On the Structure of Weakly Acyclic Games

$\begin{array}{l} \mbox{Alex Fabrikant} \\ \mbox{(Princeton CS} \rightarrow \mbox{Google Research)} \end{array}$

Aaron D. Jaggard (DIMACS, Rutgers \rightarrow Colgate University)

 $\begin{array}{l} \mbox{Michael Schapira} \\ \mbox{(Yale CS \& Berkeley CS \rightarrow Princeton CS)} \end{array}$

Best- and better-response dynamics

 Consider the best-response (or better-response) dynamics of a normal-form game:

Pure NE = no outbound edges

- *Existence* of pure Nash is good, but will the game converge to one?
- Some kinds of games always converge to pure Nash:
 - congestion/potential games [Rosenthal'73; Monderer&Shapley '96]
 - ordinal potential games (fully general for better-response)
 - dominance-solvable games [Moulin '79]
- But what of games that don't always converge?

Is this divergence interesting?

• Is this divergence interesting?

 Weakly acyclic games: every state has a better-response path to a pure Nash (no non-singleton sinks) [Young'93; Milchtaich'96]

• Is this divergence interesting?

 Weakly acyclic games: every state has a better-response path to a pure Nash (no non-singleton sinks)
⊇ weakly acyclic under best response

• Is this divergence interesting?

- Weakly acyclic games: every state has a better-response path to a pure Nash (no non-singleton sinks)
 ⊇ weakly acyclic under best response
- Random player ordering \Rightarrow stochastic convergence a.s.

• Is this divergence interesting?

- Weakly acyclic games: every state has a better-response path to a pure Nash (no non-singleton sinks)
 ⊇ weakly acyclic under best response
- Random player ordering \Rightarrow stochastic convergence a.s.
- Other natural dynamics, like no-regret, also converge (Young, et al.)

The convergence map

Has pure NE	
We	akly acyclic under Better Response
	Weakly acyclic under Best Response
	Strongly acyclic under Best Response
	Strongly acyclic under Better Response = Ordinal potential games

5

Characterizing weak acyclicity

- Our contribution: combinatorial sufficient conditions that link subgame equilibria and weak acyclicity
 - Subgame: each player gets a subset S'_i ⊆ S_i of her strategies

Characterizing weak acyclicity

- Our contribution: combinatorial sufficient conditions that link subgame equilibria and weak acyclicity
 - Subgame: each player gets a subset S'_i ⊆ S_i of her strategies
- Start with subgame stability: each subgame has pure NE
 - Not rare: necessary and not sufficient for ordinal potential
 - Originally from networking (BGP routing): subgame stability stability stability under failures

7

The general result

• 2-player game [Yamamori&Takahashi'02]¹:

	_	_
Has pure NE		
Weakly acyclic under Better Response		
Weakly acyclic under Best Response]
Subgame stable		
Strongly acyclic = Ordinal potential games		
	_	

The general result

2-plaver game [Yamamori&Takahashi'02]²:

Has pure NE	
	Weakly acyclic under Better Response
	Weakly acyclic under Best Response
	Subgame stable
	Strongly acyclic = Ordinal potential games

²Our corollary: w.h.p., the cute combinatorial lemma in your AGT paper was already proven by economists, and published in Economese.

The general result

• *n*-player game:

 Unique Subgame Stability: each subgame has a unique pure NE

 Not weakly acyclic ⇒ BR dynamics has a sink equilibrium [Goemans, et al.'05] of size > 1

 Take the span of this component – subgame that includes all strategies used in the sink

- This subgame has a pure NE, and the sink has a node in the same column
- The pure NE cannot be in the sink

But where does the BR by row player go?

