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Abstract. We present a game-theoretic model that captures many of the intricacies of interdo-
main routing in today’s Internet. In this model, the strategic agents are source nodes located on a
network, who aim to send traffic to a unique destination node. The interaction between the agents
is dynamic and complex – asynchronous, sequential, and based on partial information. Best-reply
dynamics in this model capture crucial aspects of the de facto standard interdomain routing protocol,
namely the Border Gateway Protocol (BGP).

We study complexity and incentive-related issues in this model. Our main results show that in
realistic and well-studied settings, BGP is incentive-compatible. I.e., not only does myopic behaviour
of all players converge to a “stable” routing outcome, but no player has motivation to unilaterally
deviate from BGP. Moreover, we show that even coalitions of players of any size cannot improve
their routing outcomes by collaborating. Unlike the vast majority of works in mechanism design, our
results do not require any monetary transfers (to or by the agents).
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1. Introduction. The Internet is composed of smaller networks called Autono-
mous Systems (ASes). ASes are owned by selfish, often competing, economic entities
(Microsoft, AT&T, etc.). The task of establishing routes between ASes is called
interdomain routing. Since not all ASes are directly connected, packets often have to
traverse several ASes. The packets’ routes are established via complex interactions
between ASes that enable them to express preferences over routes, and are affected
by the nature of the network (message delays, malfunctions, etc.). The standard
interdomain routing protocol de facto is the Border Gateway Protocol (BGP).

Routing Games. The first contribution of this paper is the presentation of a game-
theoretic model of interdomain routing that captures many of its intricacies (e.g., the
asynchronous nature of the network). In our model (as in [16, 15]), the network is
defined by an undirected graph G = (N, L). The set of nodes N represents the ASes,
and consists of n source-nodes 1, ..., n (the players), and a unique destination-node
d.1 The set of edges L represents physical communication links between the nodes.
Each source node i has a valuation function vi that expresses a full-order of strict
preferences over simple routes from i to d.

The model consists of two games: At the heart of the model is the sequential, asyn-
chronous, and private-information Convergence Game, which is meant to model
interdomain routing dynamics. Best-reply dynamics in the Convergence Game
model crucial features of BGP dynamics, in which each AS is instructed to continu-
ously execute the following actions:
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• Receive update messages from neighbouring nodes announcing their routes
to the destination.

• Choose a single neighbouring node whose route you prefer most (given vi) to
send traffic to.

• Announce your new route to all neighbouring nodes.
We also define a One-Round Game, which will function as an analytic tool.

The One-Round Game can be regarded as the full-information non-sequential game
underlying the Convergence Game. Pure Nash equilibria in the One-Round
Game correspond to “stable solutions” in networking literature [16, 15], and are the
“sinks” to which best-reply dynamics (BGP) can converge.

We study several complexity and strategic problems in this model. Most impor-
tantly, we address the issue of incentive-compatibility of best-reply dynamics in the
Convergence Game. We provide realistic settings in which the execution of best-
reply dynamics (BGP) is in the best-interest of the players (ASes). We also address
the following questions: How hard it is to establish whether a pure Nash exists in the
One-Round Game (the nonexistence of a pure Nash implies that best-reply dynam-
ics will go on indefinitely)? How hard is it to get good approximations to the optimal
social welfare?

Existence of Pure Nash Equilibria. Griffin and Wilfong have shown that deter-
mining whether a pure Nash equilibrium in the One-Round Game (stable solution)
exists is NP-hard [16]. We prove that this result extends to the communication model.

Theorem: Determining whether a pure Nash equilibrium in the One-Round Game
exists requires exponential communication (in n) between the source-nodes.

BGP Convergence and Incentives. Networking researchers, and others, invested
a lot of effort into identifying sufficient conditions for the existence of a stable solu-
tion to which BGP always converges (see, e.g., [15, 30, 12, 11, 14, 5, 29, 4]). The
most general condition known to guarantee this is “No Dispute Wheel”, proposed
by Griffin, Shepherd, and Wilfong [15]. No Dispute Wheel guarantees a unique pure
Nash in the One-Round Game, and convergence of best-reply dynamics to it in the
Convergence Game. No Dispute Wheel allows nodes to have significantly more
expressive and realistic preferences than always preferring shorter routes to longer
ones. In particular, a special case of No Dispute Wheel is the celebrated Gao-Rexford
setting [12, 11] that is said to depict the commercial structure that underlies the In-
ternet [21] (see Section 2 for an explanation about No Dispute Wheel and interesting
special cases).

Feigenbaum, Papadimitriou, Sami, and Shenker [7] initiated an economic, or
mechanism design, approach to interdomain routing. While BGP was designed to
guarantee connectivity between trusted and obedient parties, in the age of commercial
Internet these are no longer valid assumptions (ASes are owned by different economic
entities with very different, and often conflicting, commercial interests). Identify-
ing realistic settings in which BGP is incentive-compatible has become the paradig-
matic problem in Distributed Algorithmic Mechanism Design (see [10] and references
therein), and is the subject of many works [28, 6, 9, 8, 3, 10, 24, 17].

Recently, a step in this direction was taken in [8, 10]. It was shown that if No
Dispute Wheel and an additional condition named Policy Consistency hold then BGP
is incentive-compatible in ex-post Nash (see [28] for a formal definition of the ex-post
Nash solution concept and an explanation about its suitability for distributed compu-
tation environments). Informally, policy consistency means that no two neighbouring
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nodes disagree over which of any two routes is preferable. This is obviously a very
severe restriction that does not necessarily hold in practice. We take a significant step
forward by removing it (in particular, we allow the Gao-Rexford commercial setting
in which Policy Consistency does not necessarily hold).

Unfortunately, we prove that best-reply dynamics are not incentive-compatible if
Policy Consistency does not hold. This is true even if No Dispute Wheel holds, and
can be shown to hold even in the Gao-Rexford setting.

Theorem: Best-reply dynamics are not incentive-compatible in ex-post Nash even if
the No Dispute Wheel condition holds.

However, there is still hope for BGP. We define a property called “Route Verifi-
cation”. Route Verification means that a node can verify whether a route announced
by a neighbouring node is indeed available to that neighbouring node (and if not sim-
ply ignore that route announcement). Unlike Policy Consistency, Route Verification
does not restrict the preferences of ASes, but is achieved by modifying BGP (e.g.,
this can be achieved via cryptographic signatures). Achieving Route Verification in
the Internet is an important agenda in security research2. Security researchers seek
ways to implement Route Verification that are not only theoretically sound, but also
reasonable to deploy in the Internet (see [1]).

