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Abstract

A traditionally desired goal when designing auction mechanisms is incentive compatibility, i.e., ensur-
ing that bidders fare best by truthfully reporting their preferences. A complementary goal, which has,
thus far, received significantly less attention, is to preserve privacy, i.e., to ensure that bidders reveal no
more information than necessary. We further investigate and generalize the approximate privacy model
for two-party communication recently introduced by Feigenbaum et al. [8]. We explore the privacy prop-
erties of a natural class of communication protocols that we refer to as “dissection protocols”. Dissection
protocols include, among others, the bisection auction in [9, 10] and the bisection protocol for the mil-
lionaires problem in [8]. Informally, in a dissection protocol the communicating parties are restricted to
answering simple questions of the form “Is your input between the values α and β (under a pre-defined
order over the possible inputs)?”.

We prove that for a large class of functions, called tiling functions, which include the 2nd-price
Vickrey auction, there always exists a dissection protocol that provides a constant average-case privacy

approximation ratio for uniform or “almost uniform” probability distributions over inputs. To establish
this result we present an interesting connection between the approximate privacy framework and basic
concepts in computational geometry. We show that such a good privacy approximation ratio for tiling
functions does not, in general, exist in the worst case. We also discuss extensions of the basic setup to
more than two parties and to non-tiling functions, and provide calculations of privacy approximation
ratios for two functions of interest.
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1 Introduction

Consider the following interaction between two parties, Alice and Bob. Each of the two parties, Alice and
Bob, holds a private input, xbob and yalice respectively, not known to the other party. The two parties aim
to compute a function f of the two private inputs. Alice and Bob alternately query each other to make
available a small amount of information about their private inputs, e.g., an answer to a range query on their
private inputs or a few bits of their private inputs. This process ends when each of them has seen enough
information to be able to compute the value of f(xbob, yalice). The central question that is the focus of this
paper is:

Can we design a communication protocol whose execution reveals, to both Alice and Bob, as well
as to any eavesdropper, as little information as possible about other the other’s private input
beyond what is necessary to compute the function value?

Note that there are two conflicting constraints: Alice and Bob need to communicate sufficient information for
computing the function value, but would prefer not to communicate too much information about their private
inputs. This setting can be generalized in an obvious manner to d > 1 parties party1, party2, . . . , partyd com-
puting a d-ary f by querying the parties in round-robin order, allowing each party to broadcast information
about its private input (via a public communication channel).

Privacy preserving computational models such as the one described above have become an important
research area due to the increasingly widespread usage of sensitive data in networked environments, as
evidenced by distributed computing applications, game-theoretic settings (e.g., auctions) and more. Over
the years computer scientists have explored many quantifications of privacy in computation. Much of this
research focused on designing perfectly privacy-preserving protocols, i.e., protocols whose execution reveals
no information about the parties’ private inputs beyond that implied by the outcome of the computation.
Unfortunately, perfect privacy is often either impossible, or infeasibly costly to achieve (e.g., requiring im-
practically extensive communication steps). To overcome this, researchers have also investigated various
notions of approximate privacy [7, 8].

In this paper, we adopt the approximate privacy framework of [8] that quantifies approximate privacy via
the privacy approximation ratios (Pars) of protocols for computing a deterministic function of two private
inputs. Informally, Par captures the objective that an observer of the transcript of the entire protocol will
not be able to distinguish the real inputs of the two communicating parties from as large a set as possible of
other inputs. To capture this intuition, [8] makes use of the machinery of communication-complexity theory
to provide a geometric and combinatorial interpretation of protocols. [8] formulates both the worst-case and
the average-case version of Pars and studies the tradeoff between privacy preservation and communication
complexity for several functions of interest.

1.1 Economic Motivation

The original motivation of this line of research, as explained in detail in [8], comes from privacy concerns
in auction theory. A traditionally desired goal when designing an auction mechanism is to ensure that it is
incentive compatible, i.e., bidders fare best by truthfully reporting their preferences. More recently, attention
has also been given to the complementary goal of preserving the privacy of the bidders (both with respect to
each other and to the auctioneer/mechanism). Take, for example, the famous 2nd-price Vickrey auction of
an item. Consider the ascending-price English auction, i.e., the straightforward protocol in which the price
of the item is incrementally increased, and bidders drop out when their value for the item is exceeded, until
the identity of winner is determined, and the winner is then charged the second-highest bid. Intuitively, this
protocol reveals more information than what is absolutely necessary to compute the outcome, that is, the
identity of the winner and the second-highest bid. Specifically, observe under the ascending-price English
auction not only will the value of the second-highest bidder be revealed, but so will the values of all other
bidders but the winner.

Can we design communication protocols which implement the 2nd-price Vickrey auction in an (approxi-
mately) privacy-preserving manner? Can we design such protocols that are computationally- or communication-
efficient? These sort of questions motivate our work. We consider a setting that captures applications of
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the above type, and explore the privacy-preservation and communication-complexity guarantees achievable
in this setting.

2 Summary of Our Contributions

Any investigation of approximate privacy for multi-party computation starts by defining how we quantify
approximate privacy. In this paper, we use the combinatorial framework of [8] for quantification of approx-
imate privacy for two parties via Pars and present its natural extension to three or more parties. Often,
parties’ inputs have a natural ordering, e.g., the private input of a party belongs to some range of integers
{L,L + 1, . . . ,M} (as is the case when computing, say, the maximum or minimum of two inputs). When
designing protocols for such environments, a natural restriction is to only allow the protocol to ask each
party questions of the form “Is your input between the values α and β (under this natural order over possible
inputs)?”. We refer to this type of protocols as dissection protocols and study the privacy properties of this
natural class of protocols. We note that the bisection and c-bisection protocols for the millionaires problem
and other problems in [8], as well as the bisection auction in [9, 10], all fall within this category of protocols.
Our findings are summarized below.

Average- and worst-case Pars for tiling functions for two party computation. We first consider a
broad class of functions, referred to as the tiling functions in the sequel, that encompasses several well-studied
functions (e.g., Vickrey’s second-price auctions). Informally, a two-variable tiling function is a function whose
output space can be viewed as a collection of disjoint combinatorial rectangles in the two-dimensional plane,
where the function has the same value within each rectangle. A first natural question for investigation is
to classify those tiling functions for which there exists a perfectly privacy-preserving dissection protocol.
We observe that for every Boolean tiling functions (i.e., tiling functions which output binary values) this is
indeed the case. In contrast, for tiling functions with a range of just three values, perfectly privacy-preserving
computation is no longer necessarily possible (even when not restricted to dissection protocols).

