
Mechanism Design Over Discrete Domains

Ahuva Mu’alem
Social and Information Sciences Laboratory

California Institute of Technology
ahumu@yahoo.com

Michael Schapira
∗

School of Engineering and Computer Science
Hebrew University of Jerusalem, Israel

mikesch@cs.huji.ac.il

ABSTRACT
Often, we wish to design incentive-compatible algorithms for
settings in which the players’ private information is drawn
from discrete domains (e.g., integer values). Our main result
is identifying discrete settings in which an algorithm can
be made incentive-compatible iff the function it computes
upholds a simple monotonicity constraint, known as weak-
monotonicity. To the best of our knowledge, this is the first
such characterization of incentive-compatibility in discrete
domains (such characterizations were previously known only
for inherently non-discrete domains, e.g., convex domains).
We demonstrate the usefulness of this result by showing an
application to the TCP-inspired congestion-control problem
presented in [20].

Categories and Subject Descriptors
F.m [Theory of Computation]: MISCELLANEOUS

General Terms
Algorithms, Economics, Theory

Keywords
Game Theory, Mechanism Design

1. INTRODUCTION
Motivation. The economic field of mechanism design, and
its algorithmic extensions [16, 17], focus on the design of
algorithms that aim to achieve global objectives in settings
in which the “input” is provided by self-interested strate-
gic players. This necessitates the design of algorithms that
are incentive-compatible in the sense that players are incen-
tivized via payments to behave as instructed. The most nat-
ural approach to designing incentive-compatible algorithms
is coming up with an algorithm and an explicit payment

∗Supported by grants from the Israel Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’08,July 8–12, 2008, Chicago, Illinois, USA.
Copyright 2008 ACM 978-1-60558-169-9/08/07 ...$5.00.

scheme that guarantees its incentive-compatibility. How-
ever, finding appropriate payments is often a difficult, setting-
specific, task, which is mostly achievable for very simple
types of algorithms.

A more general approach is the following: Any algorithm
that interacts with selfish players and then outputs an out-
come, can be regarded as computing a function, called a
social-choice function, from the players’ “input” to some
outcome space. Certain properties of social-choice func-
tions are known to imply their implementability, that is, the
existence of a payment scheme that guarantees incentive-
compatibility. Hence, instead of explicitly dealing with pay-
ments, the problem of designing incentive-compatible algo-
rithms boils down to analyzing the mathematical properties
of the social-choice functions computed by algorithms. This
approach makes sense if these mathematical properties are
simple and easy to analyze.

A simple constraint on social choice functions called“weak-
monotonicity” has been shown to characterize the imple-
mentability of social choice functions in several interesting
settings. However, all these characterizations of incentive-
compatibility are known to apply only to environments in
which the private information of the players is drawn from
inherently non-discrete domains (for instance, convex do-
mains).

In this paper we address the problem of finding sufficient
and necessary conditions for the implementability of social
choice functions in discrete settings. This question is moti-
vated by the many cases in which the private information of
the players is drawn from discrete domains (e.g., integers).
Implementability in discrete domains is still little under-
stood and has received but little attention in economics liter-
ature (see [13]). Characterizing implementability in discrete
domains may prove to be helpful to the design of incentive-
compatible algorithms.

The Setting and Related Work. We consider the stan-
dard mechanism design setting: There are n players 1 . . . n,
and a set of outcomes O. Each player i has a private valua-
tion function vi ∈ Vi that assigns a real value to every o ∈ O
(the higher the value of the outcome the more desirable it
is). A (deterministic) social-choice function is a function
that assigns an outcome o to every v ∈ V , where V denotes
V1× . . .×Vn. Intuitively, a social-choice function f is said to
be implementable iff there is a payment-function pi : V → R
such that each player i never gains from “lying” about his
valuation function. Formally, let V−j denote the cartesian
product of all Vis but Vj , and let (vi, v−i) denote the profile
of valuation functions in which player i’s valuation function

is vi ∈ Vi, and the other players’ valuation functions are as
specified by v−i ∈ V−i. Then, f is implementable iff there is
a payment function pi such that for every i ∈ [n], for every
v−i ∈ V−i, and for every vi, v

′
i ∈ Vi,

vi(f(vi, v−i)) − pi(vi, v−i) ≥ vi(f(v′
i, v−i)) − pi(v

′
i, v−i).

An algorithm is incentive-compatible (in dominant strate-
gies) if the social-choice function it computes is implementable.

Rochet [18] has shown that any social-choice function is
implementable iff a constraint called “cycle monotonicity”
holds. Hence, it is possible to show that an algorithm is
incentive-compatible by proving that the social-choice func-
tion it computes upholds cycle monotonicity. Indeed, re-
cently Lavi and Swamy [11] have done so in the context of a
simple scheduling problem (over severely restricted discrete
domains). However, in general, resorting to this technique
tends to be quite complicated and cumbersome. For this
reason, researchers seek characterizations of implementabil-
ity that are simpler to analyze (and thus more useful in the
design of incentive-compatible algorithms). Bikhchandani et
al. [3] proposed the simple weak-monotonicity constraint: A
social-choice function f is said to be weakly-monotone if for
every i ∈ [n], for every v−i ∈ V−i, and for every vi, v

′
i ∈ Vi,

such that f(vi, v−i) = o1 and f(v′
i, v−i) = o2 it holds that

vi(o1) + v′
i(o2) ≥ vi(o2) + v′

i(o1).