We note that even if announcements of non-available routes are prevented by
Route Verification, nodes still have many other forms of manipulation available to
them: Pretending to have different preferences (“lying”), conveying inconsistent in-
formation (e.g., displaying inconsistent preferences over routes), denying routes from
neighbours by not reporting a route, and more. Hence, it still needs to be shown that
Route Verification guarantees immunity of best-reply dynamics (BGP) to all forms
of manipulation.

Our main result is the following:

Theorem: Best-reply dynamics are incentive-compatible in (subgame perfect3) ex-
post Nash if No Dispute Wheel and Route Verification hold.

We stress that this result is achieved without any monetary transfers between
nodes (as in [10], and unlike most prior works on interdomain routing, and in mech-
anism design in general).

Our result highlights an interesting connection between the two current research
agendas that address the problem of disobedience and lack of trust in interdomain
routing – security research and Distributed Algorithmic Mechanism Design. One of
the implications of this result is that one can achieve incentive-compatibility in real-
istic settings (e.g., networks for which the Gao-Rexford constraints and Route Verifi-
cation hold). This should further motivate security research, as it provides a strong
strategic justification for modifications of BGP that guarantee Route Verification via
cryptographic and other means (e.g., Secure BGP [1, 27]).

In [10] the notion of collusion-proofness in ex-post Nash is defined. Informally,
collusion-proofness in ex-post Nash means that a group of agents cannot collaborate
to strictly improve the outcome of any player in the group without strictly harming
another player in the group. This means that some of the members of the group have

2“The US government cites BGP security as part of the national strategy for securing the Internet
[Department of Homeland Security 2003]” [1]

3A strategy profile is a subgame perfect equilibrium if it represents an equilibrium of every
subgame of the original game.) ex-post Nash if No Dispute Wheel and Route Verification hold.
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no interest to deviate from the strategy profile (at least one member will be harmed
by doing so). The previous theorem can actually be strengthened to the following
one:

Theorem: Best-reply dynamics are collusion-proof in (subgame perfect) ex-post Nash
if No Dispute Wheel and Route Verification hold.

In particular, this holds even for the coalition that contains all nodes in the
network. This implies that, if No Dispute Wheel holds, BGP is actually socially-
reasonable in the following sense (see [3]):

Corollary: If No Dispute Wheel holds, the unique Nash equilibrium in the One-
Round Game (to which best-reply dynamics always converge) is Pareto optimal.

Maximizing Social Welfare. Finally, we turn our attention to the objective of
maximizing the social-welfare, that has also been studied in the context of interdomain
routing (see [9]). Maximizing the social welfare means finding a routing tree rooted
in d, T = R1, ..., Rn, in which node i is assigned route Ri, such that Σivi(Ri) is
maximized. In [8] it is shown that if No Dispute Wheel and Policy Consistency hold
then BGP converges to a stable solution that also maximizes the social welfare. In
contrast, we show that the removal of Policy Consistency can be disastrous in terms
of welfare maximization. We do so by presenting two complementary bounds, one
in the computational complexity model, and one in the communication complexity
model.

Theorem: Obtaining an approximation of O(n
1
2−ε) to the optimal social welfare is

impossible unless P = NP . Obtaining an approximation of O(n1−ε) to the social
welfare is impossible unless P = ZPP . This holds for any ε > 0 and even if No
Dispute Wheel holds.

Theorem: Obtaining an approximation of O(n1−ε) to the optimal social welfare re-
quires exponential communication (in n). This holds for any ε > 0 and even if No
Dispute Wheel holds.

In fact, the above two inapproximability results hold even in the Gao-Rexford set-
ting (that is a special case of No Dispute Wheel). These results should be compared
with the previously known lower bound of Ω(n

1
2−ε) [9] (dependent on P 6= ZPP ) for

the case of general (i.e., unrestricted) ASes’ valuation functions. Our lower bounds
show that even restrictive conditions (Gao-Rexford) that ensure existence of pure Nash
in the One-Round Game, and convergence of best-reply dynamics in the Conver-
gence Game, might be very far from guaranteeing good social welfare. A trivial
matching upper bound of n exists even for general valuation functions (simply assign
the node with the highest value for some route its most desired route).

1.1. Organization of the Paper. In Section 2 we present the model and the
communication result about pure Nash equilibria. In Section 3 we present the results
regarding incentives and best-reply dynamics in the Convergence Game. In Sec-
tion 4 we present inapproximability results regarding social-welfare maximization. In
Section 5 we discuss open questions and directions for future research.

2. Routing Games. Here we define the game-theoretic model, and begin ex-
ploring the two games it contains.
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2.1. Two Routing Games. In our model, the network is defined by an undi-
rected graph G = (N, L). N consists of n source-nodes 1, ..., n (the players), and a
unique destination-node d. Each source node i has a routing policy that consists of
two components:

1. a valuation function vi that assigns a non-negative value to every possible
simple route from i to d (i.e., to every simple route in the complete graph
over the nodes of G), including the “empty route” ∅.4 We make the standard
assumption [15] that players have strict preferences: For any node i, and
every two routes P, Q from i to d that do not have the same first link, it holds
that vi(P ) 6= vi(Q).

2. an export policy that dictates which routes i is willing to make available
to each neighbouring node j. Observe that nodes’ export policies can be
embedded in nodes’ valuation functions (if i is not willing to export route R
to j this can be modeled by making R less preferable than the empty route
∅ to j).

The model consists of two routing games:

2.1.1. A benchmark - the One-Round Game:. The One-Round Game is
a full-information game in which a strategy of a node i is a choice of an outgoing edge
(i’s choice of an AS to forward traffic to). The payoff of node i for a strategy profile
is vi(R) if the strategies induce a route R from i to d, and 0 otherwise.

2.1.2. The Convergence Game:. The Convergence Game is a multi-round
game with an infinite number of rounds. In each round one or more players (nodes)
are chosen to participate by a Scheduler. The Scheduler models the asynchronous
nature of the Internet, and decides which players participate in each round of the
game. The schedule chosen must allow every player to play in an infinite number of
rounds (the Scheduler cannot deny a node from playing indefinitely). In each round
of the game, a player i chosen to play can perform the following actions:

• Read update messages that have arrived from neighbouring nodes. Each
update message announces a simple route from the sending neighbouring
node to the destination.

• Choose a single outgoing edge (i, j) ∈ L (representing a choice of a neigh-
bouring node to forward traffic to), or ∅ (not to forward traffic at all).