We next turn our attention to Pars. We prove that for every tiling function there exists a dissection
protocol that achieves a constant Par in the average case (that is, when the parties’ private values are
drawn from an uniform or almost uniform probability distribution). To establish this result, we make use
of results on the binary space partitioning problems studied in the computational geometry literature. We
complement this positive result for dissection protocols with the following negative result: there exist tiling
functions for which no dissection protocol can achieve a constant Par in the worst-case.

Extensions to non-tiling functions and three-party communication. We discuss two extensions of
the above results. We explain how our constant average-case Par result for tiling functions can be extended
to a family of “almost” tiling functions. In addition, we consider the case of more than two parties. We
show that in this setting it is no longer true that for every tiling function there exists a dissection protocol
that achieves a constant Par in the average case. Namely, we exhibit a three-dimensional tiling function for
which every dissection protocol exhibits exponential average- and worst-case Pars, even when an unlimited
number of communication steps is allowed.

PARs for the set covering and equality functions. [8] presents bounds on the average-case and the
worst-case Pars of the bisection protocol — a special case of dissection protocols — for several functions
(Yao’s millionaires’ problem, Vickrey’s second-price auction, and others). We analyze the Pars of the
bisection protocol for two well-studied Boolean functions: the set-covering and equality functions; the equality
function provides a useful testbed for evaluating privacy preserving protocols [3] [11, Example 1.21] and set-
covering type of functions are useful for studying the differences between deterministic and non-deterministic
communication complexities [11, Section 10.4]. We show that, for both functions, the bisection protocol fails
to achieve good Pars in both the average-case and the worst-case.
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3 Summary of Prior Related Works

3.1 Privacy-preserving Computation

Privacy-preserving computation has been the subject of extensive research and has been approached from
information-theoretic [3], cryptographic [5], statistical [12], communication complexity [13, 17], statistical
database query [7] and other perspectives [11]. Among these, most relevant to our work is the approximate
privacy framework of Feigenbaum et al. [8] that presents a metric for quantifying privacy preservation building
on the work of Chor and Kushilevitz [6] on characterizing perfectly privately computable computation and
on the work of Kushilevitz [13] on the communication complexity of perfectly private computation. The
bisection, c-bisection and bounded bisection protocols of [8] fall within our category of dissection protocol
since we allow the input space of each party to be divided into two subsets of arbitrary size. There are also
some other formulations of perfectly and approximately privacy-preserving computation in the literature,
but they are inapplicable in our context. For example, the differential privacy model (see [7]) approaches
privacy in a different context via adding noise to the result of a database query in such a way as to preserve
the privacy of the individual database records but still have the result convey nontrivial information,

3.2 Binary space partition (Bsp)

Bsps present a way to implement a geometric divide-and-conquer strategy and is an extremely popular
approach in numerous applications such as hidden surface removal, ray-tracing, visibility problems, solid
geometry, motion planning and spatial databases (e.g., see [16]). However, to the best of our knowledge,
a connection between Bsps bounds such as in [2, 4, 14, 15] and approximate privacy has not been explored
before.

4 The Model and Basic Definitions

4.1 Two-party Approximate Privacy Model of [8]
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Figure 1: An illustration
of some communication-
complexity definitions.

We have two parties party1 and party2, each a binary string, x1 and x2 respec-
tively, which represents a private value in some set U in. The common goal of
the two parties is to compute the value f(x1, x2) of a given public-knowledge
two-variable function f . Before a communication protocol P starts, each partyi
initializes its “set of maintained inputs” U in

i to U in. In one step of communi-
cation, one party transmits a bit indicating in which of two parts of its input
space its private input lies. The other party then updates its set of maintained
inputs accordingly. The very last information transmitted in the protocol P
contains the value of of f(x1, x2). The final transcript of the protocol (i.e., the
entire information exchanged) is denoted by s(x1, x2).

Denoting the domain of outputs by U out, any function f : U in×U in 7→ U out

can be visualized as
∣
∣U in

∣
∣×

∣
∣U in

∣
∣matrix with entries from U out in which the first

dimension represents the possible values of party1, ordered by some permutation
Π1, while the second dimension represents the possible values of party2, ordered
by some permutation Π2, and each entry contains the value of f associated with
a particular set of inputs from the two parties. This matrix will be denoted by
AΠ1,Π2(f), or sometimes simply by A.

We now present the following definitions from [8, 11]; see Fig. 1 for a geometric illustration.

Definition 1 (Regions, partitions). A region of A is any subset of entries in A. A partition of A is a
collection of disjoint regions in A whose union equals to A

Definition 2 (Rectangles, tilings, refinements). A rectangle in A is a submatrix of A. A tiling of A is a
partition of A into rectangles. A tiling T1 of A is a refinement of another tiling T2 of A if every rectangle in
T1 is contained in some rectangle in T2.
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Definition 3 (Monochromatic, maximal monochromatic and ideal monochromatic partitions). A region R
of A is monochromatic if all entries in R are of the same value. A monochromatic partition of A is a partition
all of whose regions are monochromatic. A monochromatic region of A is a maximal monochromatic region
if no monochromatic region in A properly contains it. The ideal monochromatic partition of A is made up
of the maximal monochromatic regions.

Definition 4 (Perfect privacy). Protocol P achieves perfect privacy if, for every two sets of inputs (x1, x2)
and (x′

1, x
′
2) such that f(x1, x2) = f(x′

1, x
′
2), it holds that s(x1, x2) = s(x′

1, x′
2). Equivalently, a protocol P

for f achieves perfectly privacy if the monochromatic tiling induced by P is the ideal monochromatic partition
of A(f).

Definition 5 (Worst case and average case Par of a protocol P ). Let RP (x1, x2) be the monochromatic
rectangle containing the cell A(x1, x2) induced by P , RI(x1, x2) be the monochromatic region containing the
cell A(x1, y1) in the ideal monochromatic partition of A, and D be a probability distribution over the space
of inputs. Then P has a worst-case Par of αworst and an average case Par of αD under distribution D
provided1

αworst = max
(x1,x2)∈U in×U in

|RI(x1, x2) |

|RP (x1, x2)|
and αD =

∑

(x1,x2)∈U in×U in

Pr
D

[x1 & x2]

∣
∣RI(x1, x2)

∣
∣

|RP (x1, x2)|

Definition 6 (Par for a function). The worst-case (average-case) Par for a function f is the minimum,
over all protocols P for f, of the worst-case (average-case) Par of P .