Informally, f is said to be strongly-monotone if this inequal-
ity is always strict (see [10] for the formal definition). Ob-
serve that unlike the definition of implementability, the def-
inition of weak-monotonicity does not involve a payment
function. It is easy to show that weak monotonicity is al-
ways necessary for the implementability of a social-choice
function (e.g., [3]) but that it is not always sufficient. Weak
and strong monotonicity have proven to be very useful in
various mechanism design settings, see e.g., [12, 2, 8, 10, 15,
5, 4].

We shall call a domain of valuation functions V = V1 ×
. . . × Vn a weak-monotonicity domain if weak-monotonicity
is both sufficient and necessary for implementability. [3, 9]
present some canonical examples of weak-monotonicity do-
mains. Saks and Yu [19] extended these results by showing
that if each Vi is convex then V is a weak-monotonicity
domain. Monderer [14] has taken this an additional step
forward by essentially showing that this is true even if the
closure of each Vi is convex1. All the aforementioned results
apply to non-discrete domains only (convex domains etc.).

Our Contribution. We exhibit (in Section 2) the first fam-
ily of discrete weak-monotonicity domains (to the best of
our knowledge), which we term Monge domains. The proof
that Monge domains are indeed weak-monotonicity domains
takes advantage of the two dimensional version of submodu-
larity (see [6]) that holds for this kind of domains (expressed
by Monge matrices, hence the name). We highlight several
properties of Monge domains that are useful from a mech-
anism design perspective and demonstrate their applicabil-
ity in the context of the TCP-inspired congestion-control

1Monderer basically shows that the closure of each Vi is con-
vex IFF weak monotonicity characterizes implementability
for randomized mechanisms. In this paper (as in previous
works) we deal with deterministic mechanisms.

setting presented in [20] (in Section 3). In this congestion-
control setting each strategic player (“flow”) wants to trans-
mit packets along a fixed path in a network in which the
nodes are non-strategic routers. Routers drop packets us-
ing fair queuing [7] if the network becomes congested. The
flows must decide on their transmission rates, and wish to
maximize their throughput. We exploit the Monge structure
of this domain to prove that the social-choice function that
optimizes the max-min fairness value is implementable.

Finally (in Section 4), we present some simple discrete
domains that are not weak-monotonicity domains, like inte-
ger grid domains. For these domains we show that despite
the fact that weak-monotonicity does not imply the imple-
mentability of social-choice functions, strong-monotonicity
is sufficient for implementability.

2. MONGE DOMAINS AND MECHANISM
DESIGN

2.1 Monge Domains and Alignment
In order to define Monge domains we must first explain

what Monge matrices are:

Definition 1. A matrix A = (ar,c)r∈[R],c∈[C] is a Monge
matrix if for every integers 1 ≤ r < r′ ≤ R and 1 ≤ c <
c′ ≤ C it holds that ar,c + ar′,c′ ≥ ar,c′ + ar′,c.

So, Monge matrices are simply matrices for which a simple
inequality holds (for every two diagonals). These inequal-
ities can be regarded as a two-dimensional version of sub-
modularity (e.g. [6]). One of the useful properties of Monge
matrices is that it is easy to verify, for any given matrix,
whether it is a Monge matrix (as implied by the following
proposition).

Proposition 2.1. [6] A matrix A = (ar,c)r∈[R],c∈[C] is a
Monge matrix iff for every integers 1 ≤ r < R and 1 ≤ c < C
it holds that ar,c + ar+1,c+1 ≥ ar,c+1 + ar+1,c.

That is, in order to verify whether a matrix is a Monge
matrix it is sufficient to go over adjacent entries and check
whether a simple inequality holds.

Definition 2. A domain V = V1 × . . . × Vn is a Monge
domain if for every i ∈ [n] there is an order over the out-
comes in O o1, o2, . . . and an order over the valuation func-
tions in Vi v1

i , v2
i , ..., such that the matrix A = (ar,c) in

which ar,c = vc
i (or) is a Monge matrix. We shall refer to

A as a Monge matrix corresponding to Vi. Let ≤A(O) and
≤A(Vi) denote the orders over O and Vi, respectively (that
is, o ≤A(O) o′ if the row in A that corresponds to o comes
before the row that corresponds to o′, or if it is the same
row. ≤A(Vi) is defined in an analogous way).

Remark 2.2. Observe that the definition of Monge do-
mains requires each Vi to be finite. It is easy to extend our
definitions and results to Vis of infinite size.

Alignment is a property of social-choice functions that
shall play a major role in our proofs.

Definition 3. A social-choice function f is said to be
aligned with a Monge domain V if the following holds: For
every i ∈ [n], and for every v−i ∈ V−i, there is a Monge ma-
trix A that corresponds to Vi, such that for every vi ≤A(Vi) v′

i

it holds that f(vi, v−i) ≤A(O) f(v′
i, v−i).