• Announce simple routes (from i to d) to i’s neighbouring nodes.
The Scheduler decides in which round sent route announcements reach their des-

tinations. It can arbitrarily delay update messages, but cannot indefinitely prevent
update messages of a node from reaching its neighbour (see [15] for a formal model).

A strategy of a player in the Convergence Game specifies his actions in ev-
ery round in which that player is chosen to participate. Best-reply dynamics is the
strategy-profile in which every player continuously performs the following actions:
Receive the most recent route announcements from all neighbours. Choose the neigh-
bour with the most preferred simple route to d (according to your vi). Announce this
route to all neighbours.

If from some round onwards i’s assigned route is constant then i’s payoff is its
value for that route. Otherwise, i’s payoff is 0. More formally, the payoff of player i
is vi(R) if R is a simple route from i to d and from some round onwards, for every
link (r, s) on R, r always chooses s. Otherwise, i’s payoff is 0. (All of our results hold

4The reason for this is that nodes are not assumed to be familiar with the topology of the network
and we wish to capture nodes’ ability to express preferences over all routes announced by other nodes.
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even if when i’s route “oscillates” i’s payoff is set to be i’s value for the highest valued
route it is assigned an infinite number of times.).

2.2. Stable Solutions and Pure Nash Equilibria. Pure Nash equilibria in
the One-Round Game are known in networking literature as stable solutions. It
is not hard to verify that each such stable solution forms a tree rooted in d.5 An
important requirement from BGP is that it always converge to such a stable solution.
However, this is not guaranteed in general, and definitely will not happen if a pure
Nash does not exist. Griffin and Wilfong have shown that determining whether a pure
Nash equilibrium in the One-Round Game exists is NP-hard [16]. We strengthen
this result by extending it to the communication model. The use of communication
complexity for analyzing uncoupled Nash equilibrium procedures was recently pre-
sented in [18], following [2]. Our result can be seen as continuing this line of research.

Theorem 2.1. Determining whether a pure Nash equilibrium in the One-
Round Game exists requires exponential communication (in n).

Proof. We shall prove a reduction from the communication Set Disjointeness
problem [22]. In this problem, there are n communication parties. Each party i holds
a subset Ai of {1, ..., K}. The parties communicate by broadcasting bits (that are
observable to all other parties) and wish to jointly obtain the goal of distinguishing
between the two following extreme subcases:

• ⋂
i Ai 6= ∅ (i.e., all parties have a mutual element)

• For every i 6= j Ai ∩Aj = ∅ (i.e., no two parties share an element)
It is known [22] that in order to distinguish between these two subcases the parties

must exchange Ω(K) bits (if K >> n). We set K = 2
n
2 . The reduction to the problem

of determining whether a pure Nash in the One-Round Game exists is as follows:
Consider a network with 2n source nodes and a unique destination node d. The set
of nodes N consists of 2 disjoint subsets: n sending nodes, and n transit nodes. Each
party i ∈ [n] in the Set Disjointeness problem is associated with a sending node
si.

The transit nodes are divided into n
2 pairs T1, ..., Tn

2
. Each such pair of nodes

Tr contains a specific node we shall call a 0-node and another node we shall call a
1-node. For every r = 1, ..., n

2 − 1, each 0-node in Tr is connected to the 1-node in Tr,
and to the 0-node in Tr+1. Similarly, each 1-node in Tr is connected to the 0-node
in Tr, and to the 1-node in Tr+1. Both nodes in Tn

2
are connected to each other and

directly to d. We divide the sending nodes into groups of size 3, S1, ..., Sn
3
. For every

Sr, the 3 nodes in Sr are connected to each other, to the 0-node in T1, and to d. See
a description of the network in Figure 2.1. We shall refer to the 0-node in T1 (which
is the access point of all source-nodes to the transit nodes) as c.

We must now define the valuation functions of the different nodes. Let us start
with the transit nodes: A 0-node in Tr u has a value of 1

2 for any route to d in which
the next-hop node after u is the 1-node in Tr, and a value of 1

4 for routes in which the
next-hop node after u is the 0-node in Tr+1 (and very low values for all other routes
to d, without ties). Similarly, a 1-node in Tr u has a value of 1

2 for any route to d
in which the next-hop node after u is the 0-node in Tr, and a value of 1

4 for routes
in which the next-hop node after u is the 1-node in Tr+1 (and very low values for all
other routes to d, without ties). Both nodes in Tn

2
prefer going through each other (a

value of 1
2 ) than directly to d (a value of 1

4 ).

5We assume that the graph is connected.
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Fig. 2.1. Network constructions used in the proof of Theorem 2.1

Fig. 2.2. Bad Gadget

Fix a specific triplet of nodes Sr and let 0, 1, 2 be those nodes. Each node i = 0, 1, 2
will assign a value of 1

2 to the route (i, i + 1 (mod 3), d), a value of 1
4 to the direct

route to d, and very low values (without ties) to all other simple routes to d that only
include nodes in Sr. This construction of Sr is known as Bad Gadget [16], and
appears in Figure 2.2. Bad Gadget is an example of a small network in which no
pure Nash equilibrium exists.

There are 2
n
2 possible routes that go through the transit nodes and correspond to

strings in {0, 1}n
2 : Consider a string of bits b = (b1, ..., bn

2
) ∈ {0, 1}n

2 . b corresponds
to the route in which the bi-node in Ti forwards traffic to the other node in Ti. Fix
an arbitrary order over these routes R1, ..., R2

n
2
. Now, let each source node si assign

a value of 1 (no ties) to the route ((si, c)Ra iff a ∈ Ai. si assigns 0 to all unmentioned
routes (observe that since all these routes go through the same next-hop node c
breaking ties is not a problem).

The key point is that once the route of c is fixed, all source-nodes have no other
choice of route through the transit nodes. Hence, either all source nodes agree on
a route that goes through the transit nodes, or some choose not to route through
the transit nodes at all. The reader can verify that if there is some a ∈ ⋂

i Ai then
assigning every node i the route (si, c)Ra is a pure Nash equilibrium. If, on the other
hand, for every i 6= j, Ai ∩ Aj = ∅, then there is no pure Nash (because of the Bad
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Gadget construction for every triple Sr).
Hence, we have a network with O(n) nodes, in which determining whether a pure

Nash equilibrium exists is equivalent to solving the Set Disjointeness problem with
n players (each player i corresponds to node si), each holding a subset of 1, . . . , 2

n
2 .