Extension to Multi-party Computation In the multi-party setup, we have d > 2 parties party1, party2, . . . , partyd
computing a d-ary function f : (U in)d 7→ U out. Now, f can be visualized as

∣
∣U in

∣
∣ × · · · × |U in| matrix

AΠ1,...,Πd
(f) (or, sometimes simply by A) with entries from U out in which the ith dimension represents the

possible values of partyi ordered by some permutation Πi, and each entry of A contains the value of f asso-
ciated with a particular set of inputs from the d parties. Then, all the previous definitions can be naturally
adjusted in the obvious manner, i.e., the input space as a d-dimensional space, each party maintains the
input partitions of all other d− 1 parties, the transcript of the protocol s is a d-ary function, and rectangles
are replaced by d-dimensional hyper-rectangles (Cartesian product of d intervals).

4.2 Dissection Protocols and Tiling Functions for Two-party Computation

Often in a communication complexity settings the input of each party has a natural ordering, e.g., the set of

input of a party from
{
0, 1

}k
can represent the numbers 0, 1, 2, . . . , 2k−1 (as is the case when computing the

maximum/minimum of two inputs, in the millionaires problem, in second-price auctions, and more). When
designing protocols for such environments, a natural restriction is to only the allow protocols such that each
party asks questions of the form “Is your input between a and b (in this natural order over possible inputs)?”,

where a, b ∈
{
0, 1

}k
. Notice that after applying an appropriate permutation to the inputs, such a protocol

divides the input space into two (not necessarily equal) halves. Below, we formalize these types of protocols
as “dissection protocols”.

Definition 7 (contiguous subset of inputs). Given a permutation Π of {0, 1}k, let ≺Π denote the total order
over {0, 1}k that Π induces, i.e., ∀ a, b ∈ {0, 1}k, a ≺Π b provided b comes after a in Π. Then, I ⊆ {0, 1}k

contiguous with respect to Π if ∀ a, b∈I, ∀ c∈
{
0, 1

}k
: a ≺Π c ≺Π b =⇒ c ∈ I.

Definition 8 (dissection protocol). Given a function f : {0, 1}k×{0, 1}k 7→ {0, 1}t and permutations Π1,Π2

of {0, 1}k, a protocol for f is a dissection protocol with respect to (Π1,Π2) if, at each communication step,
the maintained subset of inputs of each partyi is contiguous with respect to Πi.

Observe that every protocol P can be regarded as a dissection protocol with respect to some permutations
over inputs by simply constructing the permutation so that it is consistent with the way P updates the
maintained sets of inputs. However, not every protocol is a dissection protocol with respect to specific

1The notation Pr
D

[E] denotes the probability of an event E under distribution D.
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permutations. Consider, for example, the case that both Π1 and Π2 are the permutation over {0, 1}k that
orders the elements from lowest to highest binary values. Observe that a protocol that is a dissection protocol
with respect to these permutations cannot ask questions of the form “Is your input odd or even?”, for these
questions partition the space of inputs into non-contiguous subsets with respect to (Π1,Π2).

A special case of interest of the dissection protocol is the “bisection type” protocols that have been
investigated in the literature in many contexts [8, 10].

Definition 9 (bisection, c-bisection and bounded-bisection protocols). For a constant c ∈
[
1
2 , 1

)
, a dis-

section protocol with respect to the permutations (Π1,Π2) is called a c-bisection protocol provided at each
communication step each partyi partitions its input space of size z into two halves of size c z and (1− c) z. A
bisection protocol is simply a 1

2 -bisection protocol. For an integer valued function g(k) such that 0 ≤ g(k) ≤ k,
bounded-bisectiong(k) is the protocol that runs a bisection protocol with g(k) bisection operations followed by a
protocol (if necessary) in which each partyi repeatedly partitions its input space into two halves one of which
is of size exactly one.

We next introduce the concept of tiling functions.

Definition 10 (tiling and non-tiling functions). A function f : {0, 1}k × {0, 1}k 7→ {0, 1}t is called a tiling
function with respect to two permutations (Π1,Π2) of {0, 1}k if the monochromatic regions in AΠ1,Π2(f) form
a tiling, and the number of monochromatic regions in this tiling is denote by rf (Π1,Π2). Conversely, f is a
non-tiling function if f is not a tiling function with respect to every pair of permutations (Π1,Π2) of {0, 1}k.
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Figure 2: A tiling function with respect
to different permutation pairs (Π1,Π2)
and (Π′

1,Π
′
2) inducing different numbers of

monochromatic rectangles.

For example, f(x1, . . . , xk, y1, . . . , yk) ≡
∑k

i=1 (xi + yi)
(mod 2) is a tiling function with respect to (Π1,Π2) with
rf (Π2,Π2) = 4, where each Πi orders its inputs (z1, . . . , zk)

in increasing order of
∑k

i=1 zi (mod 2). Note that a function
f that is tiling function with respect to permutations (Π1,Π2)
may not be a tiling function with respect to a different set of
permutations (Π′

1,Π
′
2); see Fig. 3. Also, a function f can be a

tiling function with respect to two distinct permutation pairs
(Π1,Π2) and (Π′

1,Π
′
2), and the number of monochromatic re-

gions in the two cases differ; see Fig. 2. Thus, indeed we need
Π1 and Π2 in the definition of tiling functions and rf .

Π1Π1Π1

Π2Π2Π2

Π′

1Π′

1Π′

1

Π′

2Π′

2Π′

2

Figure 3: Tilability depends
on Π1 and Π2.

Extensions to Multi-party Computation For the multi-party compu-
tation model involving d > 2 parties, the d-ary tiling function f has a per-
mutation Πi of {0, 1}k for each ith argument of f (or, equivalently for each
partyi). A dissection protocol is generalized to a “round robin” dissection
protocol in the following manner. In one “mega” round of communications,
parties communicate in a fixed order, say party1, party2, . . . , partyd, and the
mega round is repeated if necessary. Any communication by any party is
made available to all the other parties. Thus, each communication of the dissection protocol partitions a
d-dimensional space by an appropriate set of (d− 1)-dimensional hyperplanes, where the missing dimension
in the hyperplane correspond to the index of the party communicating.