Like Monge matrices, alignment also has a simple inter-
pretation: A social-choice function is aligned with a Monge
domain if its output is“non-decreasing”(when looking at the
corresponding Monge matrix). This simple interpretation is
explained in Figure 2.1.

 ! ! ! !os

vi
j+1(or+1)vi

j(or+1).

vi
j+1(or) vi

j(or)!!! or

!.

!! o2

 o1

vi
m ... vi

j+1 vi
j......vi

4vi
3vi

2vi
1

Figure 1: This example depicts an aligned social
choice function f defined over a Monge domain.
For a fixed v−i there is a Monge matrix, such that
the rows represent outcomes, the columns represent
valuation functions in Vi, and vj

i (o
r) + vj+1

i (or+1) ≥

vj
i (o

r+1) + vj+1
i (or) for every r, j. f must be such that

the outcomes chosen for the different valuations (de-
noted by stars) are downwards sloping

2.2 Monge Domains are Weak-Monotonicity
Domains

Our main result is the following theorem:

Theorem 2.3. Any Monge Domain is a weak-monotonicity
domain.

We first provide an overview of the proof of Theorem 2.3:
Recall that any implementable function is weakly-monotone.
So, in order to prove that a Monge domain is a weak-monotonicity
domain one must show that weak-monotonicity of a social-
choice function implies its implementability. Our proof that
any weakly-monotone social-choice function is implementable
consists of 3 main steps:

• We start by proving a lemma we call the “Shifting
Lemma”. This lemma is of great use to us through-
out the proof of Theorem 2.3.

• Using the Shifting Lemma, we show that any aligned
social-choice function is implementable. We do so by
proving that for any aligned social-choice function cycle-
monotonicity holds (recall that cycle-monotonicity is
sufficient for implementability). This intermediate step
in the proof is of independent interest – it shows that
one can prove the implementability of a social choice
function by proving that it is aligned (a technique we
shall use in our application, described in Section 3).

• After showing that any aligned social-choice function is
implementable, we go on to showing that any weakly-
monotone social-choice function is implementable. This
too requires the use of both the Shifting Lemma and
cycle-monotonicity.

Proof. We shall now present the terminology necessary
to state and prove the Shifting Lemma.

Definition 4. For any k-tuple v1...k
i = v1

i , . . . , vk
i of dif-

ferent valuation functions in Vi and any k-tuple o1...k =
o1, ..., ok of outcomes in O, we define:

V alue[(v1...k
i , o1...k] = Σk

r=1v
r
i (or).

Let i ∈ [n], let vi ∈ Vi, let v1...k
i = v1

i , . . . , vk
i be a k-tuple

of valuation functions in Vi, and let f be a social choice
function. We denote by f(v1...k

i , v−i) the k-tuple of outcomes
in O f(v1

i , v−i) . . . f(vk
i , v−i). Let o1...k = o1, ..., ok be a k-

tuple of outcomes in O. We let Π[o1...k] denote the set of all
k-tuples of outcomes in O that are obtained by permuting
the elements in o1...k.

Definition 5. A social-choice function f is said to up-
hold cycle-monotonicity if for every i ∈ [n], for every v−i ∈
V−i, for every positive integer k ≤ |Vi|, for every k-tuple
v1...k

i = v1
i , . . . , vk

i of different valuation functions in Vi, and
for every π ∈ Π[f(v1...k

i , v−i)], it holds that:

V alue[v1...k
i , f(v1...k

i , v−i)] ≥ V alue[v1...k
i , π].

Remark 2.4. Observe that weak-monotonicity is a ver-
sion of cycle-monotonicity in which k equals 2.

Lemma 1. [Shifting Lemma] Fix r ∈ [n], and integer
k ≥ 1. Let A be a Monge matrix corresponding to Vr.
Let v1...k

r = v1
r , . . . , vk

r be a k-tuple of different valuation
functions in Vr such that vr

i ≤A(Vr) . . . ≤A(Vr) vk
r (since

r is fixed, for simplicity we shall refer to these valuation
functions as v1...k = v1, . . . , vk). Let o1...k = o1, ..., ok be
a k-tuple of outcomes in O such that if oj ≤A(O) oi for

some i < j then vi(oi) + vj(oj) = vi(oj) + vj(oi). Let
π0 = π0

1 , ..., π0
k be the permutation in Π[o1...k] such that

π0
1 ≤A(O) . . . ≤A(O) π0

k. Then,

V alue[v1...k, o1...k] = V alue[v1...k, π0.]