<**∂** > < ≣ > 8

- Thus, 2-player SS
 - \Rightarrow Weak Acyclicity under Best Response
 - \Rightarrow Weak Acyclicity under Better Response

n players: not so easy

- For 2 players, there is a sink state within 1 player's move from a pure NE
- For *n* players, within $\leq n 1$ players' moves

n players: not so easy

- For 2 players, there is a sink state within 1 player's move from a pure NE
- For *n* players, within $\leq n 1$ players' moves
- Idea: fix players' strategies, one player at a time

n players: not so easy

- For 2 players, there is a sink state within 1 player's move from a pure NE
- For *n* players, within $\leq n 1$ players' moves
- Idea: fix players' strategies, one player at a time
- We'll need *unique* subgame stability

 Similar: take the span of a hypothetical big sink, find its pure NE, follow best response to have one player match his strategy in the NE

• Similar: take the span of a hypothetical big sink, find its pure NE, follow best response to have one player match his strategy in the NE

 Similar: take the span of a hypothetical big sink, find its pure NE, follow best response to have one player match his strategy in the NE

 Similar: take the span of a hypothetical big sink, find its pure NE, follow best response to have one player match his strategy in the NE

 Remove all of that player's strategies → smaller subgame, also has a pure Nash

 Recursion builds up a path built of chunks of BR paths from different subgames: cheating? (no; see paper)

Has pure NE	Subgame stable ⇒ WA for 2 players
n-player	A under Best Response
n-p	layer WA games
	Unique subgame stable ⇒ WA for n players
	Strongly acyclic = Ordinal potential games

 Strict Subgame Stability: each subgame has a pure NE which each player strictly prefers

 Strict Subgame Stability: each subgame has a pure NE which each player strictly prefers

• The distinctions are tight w.r.t. game size

Open: Is there more structure to this space?

• Maybe there's an interesting intermediate property between SSS and USS?

• (Our proof doesn't *quite* use full USS...)

• HasPNE \supseteq SS \supseteq SSS \supseteq USS ...more to this hierarchy?

Why SS/USS/SSS?

• *Our* interest started from BGP routing, where both SS and Unique SS have relevant incarnations

Why SS/USS/SSS?

- *Our* interest started from BGP routing, where both SS and Unique SS have relevant incarnations
- First combinatorial sufficient condition for weak acyclicity in general games

Why SS/USS/SSS?

- *Our* interest started from BGP routing, where both SS and Unique SS have relevant incarnations
- First combinatorial sufficient condition for weak acyclicity in general games
- Significantly lower complexity class:
 - [Mirrokni&Skopalik'09]: Weak acyclicity in several interesting succinct games is PSPACE-Complete.
 - For reasonable succinct games, all our conditions are low-ish in PH (Σ_2 P and Σ_3 P)

Open problems

- Are there interesting game classes which obey USS by design, or can be tractably checked for USS?
- More broadly-applicable sufficient conditions of weak acyclicity?

Open problems

- Are there interesting game classes which obey USS by design, or can be tractably checked for USS?
- More broadly-applicable sufficient conditions of weak acyclicity?
- Weak acyclicity doesn't have to be tied to myopic dynamics...

Open problem: the elephant in the room

- Weakly Acyclic games converge stochastically
- Bad worst-case convergence time, even in nice, strongly acyclic games. E.g., exponential in network congestion games [F,Papadimitriou,Talwar'04]

Open problem: the elephant in the room

- Weakly Acyclic games converge stochastically
- What about the expected time until convergence, assuming, e.g., u.a.r. player orderings?
- Random walk mixing time for particularly-shaped directed graphs — maybe need more basic tools?
- "Good" news: no worse than exponential, but when is it actually good?

Open problem: the elephant in the room

- Weakly Acyclic games converge stochastically
- What about the expected time until convergence, assuming, e.g., u.a.r. player orderings?
- Random walk mixing time for particularly-shaped directed graphs — maybe need more basic tools?
- "Good" news: no worse than exponential, but when is it actually good?
- Interesting: Without strictness, clean exponentially-bad examples [Ferraioli, over lunch]. But ties are fragile...

Introduction	2-player games	<i>n</i> -player games	More SS classes?	Open problems

Thank you

Introduction	2-player games	<i>n</i> -player games	More SS classes?	Open problems