5 Two-party Dissection Protocol for Tiling Functions

5.1 Boolean Tiling Functions

Lemma 1. Any Boolean tiling function f : {0, 1}k ×{0, 1}k 7→ {0, 1} with respect to some two permutations
(Π1,Π2) can be computed in a perfectly privacy-preserving manner by a dissection protocol with respect to
the same permutations (Π1,Π2).
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Figure 4: This configuration
cannot happen in Case 2.

Proof. For any m × n Boolean matrix A with rows and columns indexed by
1, 2, . . . ,m and 1, 2, . . . , n, respectively, let the notation A[i1, i2, j1, j2] de-
note the submatrix of A consisting of rows i1, i1 + 1, . . . , i2 and columns
j1, j1 + 1, . . . , j2. Assume m,n ≥ 2 and suppose that the zeroes and ones
in the matrix A form a tiling. We claim that there must exist an index
i ∈ {1, 2, . . . ,m − 1} such that the partition of A into the two submatrices
A[1, i, 1, n] and A[i+1,m, 1, n] does not split any tile, or that there must exist
an index j ∈ {1, 2, . . . , n − 1} such that the partition of A into the two sub-
matrices A[1,m, 1, j] and A[1,m, j + 1, n] does not split any tile. This claim,
applied recursively on each submatrix of A, will prove Lemma 1.

We prove our claim by induction on n. The basis case of n = 2 follows
trivially. Suppose that our claim is true for all n ∈ {2, . . . , q} and consider the case of n = q + 1.

Case 1: there exists an index j ∈ {1, 2, . . . , q − 1} such that the partition of A[1,m, 1, q] into the two
sub-matrices A[1,m, 1, j] and A[1,m, j + 1, q] does not split any tile. Then, the same index j works for
A[1,m, 1, q + 1] also.

Case 2: there is no such index j as in Case 1 above, but there exists an index i ∈ {1, 2, . . . ,m − 1} such
that the partition of A[1,m, 1, q] into the two submatrices A[1, i, 1, q] and A[i+ 1,m, 1, q] does not split any
tile. Suppose that the index i does split a tile in the partition A[1, i, 1, q + 1] and A[i + 1,m, 1, q + 1] of
A[1,m, 1, q+1]. Then, we must have the situation as shown in Fig. 4, which shows that the zeroes and ones
of A[1,m, 1, q + 1] do not form a tiling. ❑

Remark 1. As Fig. 4 shows, the claim of Lemma 1 is false if f outputs three values.

5.2 Average and Worst Case Par for Non-Boolean Tiling Functions

1

2k−1

2k

f1f1f1

1

2k−g(k)−1

2k−2k−g(k)

2k

f2f2f2

number of average case
protocol steps of Par for

communication distribution Du

c-bisection on f1 k/ log2
1
c k

( c ∈ [1/2, 1) )

bounded-bisectiong(k) on f2 g(k) + 2k−g(k) − 1 g(k) + 2k−g(k)−1 − 1
( 1 ≤ g(k) ≤ k )

Figure 5: Functions f1 and f2 with rf1(Π1,Π2) = rf2 (Π1,Π2) = 2. The bisection-type protocols fail to achieve
a good average-case Par on them.

Let f : {0, 1}k×{0, 1}k 7→ {0, 1}t be a given tiling function with respect to permutations (Π1,Π2). Neither
the c-bisection nor the bounded-bisection protocol performs well in terms of average Par on arbitrary tiling
functions; see Fig. 5 for an illustration. In this section, we show that any tiling function f admits a dissection
protocol that has a small constant average case Par. Moreover, we show that this result cannot be extended
to the case of worst-case Pars.

5.2.1 Constant Average-case Par for Non-Boolean Functions

Let Du denote the uniform distribution over all input pairs. We define the notion of a c-approximate uniform
distribution D∼ c

u ; note that D∼ 0
u ≡ Du.
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Definition 11 (c-approximate uniform distribution). A c-approximate uniform distribution D∼ c
u is a distri-

bution in which the probabilities of the input pairs are close to that for the uniform distribution as a linear
function of c, namely

max
(x,y), (x′,y′)∈{0,1}k×{0,1}k

∣
∣
∣
∣
Pr
D∼ c
u

[x&y]− Pr
D∼ c
u

[x′ &y′]

∣
∣
∣
∣
≤ c 2−2k

Theorem 1.
(a) A tiling function f with respect to permutations (Π1,Π2) admits a dissection protocol P with respect to
the same permutations (Π1,Π2) using at most 4 rf(Π1,Π2) communication steps such that αD∼ c

u
≤ 4 + 4 c.

(b) For all 0 ≤ c < 9/8, there exists a tiling function f : {0, 1}k × {0, 1}k 7→ {0, 1}2 such that, for any
two permutations (Π1,Π2) of {0, 1}k, every dissection protocol with respect to (Π1,Π2) using any number of
communication steps has αD∼ c

u
≥ (11/9) + (2/81)c.

Proof. Let S = {S1, S2, . . . , Srf } be the set of rf = rf (Π1,Π2) ideal monochromatic rectangles in the tiling of
f induced by the permutations (Π1,Π2) and consider a protocol P that is a dissection protocol with respect
to (Π1,Π2). Suppose that the ideal monochromatic rectangle Si ∈ S has yi elements, and P partitions
this rectangle into ti rectangles Si,1, . . . , Si,ti having zi,1, . . . , zi,ti elements, respectively. Then, using the
definition of αDu it follows that

αDu =
∑

(x1,x2)∈U×U

Pr
Du

[x1 & x2]

∣
∣RI(x1, x2)

∣
∣

|RP (x1, x2)|
=

rf∑

i=1

ti∑

j=1

∑

(x1,x2)∈Si,j

Pr
Du

[x1 & x2]
yi
zi,j

=

rf∑

i=1

ti∑

j=1

yi
22k

=

rf∑

i=1

ti yi
22k

Similarly, it follows that

αD∼ c
u

≤

rf∑

i=1

ti∑

j=1

∑

(x1,x2)∈Si,j

1 + c

22k
×

yi
zi,j

=

rf∑

i=1

ti∑

j=1

(1 + c) yi
22k

=

rf∑

i=1

(1 + c) ti yi
22k

a

a

b

c

d

e

fg

a

b d

c e f

g

Figure 6: Bsp and Bsp-tree.

