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Abstract

We present and discuss general techniques for proving inapproximability results for truthful mech-
anisms. We make use of these techniques to prove lower bounds on the approximability of several
non-utilitarian multi-parameter problems.

In particular, we demonstrate the strength of our techniques by exhibiting a lower bound of 2 − 1
m

for the scheduling problem with unrelated machines (formulated as a mechanism design problem in the
seminal paper of Nisan and Ronen on Algorithmic Mechanism Design). Our lower bound applies to
truthful randomized mechanisms (disregarding any computational assumptions on the running time of
these mechanisms). Moreover, it holds even for the weaker notion of truthfulness for randomized mech-
anisms – i.e., truthfulness in expectation. This lower bound nearly matches the known 7

4
(randomized)

truthful upper bound for the case of two machines (a non-truthful FPTAS exists). No lower bound for
truthful randomized mechanisms in multi-parameter settings was previously known.

We show an application of our techniques to the workload-minimization problem in networks. We
prove our lower bounds for this problem in the inter-domain routing setting presented by Feigenbaum,
Papadimitriou, Sami, and Shenker.

Finally, we discuss several notions of non-utilitarian “fairness” (Max-Min fairness, Min-Max fairness,
and envy minimization). We show how our techniques can be used to prove lower bounds for these
notions.

1 Introduction

1.1 Inapproximability Issues in Algorithmic Mechanism Design

The field of Algorithmic Mechanism Design [33] deals with designing protocols for achieving global goals that
require interaction with selfish agents. Algorithmic Mechanism Design combines an economic perspective
that takes into account the strategic behavior of the agents, with a theoretical computer-science perspective
that focuses on computational aspects such as efficiency and approximability. In most of the works in this
field the very robust notion of equilibrium in dominant strategies is used. It is well known ( [31], see [33]) that,
without loss of generality, we can limit ourselves to only considering “incentive compatible” mechanisms,
also known as “truthful” mechanisms or “strategy-proof” mechanisms. In such mechanisms participants are
always rationally motivated to correctly report their private information.

Let us now describe, more formally, the nature of the problems that Algorithmic Mechanism Design
attempts to solve: There is a finite set of alternatives A = {a, b, c, ...}, and a set of strategic agents N =
{1, ..., n}. Each agent i has a valuation function vi : A → R that is his private information. The agents
are self-interested and only wish to maximize their own gain. The global goal is expressed by a social
choice function f that assigns every possible n-tuple of agents’ valuations (v1, ..., vn) an alternative a ∈ A.
Mechanisms are said to truthfully implement a social choice function if their outcome for every n-tuple of
agents’ valuations matches that of the social choice function, and if they enforce payments of the different
agents in a way that motivates truthful behavior.
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A very common social choice function is the utilitarian function; A utilitarian function aims to maximize
the social welfare, i.e. to find the alternative a for which the expression Σivi(a) is maximized. Another well
known example of a social choice function is the Max-Min function (based on the philosophical work of John
Rawls); For every n-tuple of vi valuations the Max-Min function assigns the alternative a that maximizes
the expression mini vi(a). Intuitively, the Max-Min function chooses the alternative a ∈ A in which the least
satisfied agent has the highest value compared to the least satisfied agent in all other alternatives b ∈ A.

While in many computational and economic settings the social choice function we wish to implement in
a truthful manner is utilitarian (e.g. combinatorial auctions), often this is not the case. Problems in which
the social choice function is non-utilitarian include revenue maximization in auctions (e.g. [19]), minimizing
the makespan in scheduling (e.g. [33, 3, 1]), fair allocation of resources (e.g. [9, 8, 30]), etc. A classic
result of mechanism design – a subfield of economic theory and game-theory (see [31, 35]) – states that
for every utilitarian problem there exists a mechanism that truthfully implements it – namely, a member
of the celebrated family of VCG mechanisms [39, 11, 21]. No general technique is known for truthfully
implementing non-utilitarian social-choice functions. In fact, some non-utilitarian social-choice functions
cannot be truthfully implemented [9, 33]. Hence, from a computational point of view it is natural to ask
how well these social choice functions can be approximated in a truthful manner.

1.2 Our Results

In this paper we present and discuss several general techniques for setting lower bounds on the approximabil-
ity of truthful mechanisms. Our techniques are powerful in the following sense: Firstly, due to their generality
and simplicity they can easily be applied to a variety of problems (as we shall demonstrate)1. Secondly, they
apply to multi-parameter settings in which the agents have complex multi-dimensional preferences (and not
only to single-parameter settings in which the private information of each agent consists of a single numerical
parameter). Thirdly, they do not impose any computational assumptions on the mechanism (such as poly-
nomial running-time). Finally, our techniques apply to both deterministic and randomized mechanisms. In
particular, we show how to derive lower bounds for both notions of truthfulness for randomized mechanisms
- universal truthfulness and truthfulness in expectation.

In Section 2 we present our techniques and demonstrate their use on a scheduling problem. The single-
parameter version of the scheduling problem has received much attention in recent years [3, 1] (and references
therein). We deal with the multi-parameter version of the problem presented by Lenstra, Shmoys, and
Tardos [29]. This optimization problem was formulated as a mechanism design problem by Nisan and
Ronen in their seminal paper on Algorithmic Mechanism Design [33]: There are n tasks 1, ..., n that are
to be scheduled on m machines 1, ...,m2. Every machine i is a strategic agent with a valuation function
vi : 2[n] → R≥0 such that for every task j ∈ [n], vi({j}) (we shall sometimes simply denote vi(j)) specifies
the cost of task j on machine i. One can think of the cost of task j on machine i as the time it takes i
to complete j. For every S ⊆ [n], vi(S) = Σj∈Svi(j). That is, the total cost of a set of tasks on machine
i is the additive sum of the costs of the individual tasks on that machine. The global goal is minimizing
the makespan of the chosen schedule. I.e., assigning the jobs to the machines in a way that minimizes the
finishing time of the schedule. Obviously, the makespan-minimization social choice function is non-utilitarian
and hence cannot necessarily be truthfully implemented by any mechanism. Nisan and Ronen prove that
not only is it impossible to minimize the makespan in a truthful manner, but that any approximation better
than 2 cannot be achieved by a truthful deterministic mechanism.

Section 2 illustrates our techniques by proving several lower bounds for this problem. In particular, we
prove that no randomized truthful mechanism can achieve an approximation ratio better than 2− 1

m . This
nearly matches the known truthful upper bound of 7

4 for the case in which there are only 2 machines [33] (a
non-truthful FPTAS exists for this case [23]). Hence, randomness cannot help in obtaining approximation
ratios that are considerably better than the known lower bound for truthful deterministic mechanisms.
Somewhat surprisingly, this lower bound applies even for the substantially weaker notion of truthfulness for

1In particular, our techniques do not involve payments (either made by the agents or distributed by the mechanism).
2We chose m to be the number of machines and n to be the number of tasks in order to be consistent with the formulation of

Nisan and Ronen. Recall, that we used n previously to denote the number of agents, whereas here the agents are the machines.