It therefore requires at least Ω(2
n
2 ) bits of communication. This concludes the proof

of the theorem.
We note that the construction we use in our proof is unlikely to appear in real-life

networks; in particular, we require nodes to have unreasonable preferences, according
to which very long routes (linear in n, the number of all ASes in the entire Internet)
are sometimes very desirable. However, the machinery we use in the proof is sufficient
to show the following:

Theorem 2.2. Let the valuation functions of the nodes be such that nodes always
strictly prefer routes of length at most x to routes of length greater than x. There
exists a network and preference setting in which determining whether a pure Nash
equilibrium in the One-Round Game exists requires Ω(2x) bits.

The theorem is proven by using the same construction as in the proof of The-
orem 2.1, only with a transit node hierarchy of depth x instead of n

2 . This result
has interesting implications for BGP convergence, as it shows a lower bound on the
worst-case amount of communication that BGP (or any other protocol) requires in
order to reach a stable solution, as a function of the nodes’ valuations.

2.3. BGP Convergence and Best-Reply Dynamics.

2.3.1. No Dispute Wheel. No Dispute Wheel is the broadest condition known,
to date, to guarantee BGP convergence to a stable solution. In our terms, this trans-
lates to convergence of best-reply dynamics in the Convergence Game. A Dispute
Wheel, defined by Griffin et al. [15], is an abstract mathematical structure that can
be induced by the network topology and the valuation functions. Formally, a dispute
wheel is defined as the 3-tuple (U ,R,Q) where U = (u0, u1, . . . , uk−1) is a sequence
of k nodes in the network and R = (R0, R1, . . . , Rk−1), Q = (Q0, Q1, . . . , Qk−1) are
sequences of routes that exist in G (indices for these nodes and routes should be
considered modulo k). We shall call u0, ...uk−1 the pivot-nodes. It must hold that:

• Each route Qi starts at ui and ends at the destination node d.
• Each route Ri starts at node ui and ends at node ui+1.
• vi(Qi) ≤ vi(RiQi+1) (where RiQi+1 is the concatenation of the routes Ri

and Qi+1)
The term “Dispute Wheel” is due to the resemblance of its form to that of a wheel.

Figure 2.3 depicts such a structure. It is known that No Dispute Wheel guarantees
that there is a unique stable solution [15].

No Dispute Wheel is known to hold for several interesting special cases. One spe-
cial case is Metric-Based Routing (see, e.g., [8]) which is a generalization of Shortest-
Path Routing (in which the length of every link is 1).

In practice, there is no objective metric according to which all route choices are
made. ASes’ preferences are influenced by many economic, and other, considerations,
like the business relationships between them. The Gao-Rexford setting is said to
accurately depict the underlying commercial structure of today’s Internet [21], and is
a special case of No Dispute Wheel [11].

2.3.2. The Gao-Rexford Framework. Studies of the commercial Internet [21]
suggest two types of business relationships that characterize AS inter-connections:
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Each node ui would rather route clockwise through node ui+1 than through the path
Qi

Fig. 2.3. A Dispute Wheel

Pairs of neighbouring ASes have either a customer-provider or a peering relation-
ship. Customer ASes pay their provider ASes for connectivity – access to Internet
destinations through the provider’s links and advertisement of customer destinations
to the rest of the Internet. Peers are ASes that find it mutually advantageous to
exchange traffic for free among their respective customers, e.g., to shortcut routes
through providers. An AS can be in many different relationships simultaneously: It
can be a customer of one or more ASes, a provider to others, and a peer to yet other
ASes. These agreements are assumed to be longer-term contracts that are formed
because of various factors, e.g., the traffic pattern between two nodes.

In a seminal paper Gao and Rexford [12] suggest constraints on routing policies
that are naturally induced by the business relationships between ASes.

(i) No customer-provider cycles: Let GCP be the directed graph with the
same set of nodes as G and with a directed edge from every customer to its direct
provider. There must be no directed cycles in this graph. This requirement has a
natural economic justification as it means that no AS is indirectly its own provider.

(ii) Prefer customers to peers and providers: A customer route is a route
in which the next-hop AS (the first AS to which packets are forwarded on that route)
is a customer. Provider and peer routes are defined similarly. We require that nodes
always prefer customer routes over peer routes and provider routes. This constraint
is on the valuation functions of the nodes – it demands every node assign customer
routes higher values than peer routes and provider routes.

(iii) Provide transit services only to customers: Nodes do not always carry
transit traffic—traffic that originates and terminates at hosts outside the node. ASes
are obligated (by financial agreements) to carry transit traffic to and from their cus-
tomers. However, ASes do not carry transit traffic between their providers and peers.
Therefore, ASes should share only customer routes with their providers and peers
but should share all of their routes with their customers. This constraint is on the
filtering policy of the nodes – it requires that nodes only export peer and provider
routes to their customers (customer routes are exported to all neighbouring nodes).
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3. Best-Reply Dynamics and Incentives. In this section we discuss several
results regarding the incentive-compatibility of BGP and best-reply dynamics in the
Convergence Game.

3.1. BGP Is Not Incentive-Compatible. We first prove the following theo-
rem:

Theorem 3.1. BGP is not incentive-compatible in ex-post Nash even if the No
Dispute Wheel condition holds.

Proof. Consider the network in Figure 3.1. There are 3 source nodes, 1, 2,m and
a destination node d. Each nodes’ two most preferred routes are listed next to it
(where the higher route is more preferred than the lower route). It is easy to show
that the valuation functions and topology of the network do not induce a Dispute
Wheel (because route 2md does not actually exist). Hence, there is a unique pure
Nash in the One-Round Game, and best-reply dynamics always converge to this
Nash in the Convergence Game. The unique pure Nash is assigning 12d, 2d,m12d
to 1, 2,m, respectively. However, if m announces to 2 repeatedly that its route is md
then it is easy to see that BGP dynamics will always assign 1 the direct route to d,
1d, thus enabling m to get its most preferred route m1d. Hence, deviating from BGP
is beneficial.

Fig. 3.1. Best-Reply Dynamics Are Not Incentive-Compatible

We note that it is possible to define business relationships between the nodes
in this example that are consistent with the Gao-Rexford constraints; for instance,
assume that m is a customer of 1, 2, who are both customers of d, and that 1 is
a customer of 2. Observe that this is consistent with the first two Gao-Rexford
constraints – it does not create customer-provider cycles, and the preferences of all
nodes are such that customer routes are always preferred to provider routes (there
are no peer routes). Even if we assume that 1, 2 (and d) execute BGP and uphold the
third Gao-Rexford constraint (they only announce peer- and provider-routes to their
customers), m can still gain by lying to 2, as explained above.