A binary space partition (Bsp) for a collection of disjoint rect-
angles in the two-dimensional plane is defined as follows. The
plane is divided into two parts by cutting rectangles with a line
if necessary. The two resulting parts of the plane are divided re-
cursively in a similar manner; the process continues until at most
one fragment of the original rectangles remains in any part of the
plane. This division process can be naturally represented as a bi-
nary tree (Bsp-tree) where a node represents a part of the plane
and stores the cut that splits the plane into two parts that its two
children represent and each leaf of the Bsp-tree represents the final
partitioning of the plane by storing at most one fragment of an input rectangle; see Fig. 6 for an illustration.
The size of a Bsp is the number of leaves in the Bsp-tree. The following result is known.

Fact 1. [4]2 Assume that we have a set S of disjoint axis-parallel rectangles in the plane. Then, there is a
Bsp of S such that every rectangle in S is partitioned into at most 4 rectangles.

(a) Consider the dissection protocol corresponding to the Bsp in Fact 1. Then, using maxi{ti} ≤ 4 we get

αD∼ c
u

≤
∑rf

i=1
4 (1+c) yi

22k = 4 (1+ c). Also, the number of communication steps in this protocol is the height of
the Bsp-tree, which is at most 4rf .

(b) Consider the function f whose ideal monochromatic rectangles are shown in Fig. 7. Each of the four
non-square rectangles contain about (2/9)22k elements and the remaining squares contain about (1/9)22k

elements. Assign a probability of about (1 + c
9 )/2

2k to every point in the four non-square rectangles and
assign a probability of (1− 8c

9 )/2
2k to the remaining rectangles.

Consider a dissection protocol with respect to some two permutations (Π1,Π2). The very first mean-
ingful step of this protocol must partition at least one border rectangle, giving αD∼ c

u
≥

(
2×

(
2 + 2 c

9

))
/9 +

(
7− 2 c

9

)
/9 = (11/9) + (2/81)c. ❑

2The stronger bounds by Berman, DasGupta and Muthukrishnan [2] apply to average number of fragments only.
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Figure 8: Illustrations of the arguments in the proof of Theorem 2. The
dotted lines in (b) are shown for visual clarities only.

5.2.2 Large Worst-case Par for Non-Boolean Functions

Can one extend the results of the last section to show that every tiling function admits a dissection protocol
that achieves a good Par even in the worst case? We answer this question in the negative by presenting a
tiling function for which every dissection protocol has large worst-case Par.

Theorem 2. Let k > 0 be an even integer. Then, there exists a tiling function f : {0, 1}k×{0, 1}k 7→ {0, 1}3

with respect to some two permutations (Π1,Π2) such that, for any two permutations Π′
1 and Π′

2 of {0, 1}k,
every dissection protocol for f with respect to (Π′

1,Π
′
2) has αworst > 2k/2 − 1.

Proof. Recall the example in Fig. 7 that essentially showed that there exists functions that cannot be
computed in a perfectly private manner. Our construction of the function f is based on the tiling shown
in Fig. 7. We consider the specific permutations Π1,Π2 over {0, 1}k that order the elements in {0, 1}k by
binary value (from 0 to 2k − 1). We now use the construction in Fig. 7 “recursively” to create a tiling of the

input space. We first embed 2k−2
2 = 2k−1−1 instances of the construction in Figure 7 recursively within one

another, as shown in Fig. 8(a), leaving a 1×1 square at the center. The vertical level i and the horizontal level
i rectangles have dimension 1×

(
2k − (2i− 1)

)
and

(
2k − (2i− 1)

)
×1, respectively, for i = 1, 2, . . . , 2k−1−1.

We then partition each of the level 1 rectangle in Fig. 8(a) into two “nearly” equal-sized rectangles as shown
in Fig. 8(b). Consider the function f such that the monochromatic rectangles of Af (Π1,Π2) are the tilings
in Fig. 8(b) (f outputs a different outcome for each (minimal) rectangle in the figure). Clearly, f is a tiling
function with respect to (Π1,Π2) and, moreover, since every rectangle shares a side with no more than 8
rectangles, at most 8 output values of f suffice.

Let Π′
1,Π

′
2 be any two arbitrary permutations of {0, 1}k and consider any dissection protocol P with

respect to (Π′
1,Π

′
2). Consider the first meaningful step in the execution of P and suppose that this step was

executed by party1 (the case that the step was executed by party2 is analogous). This step partitions the
total input space S =

{
0, 1, 2, . . . , 2k − 1

}
into two nonempty subsets, say I ⊂ S and I ′ = S \ I such that

0 ∈ I. Let 0 < i < 2k − 1 be the least integer such that i ∈ I but i + 1 6∈ I; such an i must exist since both
the sets are non-empty. Consider the rectangles A,B,C and D in Fig. 8(b). We have the following cases.

Case 1: i ≤ 2k−1 − 2k/2. Observe that, for every such i, there exists a level i + 1 vertical rectangle of
size 2k − 2i − 1 that is partitioned into two rectangles, one of which is of size exactly 1. Thus, αworst ≥
2k − 2i+ 1 > 2(k/2)+1 − 1 > 2k/2 − 1.

Case 2: 2k−1 − 2k/2 < i < 2k−1 − 1. Observe that, for every such value of i, rectangle A, which is
of size 2k−1, is partitioned into two rectangles, of which one is of size at most 2k/2. Thus, in this case

αworst ≥
2k−1
2k/2 > 2k/2 − 1.

Case 3: 2k−1 − 1 ≤ i ≤ 2k−1 + 1. In this case, at least one of the rectangles B, C or D is partitioned into
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two parts one of which is of size at most 2 and thus αworst ≥
2k−1−1

2 > 2k−2 − 1
2 > 2k/2 − 1.

Case 4: 2k−1 + 1 < i < 2k − 2k/2. Similar to Case 2.

Case 5: i ≥ 2k − 2k/2. Similar to Case 1.

6 Extensions of the Basic Two-party Setup

6.1 Non-tiling Functions

A natural extension of the class of tiling functions involves relaxing the constraint that each monochromatic
region must be a rectangle.

Definition 12 (δ-tiling function). A function f : {0, 1}k × {0, 1}k 7→ {0, 1}t is a called a δ-tiling function
with respect to permutations (Π1,Π2) of {0, 1}k if each maximal monochromatic region of AΠ1,Π2(f) is an
union of at most δ disjoint rectangles.

For example, the function whose tiling is as shown in Fig. 4 is a 2-tiling Boolean function.

Proposition 1. For any δ-tiling function f with respect to (Π1,Π2) with r maximal monochromatic regions,
there is a dissection protocol P with respect to (Π1,Π2) using at most 4rδ communication steps such that
αD∼ c

u
≤ (4 + 4c) δ.