2



randomized mechanisms - truthfulness in expectation. This is the first lower bound for truthful randomized
mechanisms for this problem. In fact, to the best of our knowledge this is the first lower bound for truthful
randomized mechanisms in multi-parameter settings in general.

In addition, we show how to prove lower bounds for two important classes of deterministic mechanisms:
strongly-monotone mechanisms (a somewhat similar lower bound was proved by Lavi and Swamy [27]) and
affine maximizers (“weighted-VCG”). This is another step towards proving the conjecture of Ronen and
Nisan that no truthful deterministic mechanism can obtain an approximation ratio better than m.

In Section 3 we show an application of our techniques to another multi-parameter non-utilitarian problem
– minimizing the workload in communication networks. This problem arises naturally in the design of routing
mechanisms. We study the approximability of this problem in the inter-domain routing setting presented by
Feigenbaum, Papadimitriou, Sami, and Shenker [16].

Finally, in Section 4 we discuss three notions of non-utilitarian fairness – Max-Min fairness, Min-Max
fairness, and envy-minimization. We highlight the connections between these notions and the problems
studied in this paper and prove several general results using our techniques.

1.3 Related Work

In a seminal paper Nisan and Ronen [33] introduced the field of Algorithmic Mechanism Design. The
main problem presented in [33] to illustrate the novelty of this new area of research was scheduling with
unrelated machines. Nisan and Ronen explored the approximability of this non-utilitarian multi-parameter
problem and exhibited a lower bound of 2 − ε for truthful deterministic mechanisms. For this NP-hard
scheduling problem there exist an FPTAS (for any fixed numbers of machines) [23] and a polynomial-time
2-approximation algorithm [29], that are both non-truthful.

In recent years Algorithmic Mechanism Design has been the subject of extensive study. The vast majority
of this research has focused on single parameter settings (see e.g. [28, 4, 32, 2, 19, 24]). Truthful mechanisms
with constant approximation ratios were designed for the single-parameter problem of minimum makespan for
scheduling jobs on related machines [3, 5, 1]. The exploration of truthful mechanisms for multi-parameter
settings has mainly revolved around the problem of welfare maximization in combinatorial auctions [36],
that has gained the status of the paradigmatic problem of this field. As this is a utilitarian problem, it
can be optimally and truthfully implemented by a VCG mechanism. However, it has been shown that the
social welfare in combinatorial auctions cannot be maximized (or even closely approximated) in polynomial
time [28, 34]. As algorithmic mechanism design seeks time-efficient implementations, the main challenge
faced by researchers was devising truthful polynomial-time mechanisms that approximately maximize the
social welfare in combinatorial auctions ( [26, 13, 14, 7, 22]).

There are but a few inapproximability results for truthful mechanisms. This is particularly true in
multi-parameter settings. Other than Nisan and Ronen’s 2 − ε lower bound discussed previously, the fol-
lowing inapproximabily results are known: Lavi, Mu’alem and Nisan [25] proved several lower bounds for
polynomial-time truthful deterministic mechanisms. Their work necessitated making several rather restric-
tive assumptions on the mechanisms beside assuming that they are truthful. Recently, Dobzinski and
Nisan [12] proved inapproximability results for polynomial-time VCG mechanisms. We contribute to this
ongoing research by presenting methods for deriving the first lower bounds for multi-parameter settings that
apply to general truthful randomized mechanisms. Our lower bounds do not require any assumptions on the
running-time of the mechanisms.

Our techniques greatly rely on the work of Bikhchandani et al. [9]. They characterize truthfulness in
multi-parameter settings by showing that any truthful deterministic mechanism must maintain a certain weak
monotonicity property. Using this characterization [9] manages to show that while welfare maximization can
be truthfully implemented in combinatorial auctions, one cannot truthfully implement the Max-Min social
choice function, even in a very restricted type of combinatorial auctions. Saks and Yu [37] proved that not
only is weak monotonicity necessary for truthfulness, but in convex domains it is also sufficient. The weak
monotonicity property (and several of its extensions) will play a major role in our inapproximability proofs.

Independently of our work, Christodoulou, Koutsoupias, and Vidali [10], proved a lower bound of 1+
√

2
that applies to deterministic mechanisms for the multi-parameter version of the scheduling problem. This
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improves over the previously known lower bound of 2 proven by Nisan and Ronen.

1.4 Open Questions

• We prove lower bounds for the scheduling problem with unrelated machines (see Section 2) and for
the workload-minimization problem in inter-domain routing (see Section 3). In both problems, there
are very large gaps between the known upper and lower bounds for truthful mechanisms (deterministic
and randomized). Narrowing these gaps is an interesting open question.

• This paper did not make any computational assumptions on mechanisms. Proving (possibly stronger)
lower bounds for polynomial time truthful mechanisms is a big open question.

1.5 The Organization of the Paper

In Section 2 we present our techniques for setting lower bounds on truthfulness and demonstrate their
application to the scheduling problem with unrelated machines. In Section 3 we present an applications of
our techniques to the problem of workload-minimization in networks. In Section 4 we discuss several notions
of non-utilitarian fairness.

2 A Presentation of Our Techniques Via the Scheduling Problem

In this section we present our techniques. To illustrate the use of these techniques we show how they can
be used to derive lower bounds for the scheduling problem with unrelated machines. Nisan and Ronen [33]
exhibited a truthful m-approximation deterministic mechanism for this problem. This mechanism is basically
a VCG mechanism, and can easily be shown to be strongly-monotone (see Subsection 2.1 for a formal
definition of strong monotonicity). They also proved a lower bound of 2 − ε for truthful deterministic
mechanisms that applies even when there are only two machines and is tight for this case. However, [33]
conjectures that their lower bound is not tight in general, and that any truthful deterministic mechanism
cannot obtain an approximation factor better than m. [33] shows that this is indeed the case for two very
restricted types of truthful deterministic mechanisms.

For the case of two machines Nisan and Ronen show that randomness helps get an approximation ratio
better than 2; They present a truthful randomized mechanism that has an approximation ratio of 7

4 . We
generalize their result to m machines by designing a truthful randomized mechanism that obtains an approx-
imation ratio of 7m

8 . Thus, we prove that randomness achieves better performances than the known truthful
deterministic m upper bound for any number of machines (see Appendix A.1).

In Subsection 2.1 we show ways of proving lower bounds for truthful deterministic mechanisms. Using
these methods we provide a simple and shorter proof for Nisan and Ronen’s 2 − ε lower bound. Our proof
(unlike the original) relies on exploiting the weak monotonicity property defined in [9]. The techniques
of Subsection 2.1 also aid us in deriving stronger lower bounds for two important classes of deterministic
mechanisms – strongly-monotone mechanisms (a somewhat similar result was independently proved by Lavi
and Swamy [27]), and affine maximizers (“weighted VCG”). We note, that the mechanism in [33], which is
the best currently known deterministic mechanism for the scheduling problem, is contained in both classes.
We prove that no approximation ratio better than m is possible for these classes of mechanisms (thus making
another step towards proving the conjecture of [33]).