3.2. BGP With Route Verification Is Incentive-Compatible. As we have
said before, the fact that BGP, as is, is not incentive compatible, can be rectified if
Route Verification holds.

Theorem 3.2. If No Dispute Wheel and Route Verification hold, then best-reply
dynamics are incentive-compatible in (subgame perfect) ex-post Nash

Proof. Consider a network graph G = (N, L) for which No Dispute Wheel holds.
There is a unique stable solution T to which all best-reply dynamics are bound to
converge in the Convergence Game. We denote the route of every source node r
in T by Tr.

Assume, by contradiction, that some manipulating node rm manages to reach a
different outcome M by unilaterally deviating from best-reply dynamics (not execut-
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ing BGP), and gains by doing so. We shall show that this implies the existence of a
Dispute Wheel. The proof shall proceed in steps, pointing out a sequence of routes
in the graph that will eventually form a Dispute Wheel.

We define the route Mr to be the route node r believes it is assigned in M (i.e.,
the route that r’s next selected hop has advertised to r). That is, it could be that
the manipulator tricked nodes that send traffic through it in M to believe that their
traffic is forwarded along a route not used in practice.

Remark 3.3. We note that it could be the case that node rm intentionally causes
a protocol divergence that does not affect it in order to improve its routing outcome
(that is, remote persistent route oscillations). Our proof also works for this case
simply by defining the route Mr of a node r whose route oscillates to be r’s most
preferred route, out of the routes assigned to r in the oscillation. Observe that, in
this case, there is no well-defined outcome M because nodes’ routes (the Mr’s) can be
inconsistent. Luckily, this is not needed for our proof to work. For ease of exposition,
we prove our result below for the case that there are no persistent route oscillations
following the manipulation. The reader can verify that all of our arguments also hold
also for the above definition of the Mr’s.

Since we assumed that rm gained from its manipulation we deduce that:

vrm(Trm) < vrm(Mrm)(3.1)

Because rm strictly prefers Mrm to Trm , but did not choose it in the routing tree
T , we must conclude that the route Mrm is not available to rm in T . This means that
there must exist some node r (other than rm) that is on the route Mrm and that does
not have the same route in M as it has in T . Let r1 be the node on the path Mrm

that is closest to d on Mrm , such that Mr1 6= Tr1 .
By definition, all nodes that follow r1 on the route Mrm have exactly the same

routes in T and in M . This means that the node r1 could choose the route Mr1 in T .
Since it did not choose that route we must conclude6 that:

vr1(Mr1) < vr1(Tr1)(3.2)

We can now proceed to the next step in the proof. Since Tr1 is preferred by
r1, and was not chosen by r1 in the routing tree M , it must be that it was not an
available option. Therefore, there is some node r on the route Tr1 , that is not r1,
such that Tr 6= Mr. We select r2 to be the node r closest to d on the path Tr1 for
which Tr 6= Mr. As before, all nodes closer to d than r2 on the route Tr1 send traffic
along identical routes in both T and M . Hence, the route Tr2 must be available to r2

even in M . The fact that it was not chosen in M implies that r2 prefers Mr2 over it.
Thus, we have that:

vr2(Tr2) < vr2(Mr2)(3.3)

We can continue these steps, alternating between the routing trees T and M and
creating a sequence of nodes as follows:

• r0 = rm

6The reason that the inequality is strict is that equality can exist only if the two routes go through
the same neighbouring node. This cannot be the case as Mr1 6= Tr1 .
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for n = 0, 1, 2, . . . we perform the following steps:
• M step: Let r2n+1 be the node r on the route Mr2n

such that Mr 6= Tr, and
r is closest among all such nodes to d on Mr2n .

• T step: Let r2n+2 be the node r on the route Tr2n+1 such that Mr 6= Tr, and
r is closest among all such nodes to d on Tr2n+1 .

Note that the destination node d cannot appear in this sequence because the route
Md = Td is the empty set. Due to our construction, and to arguments similar to the
ones presented before, the preferences over routes are as follows:

for i = 0, 2, 4, . . . vri
(Tri

) < vri
(Mri

)(3.4)

for i = 1, 3, 5, . . . vri
(Mri

) < vri
(Tri

)(3.5)

Since there is only a finite number of nodes, at some point a node will appear in
this sequence for the second time. We denote the first node that appears two times
in the sequence by u0. Let u0, ..., uk−1, u0 be the substring of r0, r1, ... that begins in
the first appearance of u0 and ends in its second appearance. We shall examine two
distinct cases.

CASE I: The manipulator rm does not appear in the substring u0, ..., uk−1, u0.
Proposition 3.4. If for all i ∈ {0, ..., k − 1} rm 6= ui (the manipulator is not

one of the nodes in the substring) then k must be even.
Proof. If k is odd, then it must be that both u1 (in its first appearance in the

substring) and u0 (in its second appearance in the substring) were both selected in
M steps, or were both selected in T steps. However, if this is the case we reach a
contradiction as both nodes were supposed to be the node r closest to d on a certain
route, such that Tr 6= Mr. Since uk−1 6= u0 this cannot be.

If k is even then the substring of nodes u0, ..., uk−1, u0, along with the Tui and
Mui route, and the preferences over these routes (expressed before) form a dispute
wheel (as in Figure 3.2).

CASE II: The manipulator rm appears in the substring (that is, u0 = rm). We
now need to handle two subcases: The subcase in which k is even and the subcase in
which k is odd. If k is even then the second appearance of the manipulator (u0) in
the substring is due to a T step. If so, a Dispute Wheel is formed, as in the example
in Figure 3.27.

We are left with the subcase in which k is odd. In this case the second appearance
of rm was chosen in an M step. If so, it must be that Muk−1 (that goes through rm)
is not used in practice (otherwise, both uk−1 and that the second appearance of
rm = u0 was chosen in M steps, and arguments similar to those of Proposition 3.4
would result in a contradiction). This must be the result of a manipulation by rm.
Let Lrm be the false route reported by the manipulator to the node that comes before
it on Muk−1 . Recall that the manipulator can only announce a route Lrm that exists
and is available to it in M8. Recall, that the second appearance of the manipulator
was chosen due to an M step. Therefore, all nodes that follow it on Muk−1 (which are
the same nodes as in Lrm) are assigned the same routes in T and M . Hence, Lrm was
available to rm in T . It must be that vrm(Lrm) ≤ vrm(Trm), for otherwise rm would

7The route R\S (where S is a sub-route of R) is route R truncated before the beginning of S
8Notice that this is the crucial step in which route verification is used within the proof.
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have chosen Lrm
as its route in T (a contradiction to the stability of T ). We know

that vrm
(Trm

) ≤ vrm
(Mrm

) because we assumed that the manipulation performed by
rm was beneficial to it. We get:

vrm
(Lrm

) ≤ vrm
(Trm

) ≤ vrm
(Mrm

)(3.6)

Thus, we form a Dispute Wheel with Lrm
as shown in Figure 3.3.

