤ 1, and ∂f
∂xj

, ∂g
∂xj

are both nonnegative.

So, ∂f̃
∂xj

≥ 0. For the second partial derivatives, we get

∂2f̃

∂xi∂xj
=

∂2f

∂xi∂xj
− φ′(h)

∂2h

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj

= (1− φ′(h))
∂2f

∂xi∂xj
+ φ′(h)

∂2g

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj
.

The first two terms form a convex combination of non-positive
values. To control the third term, we have |φ′′(h)| ≤ α/h.
In Claim 3, we showed that���� ∂h

∂xi

���� ≤ k3(1− x̄)k/2−1
p

h(x).

We can conclude that

∂2f̃

∂xi∂xj
≤
����φ′′(h)

∂h

∂xi

∂h

∂xj

���� ≤ αk6(1− x̄)k−2.

We need to make the second partial derivatives non-positive.

Since ∂2g
∂xi∂xj

= − k−1
k

(1 − x̄)k−2, it is enough to add a

suitable multiple of g to both functions: f̂ = f̃ + 2αk6g,
ĝ = (1 + 2αk6)g. Then f̂ , ĝ are smooth submodular.

Recall that we have α = 2/ ln 1
kε

. For a given β > 0, we

choose ε = 1
k
e−4k6/β , so that β = 2αk6 and we increase g

only by a factor of 1 + β. We also get ε2 =
√

kε ≤ β, and
therefore f̂(x) ≥ f̃(x) ≥ f(x)− ε2 ≥ f(x)− β. Thus f̂ and
ĝ satisfy the conditions of the lemma.

Now we are ready to prove Theorem 2.1.

Proof. Consider a large set of elements X, partitioned
into equal parts X1, . . . , Xk. Lemma 2.4 defines two smooth
submodular functions. By Lemma 2.3, we define discrete
utility functions f, g : 2X → R+. We consider two instances,
where all utility functions are equal to either f or g. We



present one of these two instances to a (possibly randomized)
algorithm. The labeling of the elements of X is arbitrary
and unknown to the algorithm; we can assume that it is
uniformly random.

Let us assume that an algorithm queries a set S of size
s. Let xi = |S ∩Xi|/|Xi|. Since the partition is uniformly
random, each xi is a random variable of expectation s/k and
variance O(s). We consider k fixed here, while the number
of elements m = |X| is very large. We can assume that s ≥
εm, otherwise the deviation of xi from its expectation can
never be more than εm. Otherwise, by standard bounds, the
probability of xi deviating from its expectation by more than

εm decays as e−Ω(ε2m2/s) = e−Ω(ε2m). Hence, it happens
only with exponentially small probability that |xi − xj | > ε
for any i 6= j. Let’s call such a query unbalanced.

Consider any fixed sequence of q queries. Unless the num-
ber of queries q is exponentially large in m, it still happens
only with an exponentially small probability that any query
is unbalanced (by the union bound). Therefore, with high
probability, no query is unbalanced.

Now consider any (possibly randomized) algorithm, using
a subexponential number of value queries. In the random-
ized case, let us condition on the random bits on the algo-
rithm. Given this, the sequence of queries can depend only
on the obtained answers. Note that for balanced queries,
we have f(x) = g(x) and the function value depends only

on x̄ = 1
k

Pk
i=1 xi, i.e. on the size of the queried set, which

is the algorithm’s own choice. Hence with high probabil-
ity, the algorithm always follows the same sequence of (bal-
anced) queries and the answers obtained are the same for
f(x) and g(x). Intuitively, the algorithm never learns any
information about the partition (X1, X2, . . . , Xk).

In the case of a randomized algorithm, we can now av-
erage over the choices of its random bits. Still, with high
probability it never asks any unbalanced query and cannot
distinguish between f(x) and g(x). If the underlying in-
stance corresponds to f(x), the algorithm will never find
any set whose value differs from that of g(x), and hence
any solution obtained is at most (1− (1− 1/k)k + β) of the
optimum.

3. VALUE-QUERY COMPLEXITY OF SUB-
ADDITIVE WELFARE MAXIMIZATION

In this section, we construct an example showing that it is
impossible to achieve an approximation factor significantly
better than 1√

m
for the subadditive welfare problem, using

a polynomial number of value queries.
In fact, we prove our result for the more restricted class

of fractionally subadditive valuation functions [12, 6] that
is known to strictly contain all submodular valuation func-
tions. A fractionally subadditive function is the pointwise
maximum over a set of linear valuation functions.