After discussing lower bounds for truthful deterministic mechanisms we turn our attention to truthful
randomized mechanisms. There are two possible definitions for the truthfulness of a randomized mech-
anism [3, 2, 14, 33]. The first and stronger one is that of universal truthfulness that defines a truthful
randomized mechanism as a probability distribution over truthful deterministic mechanisms. Thus, this
definition requires that for any fixed outcome of the random choices made by the mechanism, the agents still
maximize their utility by reporting their true valuations. A considerably weaker definition of truthfulness is
that of truthfulness in expectation. This definition only requires that players maximize their expected utility,
where the expectation is over the random choices of the mechanism (but still for every behavior of the other
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players). Unlike universally truthful mechanisms, randomized mechanisms that are truthful in expectation
only motivate risk-neutral bidders to act truthfully. Risk-averse bidders may benefit from strategic behavior.
In addition, truthful in expectation randomized mechanisms induce truthful behavior only as long as players
have no information about the outcomes of the random coin flips before they need to act.

In Subsection 2.2 we prove the first lower bound on the approximability of truthful randomized mech-
anisms in multi-parameter settings. Namely, we show that any universally truthful mechanism for the
scheduling problem cannot achieve an approximation ratio better than 2 − 1

m . This lower bound nearly
matches the universally truthful randomized 7

4 upper bound for the case of two machines. To prove this
lower bound, we make use of a general technique that is based on Yao’s powerful principle [40]. Our proof
for the 2 − ε lower bound for deterministic mechanisms (in Subsection 2.1) functions as a “building block”
in the proof of this lower bound.

In Subsection 2.3 we strengthen this result by proving that the same lower bound holds even when one
is willing to settle for truthfulness in expectation. Our proof relies on some of the ideas that appear in
the proof of the previous lower bound but takes a different approach. In particular, we generalize the weak
monotonicity requirement to fit the class of truthful randomized mechanisms, and explore the implications of
this extended monotonicity on the probability distributions over allocations generated by such mechanisms.

2.1 Lower Bounds for Truthful Deterministic Mechanisms

Bikhchandani et al. [9] formally define the weak monotonicity property for deterministic mechanisms: Con-
sider an Algorithmic Mechanism Design setting with n strategic agents that wish to maximize their personal
gain. Before we present the formal definition for monotonicity we will require the following notation: For ev-
ery n-tuple of agents’ valuations v = (v1, ..., vn) we shall denote by v−i the (n−1)-tuple of agents’ valuations
(v1, ..., vi−1, vi+1, ..., vn). Let v′i be a valuation function. We denote by (v′i, v−i) the n-tuple of valuations
(v1, ..., vi−1, v

′
i, vi+1, ..., vn). I.e., (v′i, v−i) is the n-tuple of valuations we get by altering the i’th coordinate

in v from vi to v′i.

Definition 1 Let M be a truthful deterministic mechanism. Let i ∈ [n] and let v = (v1, ..., vn) be an n-tuple
of agents’ valuations. Let v′i be a valuation function. Denote by a the alternative M outputs for v and by b
the alternative that M outputs for (v′i, v−i). M is said to be weakly monotone if for all such i, v, and v′i it
holds that: vi(a) + v′i(b) ≥ v′i(a) + vi(b).

Remark 2.1 This definition of weak monotonicity is for cases in which each agent wishes to maximize his
value. In problems in which agents wish to minimize costs (such as the scheduling and workload minimization
problems considered in this paper) the inequality is in the other direction.

[9] proves that any truthful deterministic mechanism must be weakly monotone. For completeness, we
present this simple proof.

Lemma 1 Any truthful deterministic mechanism must be weakly monotone.

Proof: Let M be a truthful deterministic mechanism. Let i ∈ [n] and let v = (v1, ..., vn) be an n-tuple
of agents’ valuations. Let v′i be a valuation function. Denote by a the alternative M outputs for v and by
b the alternative that M outputs for (v′i, v−i). Consider agent i. It is well known that the price an agent
is charged by the mechanism to ensure his truthfulness cannot depend on the agent himself. Hence, the
payment of agent i in a and b is a function of v−i and of a and b respectively. We denote by pi(v−i, a) and
by pi(v−i, b) i’s payment in a and b respectively. It must hold that vi(a) − pi(v−i, a) ≥ vi(b) − pi(v−i, b)
(for otherwise, if i’s valuation function is vi, he would have an incentive to declare his valuation to be
v′i). Similarly, v′i(b) − pi(v−i, b) ≥ v′i(a) − pi(v−i, a). By adding these two inequalities we reach the weak
monotonicity requirement.

Relying on the weak monotonicity property we provide an alternative proof for the 2−ε lower bound of [33]
for the scheduling problem with unrelated machines. Our proof shows that any deterministic mechanism
that achieves an approximation ratio better than 2 violates the weak monotonicity property.
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Theorem 2.2 Any weakly-monotone mechanism cannot achieve an approximation ratio better than 2.

Proof: Let ε > 0. Consider the scheduling problem with two machines and three tasks. For every machine
i = 1, 2 we define two possible valuation functions vi and v′i:

vi(t) =
{

1 t = i or t = 3
100 otherwise

v′i(t) =





0 t = i
1 + ε t = 3
100 otherwise

Let M be a deterministic, weakly-monotone, mechanism that achieves an approximation factor better
than 2. Then, when agents 1 and 2 have the valuations v1 and v2 respectively, M must assign task 1 to agent
1, task 2 to agent 2, and can choose to which agent to assign task 3 (because the optimal makespan is 2 and
any other assignment results in a makespan of at least 100). W.l.o.g. assume that M assigns task 3 to agent
2. Now, consider the instance with agents’ valuations (v′1, v2). Notice that the only task-allocation that
guarantees an approximation ratio better than 2 is assigning tasks 1 and 2 to agents 1 and 2 respectively,
and task 3 to agent 1. However, this turns out to be a violation of the weak monotonicity requirement. Weak
monotonicity, in this case, dictates that for every agent i = 1, 2 it must hold vi(a) + v′i(b) ≤ v′i(a) + vi(b).
However, if we look at agent 1 we find that 1 + (1 + ε) = v1(1) + v′1({1, 3}) > v′1(1) + v1({1, 3}) = 2. A
contradiction.

[25] presents another property – strong monotonicity.

Definition 2 Let M be a deterministic mechanism. Let i ∈ [n] and let v = (v1, ..., vn) be an n-tuple of
agents’ valuations. Let v′i be a valuation function. Denote by a the alternative M outputs for v and by b
the alternative that M outputs for (v′i, v−i). M is said to be strongly-monotone if for all such i, v, and v′i it
holds that: If a 6= b, then vi(a) + v′i(b) > v′i(a) + vi(b).