Fig. 3.2. A Dispute Wheel constructed during the proof of Theorem 3.2 (even number of nodes).

Fig. 3.3. A Dispute Wheel constructed during the proof of Theorem 3.2 (odd number of nodes).

Notice that route verification is required only for CASE II of the proof above,
specifically when there is an odd number of nodes in the cycle.

3.3. BGP With Route Verification Is Collusion-Proof. In our context,
collusion proofness in ex-post Nash [10] means that even a coalition of ASes of any
size cannot strictly9 better the routing outcomes (i.e., their actual routes) of all
members in the coalition by deviating from BGP. A construction similar to that in
the proof of 3.2 shows that Theorem 3.2 can be strengthened as follows:

Theorem 3.5. If No Dispute Wheel and Route Verification hold, then the best-
reply dynamics are collusion-proof in (subgame perfect) ex-post Nash.

9The definition of collusion-proofness in [10] also allows weak inequalities. Here, we shall only
deal with cases in which all members of the coalition are strictly better off.
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Proof. We shall assume, by contradiction, that a group of manipulators colludes
in an interdomain routing instance with no Dispute Wheel in order to improve their
routing outcomes. We define Tr and Mr as in the proof of Theorem 3.2. We assume,
by contradiction, that all manipulators are not harmed by this manipulation:

∀r ∈ Manipulators vr(Tr) < vr(Mr)(3.7)

We shall arrive at a contradiction by showing the existence of a Dispute Wheel in a
similar manner to that demonstrated in the proof of Theorem 3.2.

We begin the construction by selecting one of the manipulators that strictly gained
from the collusion. We shall denote this manipulator by rm (it must be that Trm

6=
Mrm

). We then construct a sequence of nodes in the following way (This is a slightly
modified version of the construction appearing in Theorem 3.2):

• r0 = rm

• M-manip step: For a node rn which is a manipulator we define rn+1 to be
the node r on the route Mrn

, such that Mr 6= Tr, and r is the closest to d on
Mrn among all such nodes.

• T step: For a node rn that is not a manipulator, and was chosen in an M
step, we define rn+1 to be the node r on the route Trn , such that Mr 6= Tr,
and r is the closest to d on Trn among all such nodes.

• M-honest step: For a node rn that is not a manipulator, and was chosen in
a T step, we define rn+1 to be the node r on Mrn , such that Mr 6= Tr, and r
is the closest to d on Mrn among all such nodes.

The nodes in the sequence r0, r1, r2, . . . must start repeating at some point. We
denote by u0 the first node that repeats in the sequence, and by u0, ...uk−1, u0 the
sub-sequence of nodes between those repetitions. As in Theorem 3.2, we will reach
a contradiction by showing that a dispute wheel exists in the graph. The nodes
u0, ..., uk−1, u0 will be the pivot-nodes. First, we prove the following proposition that
will aid our construction.

Proposition 3.6. There is no i ∈ {0, ..., k − 1} such that both ui and ui+1

(modulo k) are manipulators (no two manipulators come one after the other in the
substring u0, ...uk−1, u0).

Proof. By contradiction, let ui and ui+1 be two consecutive manipulators. ui+1

was chosen in an M step. ui+1 is therefore the node r closest to d on Mui such that
Mr 6= Tr. Hence, Mui+1 must be available to ui+1 in both M and T . We know
that vui+1(Tui+1) ≤ vui+1(Mui+1), as ui+1 is a manipulator. Since ui+1 chose Tui+1

over Mui+1 in T it must also be that vui+1(Tui+1) ≥ vui+1(Mui+1). We conclude that
vui+1(Tui+1) = vui+1(Mui+1). However, equality of the values of routes assigned by
ui+1 is only possible if ui+1 forwards traffic to the same node in both routes. Since
both routes are available in T , this means that Tui+1 = Mui+1 . This contradicts the
reason for which ui+1 was selected (Mui+1 6= Tui+1).

We will now need to demonstrate that each node ui in the repeating sequence
has two paths to its destination: a direct path Qi, and one that passes through ui+1

that we will denote as RiQi+1. We will show that each node prefers the indirect path
over the direct one. We will examine three possible cases that match the three types
of steps in the selection of the series of nodes.
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(i) M-manip step: For a node ui which is a manipulator we select the route
RiQi+1 as the indirect route Mui

that passes through ui+1. This path must exist
since it is the one the manipulator uses in the manipulation (and gains by from its
use).
From proposition 3.6, we know that the node ui−1 is not a manipulator, since during
the construction we picked node ui after node ui−1. Node ui−1 may have been picked
during an M-honest step or a T-honest step (as will be shown below). Because honest
nodes use Route Verification, it must be that the path from ui−1 to the destination
through node ui exists. We set the path Qi to be the suffix of the path node ui−1

believes it is using. Node ui was selected as the last node on this path that routes
differently in M and T , and so this path must be available to node ui in T . From this
we learn that

vui
(Qi) ≤ vui

(Tui
) < vui

(Mui
) = vui

(RiQi+1)(3.8)

which is the preference relation we require to construct a dispute wheel.

(ii) T step: For a node ui that is not a manipulator, and was chosen in an M
step, we define Qi to be the path that this node has in M . In this case we know that
Qi exists and is not just a perceived route, as the node ui is honest, and all nodes
below it route the same in M and T . We define its indirect route RiQi+1 as its path
in T which must exist in the network, as it is used when all nodes play honestly, and
which by construction passes through ui+1. Note, that node ui is the closest node to
d on Mui−1 , and all following nodes on this path route the same in M, T . However,
this path is not chosen by ui in T which means it is less preferred:

vui(Qi) < vui(RiQi+1)(3.9)

(iii) M-honest step: For a node ui that is not a manipulator, and was chosen
in a T step, we define Qi to be the path that this node has in T . We define its indirect
route RiQi+1 as the path it believes it has in M (note that here we are consistent
with the definition of Qi+1 for the case in which node ui+1 is a manipulator). This
path must exist in the network due to Route Verification and by construction passes
through node ui+1. Note, that node ui is the closest node to d on Tui−1 , and all
following nodes on this path route the same in M,T . However, this path is not
chosen by ui in M which means it is less preferred:

vui(Qi) < vui(RiQi+1)(3.10)

The reader may check that the direct paths defined as Qi+1 in each step is consistent
with the suffix of RiQi+1 that is defined in the previous step. We have therefore
completed our construction of a dispute wheel from the topology of the graph, and
preferences of nodes which proves the theorem.