Definition 3.1. A linear valuation function (also known
as additive) is a set function a : 2M → R+ that assigns a
non-negative value to every singleton {j ∈ M}, and for all
S ⊆ M it holds that a(S) =

P
j∈S a({j}).

Definition 3.2. A fractionally subadditive function is a
set function f : SM → R+, for which there is a finite set of
linear valuation functions A = {a1, ..., al} such that f(S) =
maxai∈A ai(S), for every S ⊆ M .

We prove the following theorem.

Theorem 3.1. For any fixed ε > 0, a 1

m
1
2−ε

-approximation

algorithm for fractionally subadditive valuation functions re-
quires exponentially many value queries.

We note that the result of Theorem 3.1 can be shown to
hold even for the case that bidders have the same valuation
function (as will be explained later).

Proof. We shall use probabilistic arguments (similar to
those in Section 2) to show that any algorithm that obtains
an 1

m
1
2−ε

-approximation to the social-welfare requires an ex-

ponential number of value queries. For simplicity, we shall
start by proving the theorem for the case that bidders have
different valuation functions. We shall later discuss how the
proof can be extended to the more restricted case that all
bidders have the same valuation function.

Fix a small constant δ > 0 (to be determined later). We
shall construct a combinatorial auction with m items and
k =

√
m bidders. For every S let aS be the linear valuation

function that assigns a value of 1 to each item j ∈ S, and
0 to each item j /∈ S. Let ā be the additive valuation that
assigns every item j ∈ [m] a value of 1+δ

m
1
2−δ

.

Let v1, ..., vk be an k-tuple of (equal) valuation functions
defined as follows:

vi = max{aS:|S|≤(1+δ)m2δ , ā}
That is, vi is the pointwise maximum over the set of additive
valuation functions that contains aS for all S of a certain
size, and ā. Choose, uniformly at random, a partition of
the items into

√
m disjoint bundles of items T1, . . . , Tk such

that for each i, |Ti| = √
m. Let v′1, . . . , v

′
k be the k-tuple of

valuation functions defined as follows:

v′i = max{vi, aTi}
We shall prove that for every player i, it takes an expo-
nential number of value queries to distinguish between the
case that i’s valuation function is vi and the case that i’s
valuation function is v′i. It is easy to see that the maxi-
mum social-welfare attainable if the valuation functions are
v1 . . . , vk is O(m

1
2+2δ), while the optimal social-welfare if the

valuation functions are v′1 . . . , v′k is m. Hence, the fact that
it requires an exponential number of value queries to distin-
guish between the valuation-functions profiles v1 . . . , vk and
v′1 . . . , v′k implies that one cannot get an approximation ratio
better than Ω( 1

m
1
2−2δ

) in less than an exponential number

of value queries.
Consider a specific player i. Fix a bundle S of size smaller

or equal to m
1
2+δ. It holds that vi(S) = max{|S|, (1 +

δ)m2δ}. v′i might assign a value higher than vi to S but
only if

|S ∩ Ti| > (1 + δ)m2δ.

Using standard probabilistic arguments, and relying on
the Chernoff bounds, it can be shown that Pr[|S ∩ Ti| >
(1 + δ)m2δ] is exponentially small (see Section 2).

Now, consider a bundle S of size greater than m
1
2+δ. vi

will assign to S the value of (1 + δ) |S|
m

1
2−δ

. v′i might assign

S a higher value, but only if

|S ∩ Ti| > (1 + δ)
|S|

m
1
2−δ

.



Again, using standard probabilistic arguments it can be

shown that Pr[|S∩Ti| > (1+δ) |S|
m

1
2−δ

] is exponentially small.

We conclude that for every bundle S, only with exponen-
tially small probability does one gather sufficient informa-
tion to distinguish between the case that i’s valuation is vi

and the case that it is v′i. Hence, it requires an exponential
number of value queries to distinguish between vi and v′i in
the worst case. This concludes the proof of the theorem.