Proof. [Sketch] Let 1 ≤ m ≤ k be the index of the
smallest element in o1, ..., ok (according to ≤A(O)). Consider

the k-tuple of outcomes o′1...k = o′1, ..., o
′
k such that o′1 = om,

o′m = o1, and for every i /∈ {1, m} o′i = oi. Observe that it
must hold that V alue[v1...k, o1...k] = V alue[v1...k, o′1...k] (if
m = 1 then this is obvious, if m > 1 this is due to the fact
that v1(o1) + vm(om) = v1(om) + vm(o1)). We shall now
prove that o′1...k too has the property that if o′j ≤A(O) o′i for

some i < j then vi(o′i)+ vj(o′j) = vi(o′j)+ vj(o′i). Since, this

property holds for o1...k, and o′1...k only differs from o1...k in
(at most) two coordinates, and since o′1 is smaller than any
other outcome, it is easy to see that it suffices to handle the
two following cases:

• Case 1: Consider some 1 < i < m such that o1 =
o′m ≤O(A) o′i. Due to the fact that A is a Monge matrix

it must hold that vi(o′i) + vm(o′m) ≤ vi(o′m) + vm(o′i).
We wish to show that this inequality is an equality.

Assume, by contradiction, that

vi(o′i) + vm(o′m) < vi(o′m) + vm(o′i).

Since om ≤A(o) oi and i < m, we know that

vi(o′i) + vm(o′1) = vi(oi) + vm(om) =

vi(om) + vm(oi) = vi(o′1) + vm(o′i).

A simple calculation (subtracting the second inequality
from the first) shows that

vi(o′m) + vm(o′1) > vi(o′1) + vm(o′m).

However, since o′1 ≤A(O) o′m (o′1 is the smallest ele-

ment), and vi ≤A(Vr) vm this is a contradiction to the
fact that A is a Monge matrix.

• Case 2: Consider some i > m such that o′i ≤A(O) o′m.
Due to the fact that A is a Monge matrix it must hold
that vm(o′m) + vi(o′i) ≤ vm(o′i) + vm(o′m). We wish to
show that this inequality is an equality. Assume, by
contradiction, that

vm(o′m) + vi(o′i) < vm(o′i) + vi(o′m).

Since oi = o′i ≤A(O) o′m = o1 and 1 < i, we know that

v1(o′m) + vi(o′i) = v1(o1) + vi(oi) =

v1(oi) + vi(o1) = v1(o′i) + vm(o′m).

A simple calculation shows that the two previous in-
equalities imply that

v1(o′m) + vm(o′i) > v1(o′i) + vm(o′m).

However, since o′i ≤A(O) o′m, and v1 ≤A(Vr) vi this is
a contradiction to the fact that A is a Monge matrix.

So, we now have a new k-tuple o′1...k, that has the same
value as o1...k, that maintains the same properties as o1...k,
and that has the smallest element in o1...k as its first ele-
ment. We now consider the k-tuple o′′1...k, that is identical
to o′1...k, with the exception that second smallest element in
o′1...k is replaced with o′2. That is, o′′1...k has the smallest
element as its first element, and the second smallest element
as its second element. Similar arguments to the ones shown
before imply that o′′1...k has the same value as o′1...k and
maintains the same properties. We continue shifting ele-
ments in this fashion until we reach πo. Since the value is
preserved throughout these different shifts, the lemma fol-
lows.

We use the Shifting Lemma to prove the following lemma:

Lemma 2. Any social-choice function that is aligned with
a Monge domain is implementable.

Proof. Let f be a social choice function that is aligned
with a Monge domain. Assume that f is not implementable.
In this case, it must be that f does not uphold cycle-monotonicity.
That is, there is some r ∈ [n], some v−r ∈ V−r, some k-tuple
v1...k

r = v1
r , . . . , vk

r of different valuation functions in Vr, and
some π ∈ Π[f(v1...k

r , v−r)] such that V alue[v1...k
r , f(v1...k

r , v−r)] <
V alue[v1...k

r , π]. Choose π∗ = π∗
1 , ..., π∗

k be the permutation
in Π[f(v1...k

r , v−r)] for which V alue[v1...k
r , π∗] is maximized.

So,

V alue[v1...k
r , f(v1...k

r , v−r)] <

V alue[v1...k
r , π] ≤ V alue[v1...k

r , π∗]

If there are some i < j such that π∗
j ≤A(O) π∗

i it holds

that vi
r(π

∗
i)+vj

r(π
∗
j) = vi

r(π
∗
j)+vj

r(π
∗
i). This is because A is

a Monge matrix and so vi
r(π

∗
i) + vj

r(π
∗
j) ≤ vi

r(π
∗
j) + vj

r(π
∗
i).

If this inequality is strict then we get a permutation with
a strictly higher value than π∗ by substituting π∗

i and π∗
j .

This would contradict the definition of π∗.
So, π∗ is a permutation for which the conditions specified

by the Shifting Lemma hold. Therefore, π∗ has the same
value as the permutation in Π[f(v1...k

r , v−r)] in which the
elements are ordered from low to high. However, this per-
mutation is precisely f(v1...k

r , v−r), because f is aligned with
A, and so

V alue[v1...k
r , f(v1...k

r , v−r)] = V alue[v1...k
r , π∗].

A contradiction.