Again, notice that the crucial application of route verification in the proof is
during an M-honest step where an honest node is assigned a path RiQi+1 which is
the path it believes it is routing through in M . Even if a manipulator is present on
this path, route verification allows us to conclude that every link on this route actually
exists (even if it is not really used for routing), and so can be a part of the dispute
wheel we construct.

3.4. Discussion: On Dispute Wheels and Filtering Policies. The results
presented in this section imply that when No Dispute Wheel holds, BGP with Route
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Verification has surprisingly good properties from a mechanism design perspective.
This means that No Dispute Wheel is not only the most general known condition,
to date, that guarantees BGP convergence to a stable solution, but also ensures that
this convergence is properly incentivized (in the sense that the individual nodes have
no motivation not to execute BGP).

What if the network and the nodes’ preferences do induce a Dispute Wheel?
Observe that the BGP strategy profile considered in this paper is such that nodes
announce routes they use to all neighbours. However, a natural way to avoid Dispute
Wheels is to make sure that certain routes (that could potentially appear in a Dispute
Wheel) are removed from consideration by ensuring that they are not announced to
certain nodes. In fact, this is precisely what is achieved by the third Gao-Rexford
constraint, that requires that ASes only announce certain routes to their customers
(and not to their providers or peers).

To enable us to discuss such scenarios, in which nodes are requested to “filter”
certain routes, we can now think of BGP (best-reply dynamics) as a strategy-profile
in which every player continuously performs the following actions: Receive the most
recent route announcements from all neighbours. Choose the neighbour with the
most preferred simple route to d (according to your vi). Announce this route to a
subset your neighbours, given your prescribed filtering policy. For instance, in the
Gao-Rexford setting, we can think of BGP as the strategy-profile in which ASes have
filtering policies that uphold the third Gao-Rexford constraint.

All of the results presented in this section apply to settings like the Gao-Rexford
setting, in which nodes filter routes based on prescribed filtering policies, as long as
the two following conditions hold:

1. The prescribed filtering policies imply No Dispute Wheel. That is,
every Dispute Wheel that is induced by the network and the nodes’ preferences is
such that some route in that Dispute Wheel should be filtered by one of the nodes on
it. The Gao-Rexford setting is one example in which the prescribed filtering policies
indeed prevent Dispute Wheel formation [12].

2. Nodes cannot announce routes that violate their prescribed filter-
ing policies without being caught. That is, if a node j announces a route to node
i that it should not announce according to its prescribed filtering policy, node i should
be able to detect this “illegitimate” announcement and ignore it. In the Gao-Rexford
setting, for instance, this can be accomplished via very local security checks, because
in order to figure out whether a route Rj announced by j is “legitimate”, i need only
verify the business relationship between j and the next-hop node on Rj .1011

4. Maximizing Social Welfare. We prove that obtaining an approximation
ratio better than n to the optimal social welfare is hard even if No Dispute Wheel
holds. In fact, this can be shown even for the Gao-Rexford setting. We present two
lower bounds, one in the computational complexity model, and one in the communi-
cation complexity model.

Theorem 4.1. Obtaining an approximation of O(n
1
2−ε) to the social welfare is

impossible unless P = NP . Obtaining an approximation of O(n1−ε) to the social

10Specifically, if j is i’s customer or peer then i should verify (e.g., via cryptographic signatures)
that k is j’s customer.

11In reality, business relations between the ASes are sometimes secret and may be difficult to
verify. However, some information is already revealed by the fact that an AS advertises a route
through its neighbor. All that remains is to verify this implicit claim.
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welfare is impossible unless P = ZPP . This holds for any ε > 0 and even in the
Gao-Rexford setting.

Proof. Our proof will be by reduction from Clique. Assume a graph G = 〈V, E〉,
we construct a network with N nodes and L links. In this network, N consists of
2|V |+ 1 source-nodes and a unique destination node d. The source nodes are divided
into 3 disjoint sets: Two sets N1, N2, such that |N1| = |N2| = |V | and a connection
node c. We create a node vN1 ∈ N1 and a node vN2 ∈ N2 in the AS graph for every
node v ∈ V from the given instance of the Clique problem. All nodes in N1 are
connected to the connection node c. All nodes in N2 are connected to each other, to
the connection node, and to d. See Figure 4.1.

Fig. 4.1. The network in the proof of Theorem 4.1

All nodes in N2, and c, have valuation functions that assigns a value close to 0 to
all routes (no ties). Fix some order O on the nodes in N2 (for now, this order shall
play no part in the proof. we shall only need it to show how to make the proof work
in the Gao-Rexford framework). A node vN1 ∈ N1 assigns a value close to 1 (no ties)
to a route R iff all the following conditions hold:

• (vN1 , c) is the first link on R.
• The order of appearance of the nodes from N2 in R is consistent with O.
• vN2 is on R.
• For every node uN2 6= vN2 ∈ N2 on R there is an edge (v, u) in G.

Observe that since c is the only connection between N1 and N2 ∪ {d}, c’s route
determines the routes of all nodes in N1. The reader can verify that every clique in
G corresponds to a routing tree with a social welfare that equals (almost) the size of
the clique (assign every node in N1 that is in the clique the route that goes through
c and then the all the nodes in N2 that are associated with nodes in the clique). In
addition, the social welfare of every routing tree corresponds to a clique in the original
graph G (the route from c to d through N2 determines the identity of the clique).
The theorem follows from the known inapprroximability results for Clique [19].

We note that this result can be made to hold in the Gao-Rexford setting by
defining business relationships as follows: c is a customer of all nodes in N1. All
nodes in N2 are customers of c. For every two nodes r, s ∈ N2, such that s comes
after r in O, s is r’s customer. d is a customer of all nodes in N2.

Theorem 4.2. Obtaining an approximation of O(n1−ε) to the social welfare
requires exponential communication (in n). This holds for any ε > 0 and even in the
Gao-Rexford setting.
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Proof. The proof is similar to the proof of Theorem 2.1, and is by reduction
from Set Disjointeness. There are n parties, and each party i holds a subset Ai of
1, ..., K. The goal is to distinguish between the two following extreme subcases:

• ⋂
i Ai 6= ∅

• For every i 6= j Ai ∩Aj = ∅
It is known that in order to distinguish between these two subcases the parties

must exchange Ω(K) bits. We set K = 2
n
2 .