Proof. We use the algorithm of Theorem 1 on the set of at most rδ rectangles obtained by partitioning each
monochromatic region into rectangles. Since each rectangle is partitioned at most 4 times, each maximal
monochromatic region of Af (Π1,Π2) will be partitioned at most 4δ times.

6.2 Multi-party Computation

How good is the average Par for a dissection protocol on a d-dimensional tiling function? For a general d, it
is non-trivial to compute precise bounds because each partyi has her/his own permutation Πi of the input,
the tiles are boxes of full dimension and hyperplanes corresponding to each step of the dissection protocol is
of dimension exactly d− 1. Nonetheless, we show that the average Par is very high for dissection protocols
even for 3 parties and uniform distribution, thereby suggesting that this quantification of privacy may not
provide good bounds for three or more parties.

(a) (b)

yyy(dimension 2)

xxx(dimension 1)

zzz(dimension 3)

Figure 9: (not drawn to scale) (a) The tiling function in the proof of Lemma 3. The non-trivial rectangles
for dimensions 1, 2 and 3 are colored by black, dark gray and light gray, respectively; the trivial rectangles,
each having a distinct value, cover the region colored magenta. (b) Rectangles (in light gray) corresponding
to a hypothetically first meaningful step of the protocol.
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Theorem 3 (large average Par for dissection protocols with 3 parties). There exists a tiling function
f : {0, 1}k × {0, 1}k × {0, 1}k 7→ {0, 1}3k such that, for any three permutations Π1,Π2,Π3 of {0, 1}k, every
dissection protocol with respect to (Π1,Π2,Π3) must have αDu = Ω

(
2k
)
.

Proof. In the sequel, for convenience we refer to 3-dimensional hyper-rectangles simply by rectangles and
refer to the arguments of function f via decimal equivalent of the corresponding binary numbers. The
tiling function for this theorem is adopted from an example of the paper by Paterson and Yao [14, 15] with
appropriate modifications. The three arguments of f are referred to as dimensions 1, 2 and 3, respectively.
Define the volume of a rectangle R = [x1, x

′
1] × [x2, x

′
2] × [x3, x

′
3] ⊆ {0, 1, . . . , 2k − 1}3 is Volume(R) =

max{0,Π3
i=1(x

′
i − xi + 1)}. For convenience, let [∗] denote the interval

[
0, 2k − 1

]
. We provide the tiling for

the function f ; see Fig. 9 for a graphical illustration (note that Fig. 9 is not drawn to scale):

• For each dimension, we have a set of Θ
(
22k

)
rectangles; we refer to these rectangles as non-trivial

rectangles for this dimension.

– For dimension 1, these rectangles are of the form [∗]× [2y, 2y]× [2z, 2z] for every integral value of
0 ≤ 2y, 2z < 2k.

– For dimension 2, these rectangles are of the form [2x, 2x]× [∗]× [2z + 1, 2z+1] for every integral
value of 0 ≤ 2x, 2z + 1 < 2k.

– For dimension 3, these rectangles are of the form [2x+ 1, 2x+ 1]× [2y + 1, 2y+ 1]× [∗] for every
integral value of 0 ≤ 2x+ 1, 2y + 1 < 2k.

• The remaining “trivial” rectangles are each of unit volume such that they together cover the remaining
input space.

Let Snon−trivial be the set of all non-trivial rectangles. Observe that:

• Rectangles in Snon−trivial are mutually disjoint since any two of them do not intersect in at least one
dimension.

• Each rectangle in Snon−trivial has a volume of 2k and thus the sum of their volumes is Θ
(
23k

)
.

It now also follows that the number of monochromatic regions is O
(
23k

)
. Suppose that a dissection protocol

partitions, for i = 1, 2, . . . , |Snon−trivial|, the ith non-trivial rectangle Ri ∈ Snon−trivial into ti rectangles, say
Ri,1, Ri,2, . . . , Ri,ti . Then,

αDu

def
=

∑

(x,y,z)∈

{0,1}k×{0,1}k×{0,1}k

Pr
Du

[x& y& z]

∣
∣RI(x, y, z)

∣
∣

|RP (x, y, z)|
≥

|Snon−trivial|∑

i=1

ti∑

j=1

∑

(x,y,z)∈Ri,j

Pr
Du

[x& y& z]
Volume (Ri)

Volume (Ri,j)

=

|Snon−trivial|∑

i=1

ti∑

j=1

2k

23k
=

|Snon−trivial|∑

i=1

(
ti/2

2k
)

Thus, it suffices to show that

|Snon−trivial|∑

i=1

ti = Ω
(
23k

)
. Let Q be the set of maximal monochromatic rectangles

produced the partitioning of the entire protocol. Consider the two entries px,y,z = (2x + 1, 2y, 2z + 1) and
p′x,y,z = (2x, 2y, 2z) (see Fig. 10). Note that px,y,z belongs to a trivial rectangle since their third, first and
second coordinate does not lie within any non-trivial rectangle of dimension 1, 2 and 3, respectively, whereas
p′x,y,z belongs to the non-trivial rectangle [∗] × [2 × (8y), 2 × (8y)] × [2 × (8z), 2 × (8z)] of dimension 1.

Thus, px,y,z and p′x,y,z cannot belong to the same rectangle in Q. Let T =
⋃{

{p 8x,8y,8z, p
′
8x,8y,8z} | 64 <

16x, 16y, 16z < 2k − 64
}
. Clearly, |T | = Θ

(
23k

)
. For an entry (x1, x2, x3), let its neighborhood be defined

by the ball Nbr(x1, x2, x3) = { (x′
1, x

′
2, x

′
3) | ∀i : |xi−x′

i| ≤ 4 }. Note that Nbr(p 8x,8y,8z)∩Nbr(p 8x′,8y′,8z′) = ∅
provided (x, y, z) 6= (x′, y′, z′). Next, we show that, to ensure that the two entries p 8x,8y,8z and p′8x,8y,8z are
in two different rectangles in Q, the protocol must produce an additional fragment of one of the non-trivial
rectangles in the neighborhood Nbr(p 8x,8y,8z); this would directly imply

∑

i ti = Ω
(
23k

)
.
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p 8x,8y,8zp 8x,8y,8zp 8x,8y,8z

p′8x,8y,8zp′8x,8y,8zp′8x,8y,8z

Figure 10: Separating p8x,8y,8z from
p′8x,8y,8z.