Remark 2.3 As in the case of weak monotonicity, this definition of strong monotonicity is for cases in
which each agent wishes to maximize his value. In problems in which agents wish to minimize costs (such
as the scheduling and workload minimization problems considered in this paper) the inequality is reversed.

We prove that no member of the class of strongly-monotone mechanisms can obtain an approximation
better than m for the scheduling problem (even for the case of zero/one valuations). A somewhat similar
lower bound was independently proved by Lavi and Swamy [27]. The idea at the heart of our proof of
Theorem 2.4 is an iterative use of the strong monotonicity property to construct an instance of the problem
for which the allocation generated by the mechanisms is “very far” from optimal.

Theorem 2.4 Any strongly-monotone mechanism cannot obtain an approximation ratio better than m.

Proof: Consider an instance of the scheduling problem with m machines and n = m2 tasks. Let M be
a deterministic mechanism for which the strong monotonicity property holds. Let I be the instance of the
scheduling problem in which every machine i has a valuation function vi such that vi(j) = 1 for all j ∈ [n].
Denote by S = (S1, ..., Sm) the allocation of tasks produced by M for instance I. It must be that there is
some machine r such that |Sr| ≥ m. Without loss of generality let r = m.

We will now create a new instance I ′ by altering the valuation function of machine 1 to v′1 while leaving
all the other valuation functions unchanged (in case S1 = ∅ we skip this part). That is, machine 1 will have
the valuation function u1 = v′1:

v′1(t) =
{

0 t ∈ S1

1 t /∈ S1
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and every other machine i 6= 1 will have a valuation function ui = vi. Denote by T = (T1, ..., Tm) the
allocation M generates for I ′. The first step of the proof is showing that S1 = T1. This is guaranteed by
the strong monotonicity of M . Assume, by contradiction that S1 6= T1. The strong monotonicity property
ensures that v1(S1) + v′1(T1) < v1(T1) + v′1(S1). By assigning values we get:

|S1|+ |T1 \ S1| < |T1|+ 0

Observe, that |S1|+ |T1 \ S1| − |T1| = |S1 \ T1|, therefore:

|S1 \ T1| < 0

A contradiction.
We shall now prove that not only does S1 equal T1, but in fact Si = Ti for every i ∈ [m]; Since S1 = T1

it must be that v1(S1) + v′1(T1) = v′1(S1) + v1(T1). However, the strong monotonicity property dictates that
if this is true then S = T .

In an analogous manner we shall now turn the valuation function of machine 2 into v′2 while keeping all
the other valuation functions in I ′ unchanged (in case S2 = ∅ we skip this part). That is, the valuation
function of machine 2 is changed into:

v′2(t) =
{

0 t ∈ S2

1 t /∈ S2

Similar arguments show that the allocation produced by the M for this new instance will remain S.
We can now iteratively continue to change the valuation functions of machines 3, ..., m− 1 into v′3, ..., v

′
m−1

respectively, without changing the allocation the mechanism generates for these new instances. After per-
forming this, we are left with an instance in which every machine i ∈ [m− 1] has the valuation function v′i,
and machine m has the valuation function vm. We have shown that the allocation generated by M for this
instance is S. Remember that |Sm| ≥ m. Let R ⊆ Sm such that |R| = m. We will now create a new instance
INS from the previous one by only altering the valuation function vm into the following valuation function
v′m:

v′m(t) =
{

0 t ∈ Sm \R
1 otherwise

By applying similar arguments to the ones used before, one can show that the allocation generated by
M when given instance INS remains S. Observe that the finishing time of S is m because all the tasks in
R are assigned to machine m. Also notice that the finishing time of the optimal allocation of tasks for INS
is precisely 1. The theorem follows.

A lower bound of m can also be proven for any affine maximizer (see [25] for a formal definition). Affine
maximizers, also sometimes called “weighted VCG”, contain the celebrated class of VCG mechanisms.

Proposition 2.5 Any affine maximizer cannot obtain an approximation ratio better than m.

Proof: We define an instance in which machine 1 has a cost of 1 for every task, and machines 2, ..., m
have a cost of 1 + ε. Observe, that while the value of the optimal makespan is 1 + ε, any VCG mechanism
(which minimizes the cost), will allocate all the tasks to machine 1 and hence reach a makespan value of m.
Since this is true for any ε, no VCG mechanism can obtain an approximation ratio better than m. This can
easily be generalized to any affine maximizer.

2.2 Lower Bounds for Universally Truthful Mechanisms

We now present a technique for deriving lower bounds for universally truthful mechanisms, based on Yao’s
powerful principle [40]. Consider a zero-sum game with two players. Let the “row player”’s strategies be
the various different instances of a specific problem, and let the “column player”’s strategies be all the
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deterministic truthful mechanisms for solving that problem. Let entry gij in the matrix G depicting the
game be the approximation ratio obtained by the algorithm of column j when given the instance of row i.

Recall that every randomized mechanism that is truthful in the universal sense is a probability distri-
bution over deterministic truthful mechanisms. The “natural” approach for proving a lower bound for such
randomized mechanisms is to find an instance of the problem on which every such randomized mechanism
cannot achieve (in expectation) a certain approximation factor. By applying the well known Minimax Theo-
rem to the game described above we see that an alternate and just as powerful way for setting lower bounds is
to show that there is a probability distribution over instances on which any deterministic mechanism cannot
obtain (in expectation) a certain approximation ratio.

We demonstrate this technique by proving a 2− 1
m lower bound for universally truthful mechanisms for the

scheduling problem. Our proof is based on finding a probability distribution over instances of the scheduling
problem for which no deterministic truthful mechanism can provide an approximation ratio better than
2− 1

m . To show this, we shall exploit the weak monotonicity property of truthful deterministic mechanisms
(as discussed in Subsection 2.1).

Theorem 2.6 Any randomized mechanism that is truthful in the universal sense cannot achieve an approx-
imation ratio better than 2− 1

m .

Proof: Let ε > 0 be a real number. Consider the scheduling problem with m machines and n = m + 1
tasks. For every machine i ∈ [m] we define two possible valuation functions:

vi(t) =
{

1 t = i or t = m + 1
4
ε otherwise

and

v′i(t) =





0 t = i
1 + ε t = m + 1
4
ε otherwise

Let I be the instance in which the valuation function of every machine i is vi. For every j ∈ [m], let Ij

be the instance in which every machine i 6= j has the valuation function vi, and machine j has the valuation
function v′j . We are now ready to define the probability distribution P over instances: instance I is assigned
the probability ε, and for every j ∈ [m] instance Ij is picked with probability 1−ε

m .
We now need to show that any deterministic truthful mechanism M cannot achieve an approximation

ratio better than 2− 1
m on P . Let T j be the allocation of the m + 1 tasks to the m machines in which every

machine i gets task i, and machine j is also assigned task m+1. Observe, that T j is the optimal allocation of
tasks for instance Ij . Also observe, that while the finishing time of the allocation T j for instance Ij is 1 + ε,
the finishing time of any other allocation of tasks is at least 2. We shall denote the allocation M outputs
for instance I by M(I). Similarly, we shall denote the allocation M outputs for instance Ij by M(Ij) (for
every j ∈ [m]). We will now examine two distinct cases: The case in which M(I) 6= T r for any r ∈ [m], and
the case that M(I) = T r for some r ∈ [m].