Now, consider a network with 2n+1 source nodes and a unique destination node
d. The set of nodes N consists of 3 disjoint subsets: n sending nodes, a connecting
node c, and n transit nodes. Each party i ∈ [n] in the Set Disjointeness problem
is associated with a sending node si.

The transit nodes are divided into n
2 pairs T1, ..., Tn

2
. All sending nodes are

connected to the connecting node, which, in turn, is connected to both nodes in T1.
For every r = 1, ..., n

2 − 1, each node in Tr is connected to both nodes in Tr+1. Both
nodes in Tn

2
are connected directly to d. See a description of the network in Figure 4.2.

Fig. 4.2. The network in the proof of Theorem 4.2

All transit nodes and the connecting node have a value close to 0 (no ties) for all
routes. There are 2

n
2 possible routes from c to d that go through the transit nodes

(see proof of Theorem 2.1). Fix an arbitrary order on these routes R1, ..., R2
n
2
. The

valuation function of each si assigns a value close to 1 (no ties) to a route (si, c)Ra

iff a ∈ Ai. It assigns a value close to 0 to all other routes (no ties). The reader can
verify that there is a route assignment with a social welfare-value close to n if there
is some a ∈ ⋂

i Ai 6= ∅ (assign every node i the route (si, c)Ra). If, on the other hand,
for every i 6= j Ai ∩ Aj = ∅, then any route assignment cannot have a social-welfare
value better than 1 + ε (this is because c’s route determines the routes of the sending
nodes through the transit nodes).

Hence, we have a network with O(n) nodes, in which determining whether the
social-welfare is n or 1 is equivalent to solving the Set Disjointeness problem with
n players (each player i simulates node si), each holding a subset of 1, ..., 2

n
2 . It

therefore requires at least Ω(2
n
2 ) bits of communication. This concludes the proof of

the theorem.
This result too can be made to hold for the Gao-Rexford setting if we define

business relationships as follows: For every i = 2, .., n
2 , the nodes in Ti are customers

of the nodes in Ti−1. d is a customer of the nodes in Tn
2
, the nodes in T1 are customers

of c, and c is a customer of all nodes in N1.
Remark 4.3. As in the case of Theorem 2.1, the proof of Theorem 4.2 can easily

be modified to show that even if we assume that nodes are only interested in routes of
length at most x, there exists a network setting in which obtaining an approximation
of O(x1−ε) requires communicating O(2x) bits.
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A trivial upper bound of n can be achieved by finding the node with the high-
est value for some route, assigning that route to that node (thus getting an n-
approximation)12, and then assigning routes to all other nodes in a way that forms a
tree rooted in d.

5. Open Questions.

(i) No Dispute Wheel is sufficient, but not necessary, for guaranteeing BGP
convergence. Recall, that when we say BGP convergence we are referring to BGP
convergence for all possible timings of update messages, a property known as “BGP
safety” in networking literature [16]. Very recently (subsequently to our work), Sami
et al. [26] presented a more general sufficient condition for BGP convergence than No
Dispute Wheel called, “Iterated Dominance Tree”. Sami et al. [25] have also shown
that the existence of two or more stable solutions always implies that BGP safety does
not hold, thus providing the first non-trivial necessary condition for BGP convergence
(uniqueness of the stable solution). However, there is still a big gap between the
known sufficient conditions, and this new necessary condition. An important open
question if to find non-trivial characterizations (sufficient and necessary
conditions) of networks for which BGP safety is guaranteed.

(ii) What more general conditions than No Dispute Wheel and Route
Verification guarantee incentive-compatible convergence of best-reply dy-
namics in our interdomain routing model? One can try to identify such more
general conditions by relaxing the No Dispute Wheel assumption, and/or the Route
Verification requirement. Indeed, Sami et al. [26] have been able to strengthen our
results, by showing that similar results hold for a condition broader than No Dispute
Wheel (called Iterated Dominance Tree), and a security requirement weaker than
Route Verification (called Topology Validation). However, we still do not have a good
understanding of which conditions imply incentive-compatibility.
No Dispute Wheel does not only guarantee BGP convergence, but even robust BGP
convergence. That is, not only is BGP guaranteed to converge, but it will converge
even if nodes and links are arbitrarily removed from the network (because for every
subgraph of the AS graph No Dispute Wheel holds). This is very important from
a practical perspective as it implies that BGP convergence is achieved even in the
presence of link and node failures. We present the following conjecture:

Conjecture: Robust BGP convergence always implies incentive-compatibility of BGP
with Route Verification.

That is, whenever the network and routing policies are such that robust BGP conver-
gence is guaranteed, BGP with Route Verification is incentive-compatible.

(iii) Other Models. The questions we consider in this paper, and our formal
framework, can be applied to variations of our model. For instance, subsequently
to our work Goldberg et al. [13] have presented several impossibility results for the
case that utility functions in our model are also influenced by incoming traffic (i.e,
nodes do not only care about the routes they get, but also about which nodes are
routing through them). Similarly, Kintali [31] extended our game-theoretic model to
the case of Fractional BGP [20]. It will be interesting to study incentive-compatibility

12this bound naturally assumes a representation in which finding such a maximal value route is
easy
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of best-reply dynamics in various other interdomain routing settings.

(iv) Identify realistic interdomain routing settings in which good ap-
proximations to the social-welfare are possible. It has been shown [8] that
No Dispute Wheel and Policy Consistency imply that BGP always converges to the
socially-optimal routing tree. It was also shown [8] that relaxations of Policy Consis-
tency lead to arbitrarily bad solutions, even in very small and realistic networks. We
are interested in identifying settings in which BGP is guaranteed to reach solutions
that have a good social-welfare value. In our game-theoretic model, this question
translates to a price of anarchy [23] problem: We wish to identify restrictions on the
topology of the network, and the routing policies of nodes, for which the worst-case
ratio (with respect to social welfare) between pure Nash equilibria in the One-Round
Game (stable solutions), and the optimal solution, is small.
There is also the computational question: Our results in this paper show that even in
the Gao-Rexford setting one cannot find a good approximation to the optimal social
welfare (via any algorithm) in polynomial time. In which settings is it possible to
obtain a good approximation in polynomial time (via BGP, or another protocol)?
Furthermore, will it be possible to achieve some approximation via a non-centralized
computation through a network protocol?
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