Now, consider a social-choice function f for which weak-
monotonicity holds. We shall conclude the proof of the the-
orem by showing that cycle-monotonicity holds for this f .
Assume, by contradiction, that it does not. Then, there
is some r ∈ [n], some v−r ∈ V−r, some k-tuple v1...k

r =
v1

r , . . . , vk
r of different valuation functions in Vr, and some

π ∈ Π[f(v1...k
r , v−r)] such that V alue[v1...k

r , f(v1...k
r , v−r)] <

V alue[v1...k
r , π]. Let π0 = π0

1 , ..., π0
k be the permutation in

Π[f(v1...k
r , v−r)] such that π0

1 ≤A(O) . . . ≤A(O) π0
k. Lemma 2

implies that π0 has the highest value out of all the permu-
tations in Π[f(v1...k

r , v−r)]. (This is the permutation that
describes the output of an aligned function. For such func-
tions Lemma 2 shows that cycle-monotonicity holds.)

Let us denote the k-tuple of elements f(v1...k
r , v−r) by

o1, ..., ok. Because of the fact that A is a Monge matrix, for
every i < j and oj ≤A(O) oi it holds that vi

r(oj) + vj
r(oi) ≤

vi
r(oi) + vj

r(oj). However, the weak-monotonicity of f im-
plies that this inequality also holds in the opposite direc-
tion: vi

r(oj) + vj
r(oi) ≥ vi

r(oi) + vj
r(oj). Therefore, for ev-

ery i < j and oj ≤A(O) oi it holds that vi
r(oj) + vj

r(oi) =

vi
r(oi) + vj

r(oj). This means that we can use the Shifting
Lemma to show that the value of f(v1...k

r , v−r) is the same
as the value of π0. Since π0 has the highest value out of the
all permutations in Π[f(v1...k

r , v−r)] this contradicts the fact
that V alue[v1...k

r , f(v1...k
r , v−r)] < V alue[v1...k

r , π].

3. APPLICATION: CONGESTION CONTROL
GAMES

We shall now apply the concepts and tools presented in
Section 2 to the (discretized version) of the TCP-inspired
congestion-control setting presented in [20]: We are given a

graph G = (V, E), in which set of vertices V corresponds
to non-strategic routers, and the set of edges E corresponds
to physical communication links between these routers. For
each edge e there is a maximum (integer) number of packets
that can traverse that edge simultaneously (i.e., e’s capac-
ity), denoted by ce. The players are n flows 1, ..., n, each
described by a fixed route ri from a source-vertex si ∈ V to
a target-vertex ti ∈ V . Each player i has a private integer
value di that represents the number of packets it wishes to
transmit.

For every vector of declared values d′
1, ..., d

′
n, the capacity

of each edge e is shared between the flows in the following
recursive manner (known as fair queuing [7]): Let ke be the
number of flows whose routes go through e. If for every such
flow i d′

i ≥ ce

ke
(rounded down) then allocate a capacity of

ce

ke
to each flow whose route traverses e. Otherwise, perform

the following steps: Let d′
i be the lowest declared value of

a flow that goes through e. Allocate a capacity of d′
i to i.

Apply fair queuing to share the remaining capacity of ce−d′
i

between the remaining ke − 1 flows.
Flows are selfish and wish to maximize their throughput.

The utility of flow i is the minimum of the lowest capacity
share it gets (over edges in its route), and di. This corre-
sponds to the number of packets it is able to transmit over
its route (a flow does not care whether it is sending di pack-
ets or more than di packets). It is known (see [7, 20]) that
sharing capacity via fair queuing results in an allocation of
capacity shares that maximizes the max-min fairness value.

We shall now prove that it is a dominant strategy for every
flow i to truthfully report its private value di.

Claim 3.1. There is a way to define valuation functions
v1, ..., vn for the different flows 1, ..., n such that the congestion-
control setting in [20] is a Monge domain.

Proof. For every flow i, we associate the value di with
the valuation function vi that assigns to every (integer) num-
ber of packets 1 ≤ a ≤ M , where M is the maximal capac-
ity that can traverse any edge, the value −|di − a|. Now,
fix some i ∈ [n], and some profile of declared values of the
other flows d−i. Consider the matrix A in which each row
r corresponds to the outcome in which i is able to trans-
mit r packets, each column s corresponds to the valuation
function vs (associated with ds), and every entry ar,s in A
equals vs(r). It is easy to show that A is a Monge matrix.
Hence, this congestion-control setting can be embedded in a
Monge domain.

Fair queuing can be regarded as a social-choice function
f that maps every vector of valuation functions v1, ..., vn

(associated with the dis) to an outcome that specifies how
the capacity is shared. This function optimizes the max-min
fairness value.

Claim 3.2. The max-min fairness optimizing (fair-queuing)
function f is aligned with the (congestion-control) Monge
domain.

Proof. Fix some i ∈ [n], and some profile of declared
values of the other flows d−i. Let A be a Monge matrix as
defined above. Observe that f is aligned with the Monge
domain (A flow i cannot get a smaller capacity share by
reporting a higher di).

The following corollary (from Lemma 2) follows:

Corollary 3.3. The fair queuing social-choice function
is implementable.

Remark 3.4. In fact, an examination of the form of align-
ment of the fair-queuing function reveals that its implemen-
tation does not require any payments (payments are con-
stantly 0 – flows are neither required to pay the mechanism
nor are they paid by the mechanism).