Consider the step of the protocol before which p 8x,8y,8z and
p′8x,8y,8z were contained inside the same rectangle, namely a rectangle
Q that includes the rectangle [16x, 16x+1]× [16y, 16y]× [16z, 16z+1],
but after which they are in two different rectangles Q1 = [a′1, b

′
1] ×

[a′2, b
′
2]× [a′3, b

′
3] and Q2 = [a′′1 , b

′′
1 ]× [a′′2 , b

′′
2 ]× [a′′3 , b

′′
3 ]. Remember that

both Q1 and Q2 must have the same two dimensions and these two
dimensions must be the same as the corresponding dimensions of Q.
The following cases arise.

Case 1 (split via the first coordinate): [a′2, b
′
2] = [a′′2 , b

′′
2 ] ⊇

[16y, 16y], [a′3, b
′
3] = [a′′3 , b

′′
3 ] ⊇ [16z, 16z+1], b′1 = 16x and a′′1 = 16x+1.

Then, a new fragment of a non-trivial rectangle of dimension 2 is pro-
duced at [16x, 16y, 16z] ∈ Nbr(p 8x,8y,8z).

Case 2 (split via the second coordinate): [a′1, b
′
1] = [a′′1 , b

′′
1 ] ⊇

[16x, 16x+ 1] and [a′3, b
′
3] = [a′′3 , b

′′
3 ] ⊇ [16z, 16z + 1]. This case is not possible.

Case 3 (split via the third coordinate): [a′1, b
′
1] = [a′′1 , b

′′
1 ] ⊇ [16x, 16x+1], [a′2, b

′
2] = [a′′2 , b

′′
2 ] ⊇ [16y, 16y],

b′3 = 16z and a′′3 = 16z + 1. Then, a new fragment of a non-trivial rectangle of dimension 1 is produced at
[16x, 16y, 16z] ∈ Nbr(p 8x,8y,8z). ❑

Remark 2. A generalized version of the example in d dimension can be used to provide a slightly improved
lower bound on αDu for dissection protocols with more than three parties; the bound asymptotically approaches
Ω
(
22k

)
for large d.

7 Analysis of the Bisection Protocol for Two Functions

In Section 5.1 we showed that any Boolean tiling function can be computed with perfect privacy by a
dissection protocol. In [8] the authors provided calculated bounds on αworst and αDu for the bisection protocol,
a special case of the general dissection protocol (see Definition 9), on a few functions. In this section, we
analyze the bisection protocol [9, 10], for two Boolean functions that appear in the literature. As before, Du

denotes the uniform distribution. Letting x = (x1, x2, . . . , xn) ∈ {0, 1}k and y = (y1, y2, . . . , yn) ∈ {0, 1}k,
the functions that we consider are the following:

set-covering: f∧,∨(x,y) =
∧n

i=1 (xi ∨ yi). To interpret this as a set-covering function, suppose that the
universe U consists of n elements e1, e2, . . . , en and the vectors x and y encode membership of the
elements in two sets Sx and Sy, i.e., xi (respectively, yi) is 1 if and only if ei ∈ Sx (respectively,
ei ∈ Sy). Then, f∧,∨(x,y) = 1 if and only if Sx ∪ Sy = U .

equality: f=(x,y) =

{
1 if ∀ i : xi = yi
0 otherwise

.

As we already noted in Section 2, both of these functions are studied in the context of evaluating privacy
preserving protocols and communication complexity settings [3, 11]. A summary of our bounds are as follows.

f∧,∨ αworst ≥ αDu ≥
(
3
2

)2k

f= αDu= 2k − 2 + 21−k αworst = 22k−1 − 2k−1

Formal proofs of these bounds appear in Sectiob A of the appendix. A main technique used in the proofs
involve deriving a suitable tight multi-variable recurrence for these bounds which can then be approximated.
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APPENDIX

A Proof of Bounds of the Bisection Protocol for Two Functions

We will use the formula for αDu that we derived in the proof of Theorem 1: letting r denote the number of
monochromatic regions in an ideal partition of the function if, for i = 1, 2, . . . , r, the ith monochromatic region
contain yi × 22k elements and the bisection protocol partitions this region into ti ≥ 1 rectangles containing
z1, . . . , zti elements, respectively, then αDu =

∑r
i=1 tiyi. In the sequel, by “contribution of a rectangle (of

the bisection protocol) to the (average Par)” we mean the size of the ideal monochromatic region that the
rectangle is a part.

A.1 Set Covering Function

Theorem 4. αDu ≥ (3/2)
2k
.

Proof. We begin by showing the geometry of the tilings for small values of k which easily generalizes to
larger k. The ideal tiling for f∧,∨ is shown in Fig. 11(a) for k = 3 with the value of the function for each
input pair. The sizes of the ideal monochromatic partition are shown in Fig. 11(b) for k = 1, 2, 3, 4. The
contributions to the average Par of various inputs after applying the bisection protocol are illustrated in
Fig. 12 for k = 1, 2, 3, 4. We observe the following:

• The tiles colored light gray for the case when k = 4 are referred to as the “background tiles”. For
k = 1, 2, 3, 4 each such tile contributes 3, 9, 27 and 81, respectively, to the average Par. In general,
this contribution is given by 3k and all these tiles have size 1.

• The contributions of the tiles in the upper-left region of the matrix are given by the sum of the first
2k − 1 natural numbers; thus each of these tiles contribute 22k−1 − 2k−1.

• For any k, observe that the matrix can be decomposed into 4 quadrants; the following observations
can be repeated recursively on each resulting quadrant, except for the first quadrant:

– The first quadrant is a monochromatic region that contributes 22k−1 − 2k−1 to the average Par.

– The fourth quadrant has the same structure as the original matrix, but the contributions for the
non-background tiles will be related to the case of a matrix with j bits instead of k, where the size
of the quadrant is 2j . For example, notice that the fourth quadrant of a matrix with k = 4 is the
same as a whole matrix with k = 3, except for the “background tiles”, that always contribute for
3k, with the original value of k.

– The second and third quadrants are similar to the fourth quadrant case, but in this case the values
in the upper-left portion of the quadrants will remain the same as the original matrix, instead of
going down as with the fourth quadrant case.

Based on these observations, we can obtain a recurrence for the total contribution to the average Par of
all the tiles in a generic matrix. We need the following parameters:

• The number of bits in the original matrix, that we denote by k;

• The number of bits corresponding to the size of the matrix, or submatrix being considered, that we
denote by i;

• The number of bits to be used in the calculation of the contribution of the upper-left portion of the
matrix, or submatrix, being considered; we denote this by j.