Observe, that in the first case the finishing time is at least 4
ε while the optimal finishing time is 2. Thus,

M obtains a 2
ε -approximation. Since instance I appears in P with probability ε we have that A’s expected

approximation ratio is at least 2
ε × ε = 2.

We are left with the case in which M(I) = T r for some r ∈ [m]. Consider an instance Ij such that j 6= r.
The following lemma states that M will not output the optimal allocation for Ij (that is, T j).

Lemma 2 If M(I) = T r for some r ∈ [m], then for every j 6= r M(Ij) 6= T j.

Proof: Let j 6= r. Let us assume by contradiction that M(Ij) = T j . The weak monotonicity property
dictates that vj(j)+v′j({j,m+1}) ≤ v′j(j)+vj({j, m+1}). By assigning values we get that 1+(1+ε) ≤ (1+1),
and reach a contradiction.
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From lemma 2 we learn that if M(I) = T r for some r ∈ [m] we have that for every j 6= r M(Ij) is an
allocation that is not the optimal one (i.e. not T j). In fact (as mentioned before), any allocation M outputs
given Ij will have a finishing time of at least 2, while the optimal allocation (T j) has a finishing time of
1 + ε. Thus, for every j 6= r the approximation ratio of M for instance Ij is at least 2

1+ε . The expected

approximation ratio of M for P is therefore at least (m−1)(1−ε)
m × 2

1+ε + 1−ε
m × 1. Since this is true for any

value of ε, the approximation ratio cannot be better than 2− 1
m .

2.3 Lower Bounds for Mechanisms that are Truthful in Expectation

After handling the case of universally truthful mechanisms we now turn to the weaker notion of truthfulness
in expectation. We start by generalizing the weak monotonicity definition to the case of randomized mech-
anisms. Any randomized mechanism can be regarded as a mechanism that for every instance of a problem
produces a probability distribution over possible alternatives.

Definition 3 A randomized mechanism is a function from n-tuples of agents’ valuations to probability dis-
tributions over the set of alternatives A.

The valuation function of each of the agents in such mechanisms can therefore be viewed as assigning
values to probability distributions over possible alternatives rather than only to the alternatives themselves.

Definition 4 Let v be a valuation function. We define the extended valuation function Vv as follows. For
every probability distribution P over the set of alternatives A, Vv(P ) = Σa∈A PrP [a]× v(a).

Arguments similar to those of lemma 1 show that randomized mechanisms that are truthful in expecta-
tions must be weakly monotone (given the new definition of the valuation functions). This extended weak
monotonicity is equivalent to the monotonicity in expectation property defined by Lavi and Swamy [26].

Definition 5 Let M be a randomized mechanism. Let i ∈ [n] and let v = (v1, ..., vn) be an n-tuple of agents’
valuations. Let v′i be a valuation function. Denote by P the distribution over alternatives M outputs for v
and by Q the distribution over alternatives M outputs for (v′i, v−i). M is said to be weakly monotone in the
extended sense if for all such i, v, and v′i it holds that: Vvi(P ) + Vv′

i
(Q) ≥ Vv′

i
(P ) + Vvi(Q).

Remark 2.7 As before, if the agents wish to minimize costs rather than maximize values, the inequality is
reversed.

Lemma 3 Any truthful randomized mechanism must be weakly monotone in the extended sense.

We can exploit this extended definition of weak monotonicity to prove inapproximability results. We show
how this is done by strengthening our 2 − 1

m lower bound for universally truthful mechanisms by showing
that it applies even for the case of truthfulness in expectation. To do this, we show that the extended weak
monotonicity of truthful randomized mechanisms implies non-trivial connections between the probability
distributions over allocations they produce for different instances of the scheduling problem.

A key element in the proof of Theorem 2.8 is the observation that instead of regarding a randomized
mechanism for the scheduling problem as generating probability distributions over allocations of tasks, it
can be regarded as generating, for each task, a probability distribution over the machines it is assigned to by
the mechanism. This is true due to the linearity (additivity) of the valuation functions. This different view
of a randomized mechanism for this specific problem, enables us to analyze the contribution of each task to
the expected makespan.

The main lemma in the proof of Theorem 2.8, namely Lemma 4, makes use of this fact together with
the extended weak monotonicity of truthful randomized mechanisms. Lemma 4 essentially proves that for
two carefully chosen instances of the problem, the probability that a specific task is assigned to a specific
machine by M in one of the instances, cannot be considerably higher than the probability it is assigned to
the same machine in the other. Thus, we show that even though allocating this task to that machine in one
of the instances leads to a good approximation, any truthful randomized mechanism will fail to do so.
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Theorem 2.8 Any randomized mechanism that is weakly monotone in the extended sense cannot achieve
an approximation ratio better than 2− 1

m .

Proof: Let ε > 0 be a real number. Consider the scheduling problem with m machines and n = m + 1
tasks. For every machine i ∈ [m] we define two possible valuation functions:

vi(t) =
{

1 t = i or t = m + 1
4
ε2 otherwise

and

v′i(t) =





0 t = i
1 + ε t = m + 1
4
ε2 otherwise

Let I be the instance in which the valuation function of every machine i is vi. For every j ∈ [m] let Ij

be the instance in which every machine i 6= j has the valuation function vi, and machine j has the valuation
function v′j . Let T j be the allocation of the m + 1 tasks to the m machines in which every machine i gets
task i, and machine j is also assigned task m + 1.

Let M be a randomized mechanisms that is weakly monotone in the extended sense. We shall denote
by P the distribution over all possible allocations produced by M when given instance I, and by P j the
distribution over all possible allocations M produces when given instance Ij . Let R be some distribution
over the possible allocations. Fix a machine i and a task j, we define pi,j(R) to be the probability that
machine i gets item j given R. Formally, pi,t(R) = Σa|t∈ai

PrR[a]. Observe that Vvi(R) = Σt∈[n]pi,t(R)vi(t)
and Vv′

i
(R) = Σt∈[n]pi,t(R)v′i(t).

We are now ready to prove the theorem. In order to do so, we prove that for every mechanism M , as
defined above, one can find an instance of the scheduling problem for which M fails to give an approximation
ratio better than 2− 1

m . Consider instance I.
If for some i ∈ [m] pi,i(P ) < 1 − ε2 then machine i does not get task i with probability of at least ε2.