4. WEAK AND STRONG MONOTONICITY
In this section we focus on two important cases of dis-

crete domains: Integer grid domains, and 0/1 domains. We
present an interesting example, given by Lan Yu [21], to
show that integer grids are not weak-monotonicity domains.
We then show, in contrast, that every strongly-monotone so-
cial choice function defined over an integer grid domain is
implementable. We show that the same is true for 0/1 do-
mains – while weak-monotonicity is insufficient to guarantee
implementability, strong-monotonicity is.

4.1 Integer Grid Domains

4.1.1 Integer Grids Are Not Weak-Monotonicity Do-
mains

Let V = V1 × . . .× Vn be a domain of valuation functions
defined over a set of outcomes O. We can think of every vi ∈
Vi as a vector in R|O| specifying a value for every outcome.

Definition 6. A valuation function domain is an integer
grid domain if V = Z|O| × . . . × Z|O|.

That is, an integer grid domain is a domain of valuation
functions that can take any combination of integer values.
The next proposition, due to Lan Yu [21], shows that an
integer grid is not a weak-monotonicity domain. In fact,
this example can easily be modified to show that no bounded
integer grid domain is a weak-monotonicity domain. By
bounded integer grid, we simply mean the discrete cube V =
{0, 1, ..., L}n|O| (for some positive integer L).

Proposition 4.1. [21] There is a social choice function
f defined over an integer grid domain that satisfies weak-
monotonicity and is not implementable.

Proof. Consider the following social choice function f :
V → O defined for a single player domain (i.e., V = V1).
There are 3 distinct outcomes O = {a, b, c} and V = Z3.

f(v) =

8>>>>>>>>>>><>>>>>>>>>>>:
a if {v(a) ≥ v(c) and v(a) ≥ v(b) + 2}

or {v(c) = v(a) + 1 and
v(c) = v(b) + 2},

c if {v(c) > v(a) and v(c) > v(b)}
and not {v(c) = v(a) + 1 and

v(c) = v(b) + 2},

b otherwise.

Lemma 3. The function f is weakly-monotone.

Proof. In order to show that f is weakly-monotone it is
enough to consider the following cases:

Case 1: Let f(u) = c, f(v) = a. Assume by contradiction
that v(a) − v(c) < u(a) − u(c). If v(a) ≥ v(c) and v(a) ≥

v(b) + 2, then 0 ≤ v(a) − v(c) < u(a) − u(c) implies that
u(a) > u(c). This contradicts f(u) = c.

If v(c) = v(a) + 1 and v(c) = v(b) + 2, then equivalently,
v(a) = v(c) − 1 = v(b) + 1. Now, v(a) − v(c) = −1 <
0 ≤ u(a) − u(c) implies that u(a) ≥ u(c). Contradicting
f(u) = c.

Case 2: Let f(u) = b, f(v) = a. Assume by contradiction
that v(a) − v(b) < u(a) − u(b). If v(a) ≥ v(c) and v(a) ≥
v(b) + 2, then 2 ≤ v(a) − v(b) < u(a) − u(b) implies that
u(a) > u(b) + 2. By definition of f , and by the fact that
f(u) = b 6= a, c, we get that u(a) < u(c) and u(c) ≤ u(b). In
particular, u(a) − u(b) < 0 – a contradiction.

If v(c) = v(a) + 1 and v(c) = v(b) + 2, then equivalently,
v(a) = v(c)−1 = v(b)+1. Now, v(a)−v(b) = 1 < u(a)−u(b)
implies that 2 ≤ u(a) − u(b), and we can proceed as before.

Case 3: Let f(u) = b, f(v) = c. Assume by contradiction
that v(c)−v(b) < u(c)−u(b). Now, f(v) = c, so v(a) < v(c),
and v(b) < v(c). Clearly, 0 < v(c)− v(b) < u(c)−u(b), and
u(b) < u(c). By definition of f , and by the fact that f(u) =
b 6= a, c, u(c) ≤ u(a) and u(a) < u(b) + 2. In particular,
u(c) < u(b) + 2. Therefore, u(b) < u(c) < u(b) + 2, and so
u(c) = u(b) + 1. Now, v(c) − v(b) < u(c) − u(b) = 1 implies
that v(c) − v(b) ≤ 0 – a contradiction.

To prove that f is not implementable we show that cycle-
monotonicity does not hold for f (recall that cycle mono-
tonicity is necessary for implementability).

Claim 4.2. f does not uphold cycle-monotonicity.

Proof. Consider the valuations v = (2, 1, 3), u = (1, 0, 1), w =
(1, 1, 2). By definition of f , f(v) = a, f(u) = b, f(w) = c.
Now v(a)− v(c) + w(c)−w(b) + u(b)− u(a) = −1+ 1− 1 <
0.

Remark 4.3. Observe that f is not strongly-monotone:
Let v = (2, 1, 3) and u = (1, 0, 1). f(v) = a, f(u) = b, and
v(a) + u(b) = 2 + 0 = 1 + 1 = v(b) + u(a). As we shall see
next, this is no coincidence.