The recurrence that computes the total contribution to the PAR of all the tiles in the matrix is:

g (i, j, k) =

{
3k, if i = 0
22j−1 − 2j−1 + 2g (i− 1, j, k) + g (i− 1, i− 1, k) , otherwise

The values of i and j are initially set to the value of k. The interpretation of each term in the above
recurrence is as follows:
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Figure 11: (a) Ideal monochromatic partition for f∧,∨ when k = 3. (b) Sizes of ideal monochromatic
partition for f∧,∨.

• 3k is the contribution of each “background tile”;

• 22j−1 − 2j−1 is the contribution of the first quadrant;

• g (i− 1, j, k) is the contribution of each one of the second and third quadrants and

• g (i− 1, i− 1, k) is the contribution of the fourth quadrant.

Remember that, for a given k, the recurrence equation is initialized with i = j = k. Thus, we have:

Case: k = 0: g (k, k, k) = 3k = 32k.

Case: k > 0: g(k, k, k) = g(k − 1, k − 1, k) + 2g(k − 1, k, k) + t(k). The second parameter to the function
indicates how to generate the t(k) terms; the value of such terms is proportional to that parameter.

1 3

3 3

(a)
k=1k=1k=1

6 9

6 9 9

6 9 1 9

9 9 9 9

(b)
k = 2k = 2k = 2

28 27

28 27 27

28 28 27 1 27

27 27 27 27

28 27 6 27

28 27 27 6 27 27

28 27 1 27 6 27 1 27

27 27 27 27 27 27 27 27

(c) k = 3k = 3k = 3

120 81

120 81 81

120 120 81 1 81

120 81 81 81 81

120 81 6 81

120 81 81 6 81 81

120 81 1 81 6 81 1 81

81 81 81 81 81 81 81 81

120 81 28 81

120 81 81 28 81 81

120 120 81 1 81 28 28 81 1 81

81 81 81 81 81 81 81 81

120 81 6 81 28 81 6 81

120 81 81 6 81 81 28 81 81 6 81 81

120 81 1 81 6 81 1 81 28 81 1 81 6 81 1 81

81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81

(d) k = 4k = 4k = 4

Figure 12: Contribution to Par for k = 0, 1, 2, 3, 4.
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Thus, for a ≥ b, g(k, a, k) ≥ g(k, b, k). For our lower bound, we can neglect the terms t(k). Thus, we
obtain:

g(k, k, k) ≥ 3g(k − 1, k − 1, k) ≥ 3g(k − 2, k − 2, k) ≥ · · · · · · ≥ 3g(1, 1, k) ≥ 3g(0, 0, k)

For each step, the value of the first parameter decreased exactly by one unit, so after k iterations the
value of the first parameter will be zero. Hence we have g(k, k, k) ≥ 3kg(0, 0, k). Since g(0, 0, k) = 3k

we finally obtain g(k, k, k) ≥ 3k × 3k = 32k.

Thus, αDu = g(k, k, k)/22k ≥ (3/2)
2k
.

A.2 Equality function

Theorem 5. αDu = 2k − 2 + 21−k and αworst = 22k−1 − 2k−1.

Proof. An illustration of the ideal partition into monochromatic regions for equality function is shown in
Fig. 13(a). After running the bisection protocol, the induced tiling is (for k = 3) is shown in Fig. 13(b).
Excluding the diagonal, we have 2 tiles of size 16, 4 tiles of size 4, and 8 tiles of size 1. In general, it is easy
to observe that, for each 0 ≤ i < k, we have exactly 2k−i tiles of size 22i.

1 1 + 2 + 3 + · · ·+ 2k − 11 + 2 + 3 + · · ·+ 2k − 11 + 2 + 3 + · · ·+ 2k − 1 1 1 4 1 ∗∗∗ ∗∗∗
1 = 22k−1 − 2k−1= 22k−1 − 2k−1= 22k−1 − 2k−1 1 1 16 ∗∗∗ 1 ∗∗∗

1 1 1 1 ∗∗∗
1 4 1 1 ∗∗∗ ∗∗∗ 1

1 1 1 4 1 ∗∗∗ ∗∗∗
1 16 1 1 ∗∗∗ ∗∗∗ 1

22k−1 − 2k−122k−1 − 2k−122k−1 − 2k−1 1 1 1 1 ∗∗∗
1 4 1 1 ∗∗∗ ∗∗∗ 1

(a) (b) (c)

Figure 13: (a) Ideal tiling for equality function. (b) The induced tiling by the bisection protocol (shown for k = 3).
(c) Contribution of each rectangle in protocol-induced tiling where ∗ ≡ 22k−1

− 2k−1
∗ ≡ 22k−1

− 2k−1
∗ ≡ 22k−1

− 2k−1. The numbers in the figure
denote the size of each tile.

The following accounting scheme can be used to simplify calculation. For uniform distribution Du, αDu is

the sum of the ratio |RI (i,j)|
|RP (i,j)| over each element (i, j) in the matrix divided by the number of total elements

22k in the matrix, where RI(i, j) and RP (i, j) is the size of the ideal and protocol-induced tiling that contains
the cell (i, j). Consider a rectangle A of size m in the protocol-induced tiling and suppose that A is contained
in a monochromatic region of the ideal partition of size m′. Then, the sum of contributions of the elements
of A is

∑m
i=1 m

′/m = m′. Thus, the total contribution of the rectangle A is simply the size of region of the
ideal partition containing it.

Fig. 13(c) illustrates the contribution of each rectangle in the protocol-induced tiling to average Par.
We can calculate the total contribution to the average Par of all the tiles in the matrix, except the diagonal,
by multiplying 22k−1 − 2k−1 by the number of tiles. The number of tiles is given by:

∑k−1
i=0 2k−i = 2k+1 − 2.

The total contribution of those tiles is (2k+1 − 2) ×
(
22k−1 − 2k−1

)
= 23k − 22k+1 + 2k. The contribution

of the diagonal is 1 + 1 + · · · · · ·+ 1
︸ ︷︷ ︸

2k times

= 2k. Since the average objective PAR αDu is the sum of the total

contributions divided by the number of cells in the matrix, we have

αDu =
23k − 22k+1 + 2k + 2k

22k
=

23k − 22k+1 + 2k+1

22k
= 2k − 2 + 21−k

It can be seen from the ideal and protocol tilings that the worst case for Par is the one in which the ideal
tile size is 22k−1 − 2k−1, and the protocol tile size is 1. Thus αworst = 22k−1 − 2k−1.
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