However, when machine i does not get task i, the finishing time of a schedule for I cannot be less than 4
ε2 ,

while the optimal finish time is 2. Therefore, with probability of at least ε2 the approximation ratio obtained
by the algorithm is at least 2

ε2 . If this is the case then, in expectation, the approximation ratio is at least 2
(and the theorem follows). Hence, from now on we will only deal with the case in which for every i ∈ [m],
pi,i(P ) ≥ 1− ε2.

Let r be some machine such that pr,m+1(P ) ≤ 1
m . Intuitively, r is a machine that is hardly assigned task

m + 1 in P . We will show that in this case we can choose the instance Ir to prove our lower bound. The
main idea of the proof is showing that machine r will not be assigned task m+1 in P r with probability that
is significantly higher than the probability it was assigned the task in P . Thus, even though assigning task
m + 1 to machine r is a smart step approximation-wise, the extended weak monotonicity of the mechanism
will prevent it from doing so.

Lemma 4 Let r be some machine such that pr,m+1(P ) ≤ 1
m . It holds that pr,m+1(P r) ≤ 1

m + ε.

Proof: As M is weakly monotone in the extended sense we have that Vvr (P )+Vv′r (P
r) ≤ Vv′r (P )+Vvvr(P r).

That is:

Σt∈[n]pr,t(P )vr(t) + Σt∈[n]pr,t(P r)v′r(t) ≤ Σt∈[n]pr,j(P )v′r(t) + Σt∈[n]pr,t(P r)vr(t)

After subtracting identical summands from both sides of the equation we get:

pr,r(P )vr(r) + pr,m+1(P )vr(m + 1) + pr,r(P r)v′r(r) + pr,m+1(P r)v′r(m + 1) ≤
pr,r(P )v′r(r) + pr,m+1(P )v′r(m + 1) + pr,r(P r)vr(r) + pr,m+1(P r)vr(m + 1)

By assigning values we reach the following inequality:
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pr,r(P ) + pr,m+1(P ) + pr,m+1(P r)× (1 + ε) ≤ pr,m+1(P )× (1 + ε) + pr,r(P r) + pr,m+1(P r)

Therefore:

pr,r(P ) + pr,m+1(P r)× ε ≤ pr,m+1(P )× ε + pr,r(P r)

Because pr,r(P ) ≥ 1− ε2 and pr,r(P r) ≤ 1 we get:

(1− ε2) + pr,m+1(P r)× ε ≤ pr,m+1(P )× ε + 1

pr,m+1(P r)× ε− ε2 < pr,m+1(P )× ε

pr,m+1(P r) ≤ pr,m+1(P ) + ε

Since pr,m+1(P ) ≤ 1
m we have that:

pr,m+1(P r) ≤ pr,m+1(P ) + ε ≤ 1
m

+ ε

This concludes the proof of the lemma.
From Lemma 4 we learn that if r is a machine such that pr,m+1(P ) ≤ 1

m then pr,m+1(P r) ≤ 1
m + ε.

Relying on this fact, we can choose Ir as our instance and show that M fails to provide an approximation
ratio better than 2− 1

m for Ir. The optimal allocation for Ir is T r, which has a finishing time of 1 + ε. Any
other allocation has a finishing time of at least 2. Hence, when T r is not reached by A, the approximation
factor obtained is a at least 2

1+ε . However, we know that with high probability T r is not reached by M ; Since
pr,m+1 ≤ 1

m + ε, and since machine r gets task m+1 in T r, we know the probability that M outputs T r is at
most 1

m + ε. The expected approximation ratio of M is therefore at least (1− ( 1
m + ε))× 2

1+ε + ( 1
m + ε)× 1.

Since this is true for any value of ε the theorem follows.

3 Application: Workload Minimization in Inter-Domain Routing

In this section, we show an application of our techniques to another non-utilitarian multi-parameter problem –
workload minimization in inter-domain routing. Feigenbaum, Papadimitriou, Sami, and Shenker formulated
the inter-domain routing problem as a distributed mechanism design problem [16] (inspired by the extensive
literature on the real-life problem of inter-domain routing in the Internet). In recent years several works
that study their model and its extensions have been published [15, 17, 18]. All these works deal with the
realization of utilitarian social-choice functions (cost minimization, welfare maximization), and focus on the
efficient and distributed design of VCG mechanisms.

Workload minimization is a problem that arises naturally in the design of routing protocols, as we wish
that no single Autonomous System (AS) will be overloaded with work. It can easily be shown that any
such VCG mechanism performs very poorly with regards to workload minimization. Thus, while optimally
minimizing the total cost, or maximizing the social welfare, the known truthful mechanisms for this problem
can result in workloads that are very far from optimal (in which one AS is burdened by the traffic sent by all
other ASes). We initiate the study of truthful workload minimization in inter-domain routing by presenting
constant lower bounds that apply to any truthful mechanism (deterministic and randomized).

Formal Statement of the Problem
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We are given an undirected graph G =< N, L > (called the AS graph) in which the set of nodes
N corresponds to the Autonomous Systems (ASes) of which the Internet is comprised. N consists of a
destination node d, and n source nodes. The set of edges L corresponds to communication links between
the ASes. Each source node i is a strategic agent. The number of packets (intensity of traffic) originating in
source node i and destined for d is denoted by ti.

Let neighbours(i) be all the ASes that are linked to i in the AS graph. Each source node i has a cost
function ci : neighbours(i) → R≥0 that specifies the per-packet cost incurred by this node for carrying traffic,
where Li ⊆ L is the set of links node i participates in. This cost function represents the additional internal
load imposed on the internal AS network when sending a packet to an adjacent AS3. The cost function of
each node is its private information4. In the single parameter version of this problem an AS i incurs the
same per-packet cost ci for sending traffic to each of its neighbors (i.e., ci(l1) = ci(l2) for every l1, l2).

The goal is to assign all source nodes routes to d. This route allocation should form a confluent tree to the
destination d. I.e., no node is allowed to transfer traffic to two adjacent nodes. We seek truthful mechanisms
that output routing trees in which the workload imposed on the busiest node is minimized. Formally, let
NT

i be the set of all nodes whose paths in the routing tree T go through node i. Let NextT (i) be the node
i transfers traffic to in T . We wish to minimize the expression maxi Σj∈NT

i
tj × ci((i,NextT (i)) over all

possible routing trees T . The problem of load minimization arises naturally in inter-domain routing as we
require that no single AS will be overloaded with work.

Hardness of the Single-Parameter Case

It is easy to show (via a simple reduction from Partition) that even the single-parameter version of the
workload-minimization problem is NP-hard. However, is it at all possible to optimally solve this problem in a
truthful manner? The answer to this question is yes (we note that this is also the case in the single-parameter
version of machine-scheduling [3]).

Lemma 5 There exists a truthful, deterministic, exponential-time mechanism that always finds a workload-
minimizing route allocation in the single-parameter case.