4.1.2 Sufficiency of Strong-Monotonicity

Theorem 4.4. If f : V → O is strongly-monotone and V
is an integer grid domain then f is implementable.

Proof. For every distinct b, c ∈ O and v−i we define:

δi
bc(v−i) = min {v′

i(b) − v′
i(c) | v′

i ∈ Vi and f(v′
i, v−i) = b}

That is, fixing v−i, δi
bc(v−i) is the minimum possible dif-

ference between a value for b and for c assigned by the same
valuation v′

i (for which f chooses b). Specifically, if f(v) = a,
then vi(a) − vi(b) ≥ δi

ab(v−i) for every b ∈ A. W.l.o.g., we
shall assume a single player and thus we use the notation
δab instead of δi

ab(v−i) (since all monotonicity arguments in-
volve fixing the other players, one can simplify matters by
only considering single-player settings).

Lemma 4. [Triangle Inequality Lemma]
Let a, b, c be three arbitrary outcomes. If there exists u, v
such that f(v) = b and f(u) = c then: δbc + δca ≥ δba.

Proof. Assume by contradiction that: δbc + δca < δba.
The domain is an integer grid, and so there must be v, u such
that f(v) = b, f(u) = c, v(b)− v(c) = δbc and u(c) − u(a) =

δca. We can assume w.l.o.g that u(c) = v(c) (if f is strongly-
monotone, then adding a constant to v does not change the
chosen outcome).

Define v′ as follows: v′(a) = u(a), and v′(d) = v(d) for
any outcome d 6= a. By strong monotonicity f(v′) ∈ {b, a},
as the only changed value is the value of a. We shall show
that f(v′) = b. This is clearly the case if u(a) ≤ v(a).
Consider the case that v′(a) = u(a) > v(a). Now, if f(v′) =
a, and recall that f(u) = c, and u(c) = v(c), so we get
that v′(a) + u(c) = v′(c) + u(a), thus contradicting strong
monotonicity.

Now we are ready to prove our theorem. Fix an arbitrary
outcome a ∈ O such that there exists w for which f(w) = a.
Consider the following payment scheme: pd is zero if d equals
a, and pd = δda, otherwise. Assume by contradiction that
f(v) = b , and f(u) = c, but v(c) − pc > v(b) − pb. That
is, if the valuation of the player is v, he might declare u, in
order to increase his utility. Clearly, b 6= c. By definition:
v(b) − v(c) ≥ δbc. Now, by rearranging we get that: δbc ≤
v(b) − v(c) < pb − pc = δba − δca. Hence, we get that:
δbc+δca < δba, contradicting the Triangle Inequality Lemma.
This completes the proof of the theorem.

4.2 0/1-Domains

Definition 7. V = V1 × . . . × Vn is a 0/1 domain if

V = {0, 1}|O| × . . . × {0, 1}|O|.

We show that, as in the case of integer grids, 0/1 domains
are not weak-monotonicity domains, but strong-monotonicity
is sufficient for implementability.

Example 4.5. We show a 0/1-domain that is not a weak-
monotonicity domain. Consider a single player and 3 out-
comes O = {a, b, c}, and the following social choice function:
f(0, 0, 0) = f(1, 0, 0) = f(0, 0, 1) = f(1, 0, 1) = f(1, 1, 1) =
a, f(1, 1, 0) = f(0, 1, 0) = b, and f(0, 1, 1) = c. It is not
hard to verify that f is weakly-monotone. However, it is
not cyclic-monotone: Let v =(0,0,1), u=(1,1,0), w=(0,1,1).
Now, f(v) = a, f(u) = b, f(w) = c, and v(a)+u(b)+w(c) =
0 + 1 + 1 < 1 + 1 + 1 = v(c) + u(a) + w(b).

Proposition 4.6. If f : V → O is strongly-monotone,
and V is the 0/1-domains then f is implementable.

Proof. [Sketch] W.l.o.g. we assume a single player set-
ting. Suppose that there exists a negative cycle of length
3 or more (that is, a violation of cycle-monotonicity with
at least 3 outcomes). Assume w.l.o.g that this cycle is:
v1(a)+v2(b)+v3(c)+v4(d) < v1(b)+v2(c)+v3(d)+v4(a). In
a 0/1-domain, it cannot be the case that the sum in left hand
side is 4. So, assume w.l.o.g that v1(a) = 0. Now, we shall
show that it must be the case that v2(b)+v3(c)+v4(d) = 3.
Assume by contradiction that v2(b) = 0. This contradicts
strong monotonicity, as 0 = v1(a) + v2(b) > v1(b) + v2(a) ≥
0. Similarly, v3(c) = v4(d) = 1. But now, if the left hand
side equals 3, the right hand side must be equal to 4. By
strong monotonicity: 1 = v1(a) + v4(d) > v1(d) + v4(a),
this can be true only if v1(d) + v4(a) = 0, and in particular
v4(a) = 0, a contradiction.