We note that this proof can be extended to the case that
all bidders have the same valuation function. Observe, that
all the vi functions are identical. We shall show how it is
possible to make all the v′i identical as well. Informally, in
the construction of v′i, we have associated every bidder i
with a bundle Ti. However, it is possible to define v′i in
a way that associates every bidder i with the entire par-
tition T1, ..., Tk. This is done by defining each v′i to be
max{vi, aT1 , ..., aTk}. It is still true that distinguishing be-
tween v1, ..., vk and v′1, ..., v

′
k requires an exponential number

of value queries (using the same probabilistic arguments as
before and the union bound). It is also still true that the ra-
tio between the social welfare if the valuation functions are
v1, ..., vk, and the social welfare if the valuation functions are

v′1, ..., v
′
k is O(m

1
2−2δ)(the ratio between O(m

1
2+2δ) and m,

respectively). Hence, in order to obtain an approximation-
ratio better than Ω( 1

m
1
2−2δ

), an exponential number of value

queries in required.

4. VALUE-QUERY COMPLEXITY OF SU-
PERADDITIVE WELFARE MAXIMIZA-
TION

In this section, we construct an example showing that it is
impossible to achieve an approximation factor significantly
better than log m

m
for the superadditive welfare problem, us-

ing a polynomial number of value queries.
The construction of the example will be done in two steps.

First, we shall define a subclass of superadditive valuation
functions we term min-linear functions. This is a superad-
ditive analogue of fractionally subadditive functions [12, 6].
We shall then prove our lower bound for this more restricted
class.

Definition 4.1. A min-linear function is a set function
f : 2M → R+ such that there is a finite set of linear valua-
tion functions A = {a1, . . . , al} such that for every S ⊆ M
f(S) = minai∈A{ai(S)}.

It is easy to show (and analogous to the proofs in [12, 11])
that min-linear functions are contained in the class of super-
additive valuation functions, and are a superclass of super-
modular valuation functions. For completeness we present
the simple proofs below. Simple examples demonstrate that
these containments are strict.

Claim 4.1. Any min-linear function is superadditive.

Proof. Let f = mina∈A a be a min-linear function. Let
S and T be two disjoint subsets of items. By definition
there are linear functions aS , aT , and aS∪T in A for which
the value of S, T , and S ∪ T , is minimized. Therefore, it
must hold that aS(S) ≤ aS∪T (S) and aT (T ) ≤ aS∪T (T ).

Hence:

f(S ∪ T ) = aS∪T (S ∪ T )

= aS∪T (S) + aS∪T (T )

≥ aS(S) + aT (T )

= f(S) + f(T ).

Definition 4.2. A set function f is supermodular iff for
any two sets S and T , f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ).

Claim 4.2. Any supermodular valuation function is a min-
linear function.

Proof. Let f be a supermodular valuation function. Fix
an order on the items, w.l.o.g., 1, ..., m. For every set S
we define a linear function aS as follows: For every j ∈ S
aS({j}) = f({1, ..., j}) − f({1, ..., j − 1}). For every j /∈ S
aS({j}) = ∞, where ∞ represents a very large number (in
particular f(M) << ∞). It is easy to see that aS(S) = f(S)
for any S. We want to show that f is min-linear and the
finite set of linear functions is A = {aT }T⊆M . For this, we
need to show that aS(S) = minaT∈A aT (S).

Observe that for any S, T such that S is not contained in
T , it is impossible that the minimum for S is achieved by
aT (because for some j ∈ S aT ({j}) = ∞). So, we are left
with the case that S ⊆ T . Here we exploit the well-known
fact that monotone supermodular functions have increasing
marginal values. That is, if U ⊂ V ⊆ M , and j is in neither
U nor V , then f(U ∪ {j}) − f(U) ≤ f(V ∪ {j}) − f(V ).
It is easy to see that this implies that for S ⊆ T , for any
j ∈ S aS({j}) ≤ aT ({j}). Hence, aS is indeed the linear
function for which the minimum is achieved (for bundle S).
This implies that f = min A.

We are now ready to prove the following theorem:

Theorem 4.1. For any ε > 0, a log1+ε m
m

-approximation
algorithm for min-linear valuation functions requires a su-
perpolynomial number of value queries.

We note that the result of Theorem 4.1 can be shown
to hold even for the case that all bidders have the same
valuation function (as will be discussed later).

Proof. For simplicity, we shall start by proving the the-
orem for the case that bidders have different valuation func-
tions. We shall later discuss how the proof can be extended
to the more restricted case that all bidders have the same
valuation function.