Proof: The mechanism M simply goes over all possible route allocations and outputs the optimal one with
regards to workload-minimization. As in [3], our truthful mechanism outputs the lexicographically-minimal
optimal route allocation; That is, let a and b be two optimal route allocations (if two such allocations exist).
Let a1, ..., an be a decreasing order of the workloads of the different nodes in a. Similarly, let b1, ..., bn be
a decreasing order of the workloads of the different nodes in b. Let j ∈ [n] be the first index such that
aj 6= bj or j = n if no such index exists. The mechanism will choose a if aj < bj , b if bj < aj , and otherwise
according to a predefined determinstic tie breaking rule.

Obviously, the mechanism always outputs an optimal solution. We are left with proving the truthfulness
of the mechanism. It is well known that a mechanism is truthful in a single-parameter setting such as ours
iff it is weakly monotone [3]. Let a be the route allocation M outputs when the per-packet cost of i is ci,
and the per-packet costs of the other nodes are c−i = c1, ..., ci−1, ci+1, ..., cn. Let b be the route allocation
M outputs when the per-packet cost of i is c′i, and the per-packet costs of the other nodes are c−i. Weak
monotonicity states that if ci < c′i then ki ≥ k′i, where k and k′ are the number of packets that go through i
in a and b respectively (and this is true for every node i, for every vector of costs per-packet c−i of the other
nodes, and for every two costs per-packet ci 6= c′i).

Fix a node i. Assume, by contradiction, that there are ci < c′i, and c−i such that k < k′. Let a1, ..., an

and b1, ..., bn be defined as before. Let j ∈ [n] be the first index such that aj 6= bj (as before). If the two
allocations are identical then no such j exists. However, note that in this case if node i declares c′i then the
allocation b will not be chosen (because c′iki < c′ik

′
i and so a comes before b in the lexicographic order). This

contradicts the definition of b. We now turn to a sketch of a case by case analysis.
3In the formulation of the problem in [16], a node does not incur a cost for packets that originate in that node. However, as

we are interested in workload minimization, this is not the case in our formulation.
4As we are interested in proving lower bounds we can restrict our attention to the model in which the tis are common

knowledge.
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Case 1: aj < bj . It is not hard to verify that if aj < bj and i declares c′i then a comes before b in the
lexicographic order (a contradiction to the definition of b).

Case 2: bj < aj . The are four sub-cases to consider:

• c′ik
′
i ≤ bj < aj : In this case it can be shown that if i declares ci then a will not be chosen (simply by

showing that b comes before a in the lexicographic order). This contradicts the definition of a.

• bj < c′ik
′
i < aj : The same analysis as in the previous subcase applies to this sub-case as well.

• bj < aj < c′ik
′
i: If i declares c′i then a is chosen and not b (it can easily be shown that a comes before

b in the lexicographic order). This contradicts the definition of b.

• bj < aj = c′ik
′
i: Clearly, here c′iki < aj = c′ik

′
i. If i declares c′i and b is chosen, then aj+1 ≥ bj .

However, if this is the case then a will not be chosen if i decreases its cost value and declares ci < c′i.
A contradiction.

Hardness of the Multi-Parameter Case

[16] presents a truthful polynomial-time VCG mechanism that always outputs the cost-minimizing tree
(a tree that minimizes the total sum of costs incurred for the packets sent to to d). We begin our discussion
on the multi-parameter version of the workload minimization problem by showing that this VCG mechanism
obtains an n-approximation for the multi-parameter version of our problem (and hence also for the single-
parameter version) in polynomial time.

Theorem 3.1 There is a truthful polynomial-time deterministic n-approximation mechanism for the work-
load minimization problem in inter-domain routing.

Proof: We prove that any mechanism that minimizes the total cost provides an n-approximation to the
minimal workload. Hence, the mechanism of [16] obtained the required approximation ratio.

Denote by T the cost-minimizing routing-tree and by T ′ the workload-minimizing routing-tree. Let C(T )
and C(T ′) be the total costs of T and T ′ respectively. Let Wi(T ′) be the workload on node i in T ′, and
let W (T ′) = maxiWi(T ′). Notice, that (by the definition of T ′) W (T ′) is the value of optimal solution
for the workload-minimization problem. By contradiction, assume that W (T ′) < C(T )

n . Observe, that
C(T ′) = ΣiWi(T ′) (simple summation arguments). However, if this is the case then C(T ′) = ΣiWi(T ′) ≤
n×W (T ′) < n× C(T )

n = C(T ). This contradicts the optimality of T for the cost-minimization problem.
Unfortunately, it can be shown that any mechanism that minimizes the total cost (and in particular the

mechanism in [16]) cannot obtain a good approximation ratio.

Claim 3.2 Any mechanism that minimizes the total cost of the routing tree cannot achieve an approximation
ratio better than n for the workload minimization problem in inter-domain routing.

Proof: Consider the routing instance in figure 1. Each source node has a single packet it wishes to send
to the destination. The number beside every directed link (u, v) in these figures represents the cost u incurs
for transferring a packet to v. Assume that all the other values assigned by the source nodes to links are
very large (say 100, 000). Observe, that any total-cost minimizing mechanism would choose the routing tree
in which both II and III send packets through I, and I forwards packets directly to d. This means that the
workload on I is 3. However, if all nodes chose to send their packets directly to d we would reach a workload
of 1 + ε. The example in figure 1 can easily be generalized to n source nodes.

Therefore, there is a tradeoff between the goal of minimizing the total-cost and the goal of minimizing
the workload. It would be interesting to construct a truthful mechanism that optimizes (or at least closely
approximates) the minimal workload. We present two negative results for this problem:
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Theorem 3.3 No truthful deterministic mechanism for minimizing the workload in inter-domain routing
can obtain an approximation ratio better than 1+
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This proof is similar to the proof of Theorem 2.2. To prove the lower bound consider the instances of
the workload-minimization problem with 3 source nodes I, II, III depicted in figures 2 and 3. Each source
node has a single packet it wishes do send to the destination. The number beside every directed link (u, v)
in these figures represents the cost u incurs for transferring a packet to v. Assume that all the other values
assigned by the source nodes to links are very large (say 100, 000). Denote the instance in figure 2 by INS
and the instance in figure 3 by INS′. Observe that only the cost function of node I is different in INS and
INS′. We denote the cost function of I in INS by cI and his cost function in INS′ by c′I .

Assume, by contradiction, that M is a truthful deterministic mechanism that obtains an approximation
ratio better than 1+

√
5

2 . Observe, that for instance INS M must direct the traffic originating in node I
through node II (otherwise this contradicts the fact that M obtains an approximation ratio better than
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1+
√

5
2 ). Similarly, for instance INS′ M must direct the traffic originating in node I through node III.

However, this violates the monotonicity of M as 1 + 1.618 = cI((I, II)) + c′I((I, III)) > cI((I, II)) +
c′I((I, III)) = (1.618)2 − ε.