5. DISCUSSION AND OPEN QUESTIONS
In this paper we have exhibited the first example of dis-

crete weak-monotonicity domains. We have also presented

domains in which weak-monotonicity is insufficient for im-
plementability, but strong-monotonicity does imply imple-
mentability. There are many intriguing questions that re-
main open:

• We have considered the notion of strategyproofness (incentive-
compatibility in dominant strategies). It is would be
interesting to understand the implications of the struc-
ture of Monge domains to other mechanism design no-
tions. For instance: When can we get group strate-
gyproofness (resilience to deviations even by coalitions
of players)? When can we get strategyproofness with-
out money (that is, when the payments are always 0,
as in our TCP-related application)?

• Many examples in mechanism design fall into the cate-
gory of Monge domains (other than the one presented
in Section 3), e.g.,the single parameter scheduling en-
vironment discussed by Archer and Tardos [1], single-
peaked voting problems, and more. These examples
(like ours) all involve single-parameter domains (in-
formally, domains in which the private information of
each player is expressed by one real variable). How-
ever, our framework does not, at first sight, seem re-
stricted to such domains (there is no such requirement
in our model). It would be interesting to apply our
techniques to a multi-parameter problem.

• From a computational perspective, there is much that
we do not know. In particular, how hard is it to com-
pute the payments given a Monge domain? The answer
to this question may require, as an intermediate step,
answering another interesting question: What is the
form of the payments of implementable functions over
Monge domains?

• We have shown that in integer-grid domains and 0/1
domains strong-monotonicity implies implementabil-
ity. We do not know whether this is the case for
bounded integer grid domains. (By bounded integer
grid, we simply mean the discrete cube
V = {0, 1, ..., L}n|O|, for some positive integer L).

Acknowledgements
Many thanks to Lan Yu for giving us her permission to in-
clude her counter-example in this paper. We thank Shahar
Dobzinski and Noam Nisan for helpful discussions. We also
thank the anonymous referees for their comments

6. REFERENCES
[1] Aaron Archer and Eva Tardos. Truthful mechanisms

for one-parameter agents. In FOCS, pages 482–491,
2001.

[2] Aaron Archer and Eva Tardos. Frugal path
mechanisms. In SODA, 2002.

[3] S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem,
N. Nisan, and A. Sen. Weak monotonicity
characterizes deterministic dominant strategy
implementation. Econometrica, 74(4):1109–1132, July
2006.

[4] George Christodoulou, Elias Koutsoupias, and
Annamaria Kovacs. Mechanism design for fractional
scheduling on unrelated machines. In Lars Arge,

Christian Cachin, Tomasz Jurdzinski, and Andrzej
Tarlecki, editors, ICALP, volume 4596 of Lecture
Notes in Computer Science, pages 40–52. Springer,
2007.

[5] George Christodoulou, Elias Koutsoupias, and
Angelina Vidali. A lower bound for scheduling
mechanisms. In Nikhil Bansal, Kirk Pruhs, and
Clifford Stein, editors, SODA, pages 1163–1170.
SIAM, 2007.

[6] V.G. Deineko and G. Woeginger. Some problems
around travelling salesmen, dart boards, and
euro-coins. Bulletin of the European Association for
Theoretical Computer Science, 90:43–52, October
2006.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM
’89: Symposium proceedings on Communications
architectures & protocols, 1989.

[8] Andrew Goldberg, Jason Hartline, Anna Karlin, and
Andrew Wright. Competitive auctions, 2004. Working
paper. Preliminary versions presented at SODA’01
and STOC’02.

[9] Hongwei Gui, Rudolf Muller, and Rakesh Vohra.
Characterizing dominant strategy mechanisms with
multi-dimensional types, 2004. Working paper.

[10] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards
a characterization of truthful combinatorial auctions.
In FOCS, 2003.

[11] Ron Lavi and Chaitanya Swamy. Truthful mechanism
design for multi-dimensional scheduling via cycle
monotonicity. In EC, 2007.

[12] Daniel Lehmann, Liadan O’Callaghan, and Yoav
Shoham. Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM,
49(5):577–602, 2002.

[13] William S. Lovejoy. Optimal mechanisms with finite
agent types. Manage. Sci., 52(5):788–803, 2006.

[14] Dov Monderer. Monotonicity and implementability,
2007. Working paper.

[15] Ahuve Mu’alem and Michael Schapira. Setting lower
bounds on truthfulness. In SODA, 2007.

[16] Noam Nisan and Amir Ronen. Algorithmic mechanism
design. Games and Economic Behavior, 35:166–196,
2001.

[17] Noam Nisan, Tim Roughgarden, Eva Tardos, and
Vijay V. Vazirani (eds.). Algorithmic Game Theory.
Cambridge University Press, 2007.

[18] J.C. Rochet. A necessary and sufficient condition for
rationalizability in a quasi-linear context. Journal of
Mathematical Economics, 16:191–200, 1987.

[19] Michael Saks and Lan Yu. Weak monotonicity suffices
for truthfulness on convex domains. In EC, 2005.

[20] Michael Schapira and Aviv Zohar. Congestion-control
games, 2008. Working paper.

[21] Lan Yu. Private communication, 2005.