We use probabilistic arguments similar to those in Sec-
tion 2. Fix ε > 0. We construct an auction with |M | =
m + m

log1+ε m
items and |N | = k = m

log1+ε m
. M consists

of two disjoint sets M1 and M2, such that |M1| = m and
|M2| = m

log1+ε m
. Each bidder i ∈ [k] is associated with a

unique item di in M2. We partition M1, uniformly at ran-
dom, into k = m

log1+ε m
bundles T1, ..., Tk of equal size (i.e.,

of size log1+ε m).
For each bidder i, let bi be the linear valuation function

that assigns a value of 1 to di and 0 to all other items. By
aS , we denote a linear function that assigns a value of 1 to
each item in S and 0 to all other items.

Let v1, ..., vk be the k-tuple of valuation functions defined
as follows:

vi = min{bi, aS:S⊆M1,|S|= m
2
}.



This function has a very simple interpretation: It assigns a
value of 1 to every set that contains di and more than m

2
items in M1. It assigns 0 to all other bundles.

Let v′1, ..., v
′
k be the k-tuple of valuation functions defined

as follows:

v′i = min{bi, aS:S⊆M1,|S|= m
2 & S∩Ti 6=∅}.

This function too has a simple interpretation: It assigns a
value of 1 to every set that contains di and Ti, or di and
more than m

2
items in M1. It assigns 0 to all other sets.

We shall show that it would take a super-polynomial num-
ber of value queries to distinguish between the case that i’s
valuation function is vi and the case that it is v′i. It is
easy to see that if the valuation functions of the bidders are
v1, ..., vk then the optimal social welfare is 1. On the other
hand, if the valuation functions of the players are v′1, ..., v

′
k

then the optimal social welfare value is m
log1+ε m

(assign ev-

ery bidder i the bundle that contains di and Ti). Hence,

it follows that achieving an approximation of log1+ε m
m

re-
quires a super-polynomial number of value queries (required
to distinguish between v1, ..., vk and v′1, ..., v

′
k).

Observe that, for each i, vi and v′i assign exactly the same
value to all bundles, except for bundles that contain di and
at most m

2
items in M1. Also observe, that the difference

is that vi assigns a value of 0 to all these bundles, while v′i
assigns a value of 1 to such bundles that contain Ti (and 0 to
all other such sets). What is the probability that a set of size
at most m

2
in M1 contains Ti? Let S be a bundle in M1 of

size at most m
2

. Recall that Ti is uniformly distributed over

all sets of size log1+ε m. For every item in Ti, the probability
that it is contained in S is at most 1

2
. Therefore,

Pr[Ti ⊆ S] ≤ 1

2log1+ε m

This implies that 2log1+ε m, i.e., a super-polynomial number
of value queries, may be required to distinguish between vi

and v′i. The theorem follows.
We note that this proof can be extended to the case that

all bidders have the same valuation function. Observe that
all the vi functions are identical. So, it suffices to show that
the v′is can be converted to be identical, while still main-
taining the following properties: It must require a super-
polynomial number of value queries to distinguish between
v1, ..., vk and v′1, ..., v

′
k. The ratio between the social welfare

if the valuation functions are v1, ..., vk, and the social welfare
if the valuation functions are v′1, ..., v

′
k must remain m

log1+ε m

(the ratio between 1 and m
log1+ε m

, respectively). This can

be done in a way analogous to that shown in the proof of
Theorem 3.1. Informally, in the construction of v′i, we have
associated every bidder i with a bundle Ti. However, it is
possible to define v′i in a way that associates every bidder i
with the entire partition T1, ..., Tk.

5. OPEN QUESTIONS
We conclude by exhibiting the following two open ques-

tions:

• For the case of submodular valuation functions, the
only information-theoretic lower bound in the models
of general and demand queries is 1 − O(1/m). There
are indications that suggest the existence of a constant

(1 − ε) lower bound (APX-hardness results in the de-
mand query and general query models [3, 7], and an
integrality gap [4]). Proving such a lower bound in
any of these two models is a very interesting open
question and seems to require non-trivial combinato-
rial constructions.

• We have presented tight lower bounds in the value
query model for submodular and subadditive valuation

functions. There is still a gap between
√

log m
m

and log m
m

in the case of superadditive valuations. We have not
considered the class of supermodular valuation func-
tions, for which no information-theoretic lower bound
is known in any of the models. Proving information-
theoretic lower bounds for this class is an open prob-
lem.
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[15] J. Vondrák. Optimal approximation for the
Submodular Welfare Problem in the value oracle
model. To appear in Proc. of the 40th Annual ACM
Symposium on Theory of Computing (STOC), 2008.