Theorem 3.4 No universally truthful randomized mechanism for minimizing the workload in inter-domain
routing can obtain an approximation ratio better than 3+

√
5

4 .

Proof: This proof is similar to the proof of Theorem 2.6. We define INS and INS′ as in the proof of
Theorem 3.3. Consider the uniform distribution over INS and INS′. Let M be a truthful deterministic
mechanism. As shown in the proof of Theorem 3.3, M cannot achieve an approximation better than 1+

√
5

2
on both INS and INS′ due to its monotonicity. Therefore, the expected approximation of M is at least
1
2 × 1 + 1

2 × 1+
√

5
2 ≈ 1.309.

4 On Non-Utilitarian Fairness

In many scenarios, we desire to implement a utilitarian social choice function. A well studied example of
such a scenario is social-welfare maximization in combinatorial auctions. In a combinatorial auction we wish
to allocate m indivisible items 1, ..., m to n agents 1, ..., n. Each agent i is defined by a valuation function
vi : 2[m] → R≥0. We assume that for every i vi(∅) = 0 (free disposal) and for every two bundles of items
S, T ⊆ [m] such that S ⊆ T vi(S) ≤ vi(T ) (monotonicity). The goal is to partition the items into disjoint
sets S1, ..., Sn such that the expression Σivi(Si) is maximized.

Utilitarian functions represent the “overall content” of the agents, as they maximize the sum of agents’
values. This notion of fairness is but one of several that have been considered (explicitly and implicitly) in
mathematical, economic and computational literature. A well known example of non-utilitarian fairness is
the cake-cutting problem, presented by the Polish school of mathematicians in the 1950’s (Steinhaus, Banach,
Knaster [38]). In recent years, fair allocations of indivisible items (other than social-welfare maximization)
have also been studied [25, 30] (these can be regarded as discrete versions of the cake-cutting problem).

In this section, we discuss three general notions of non-utilitarian fairness – Max-Min fairness, Min-Max
fairness, and envy-minimization. We prove several general results; In particular, we show that Max-Min
fairness is inapproximable within any ratio, even for extremely restricted special cases. In contrast, we show
that Min-Max fairness (which is a generalization of both the scheduling and workload-minimization problems
considered in this paper) can always be truthfully approximated to within a ratio of n from optimum via a
simple VCG mechanism. This can be shown to be the best approximation ratio possible for Max-Min fairness
(in the general case). Finally, we make use of our techniques to prove a lower bound for the envy-minimization
problem.

Max-Min Fairness

While utilitarian functions maximize the “overall content” of the agents, the Max-Min social choice
function is concerned with maximizing the content of the least satisfied agent. Formally, for every n-tuple
of vi valuations the Max-Min function assigns the alternative a that maximizes the expression mini vi(a).

[25] proved that Max-Min fairness in allocations of indivisible items cannot be optimally implemented
in a truthful manner. In recent years, non-truthful algorithms for this problem were designed [6], as well as
algorithms that settle for restricted notions of truthfulness [8, 20]. We prove that no truthful deterministic
mechanism can obtain any approximation ratio to the Max-Min fairness value. We prove this lower bound
even for the case of 2 agents and 2 items.

Theorem 4.1 No truthful deterministic mechanism can obtain any approximation to the Max-Min fairness
value in the allocation of indivisible items. This holds even for the case of 2 agents and 2 items.
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Proof: Let c > 1. Consider an instance with two agents 1, 2 and two goods a, b. Each agent i = 1, 2 has
an additive valuation function. v1(a) = 2 v1(b) = 1

c v2(a) = 4 − ε v2(b) = 1 + ε. Note, that the optimal
allocation assigns a to agent 1 and b to agent 2, thus obtaining a Max-Min value of 1 + ε. Also note, that
this allocation will also be chosen by any c-approximation mechanism.

We alter the valuation of agent 2 into v′2 such that v′2(a) = 1
c v′2(b) = 1

c2 − ε. The optimal Max-Min
value is now 1

c . Observe that any c-approximation mechanism must assign item b to agent 1 and item a to
player 2. However, if this happens we have that:

(1 + ε) +
1
c

= v2(b) + v′2(a) < v2(a) + v′2(b) = (4− ε) +
1
c2

This violates weak monotonicity, and so no truthful c-approximation mechanism exists. Since this is true
for any c > 0 the theorem follows

Min-Max Fairness

Min-Max fairness can be thought of as the dual notion of Max-Min fairness. It is relevant in settings in
which each agent incurs a cost for every chosen alternative. While utilitarian functions minimize the “overall
discontent”, the Min-Max social choice function is concerned with minimizing the cost incurred by the least
satisfied agent. Formally, for every n-tuple of vi valuations the Max-Min function assigns the alternative a
that minimizes the expression maxi vi(a).

Observe, that both the scheduling problem and the workload-minimization problem discussed in this
paper, are in fact special cases of this notion of fairness. Studying Max-Min fairness in this more abstract
setting enables us to state this simple observation – any Min-Max social-choice function can be truthfully
approximated within a factor of n (recall that n is the number of agents) by a simple VCG mechanism.
Since the best currently known approximation-mechanisms for both scheduling and workload-minimization
are VCG-based, this result can be viewed as a generalization of both.

Theorem 4.2 Let f be a Min-Max social choice function. Then, there exists a truthful deterministic mech-
anism that for every n-tuple of valuations v1, ..., vn outputs an alternative a such that maxi vi(a) is an
n-approximation to the value of the solution f outputs for these valuations.

Proof: Let v1, ..., vn be the valuation function of the agents, and let A be the set of alternatives. Let b be
the allocation f outputs for v1, ..., vn. Consider the VCG mechanism that minimizes the total cost the agents
incur. The truthfulness of this mechanism is guaranteed by the VCG technique. Let a be the allocation this
mechanism outputs.

Assume, by contradiction, that maxi vi(a) > n×maxi vi(b). If this is the case, then

Σivi(b) ≤ n×maxi vi(b) < maxi vi(a) ≤ Σivi(a)

However, this contradicts the optimality of a with regards to cost-minimization.
This turns out to be the best approximation ratio that can be achieved in a truthful manner in the

general case.

Theorem 4.3 No truthful deterministic mechanism can obtain an approximation ratio better than n to the
Max-Min fairness value.

Proof: A careful look at the proof of Theorem 2.4 shows that if we do not insist that the valuations be
additive (linear) then only weak monotonicity is required (rather than strong monotonicity). Thus, a similar
proof shows that in the general case a lower bound that equals the number of agents can be obtained.

Envy-Minimization

Lipton, Markakis, Mossel, and Saberi [30] presented the problem of finding envy-minimizing allocations
of indivisible items. An envy-minimizing allocation of items is a partition of the m items into disjoint sets
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S1, ..., Sn (agent i is assigned Si) that minimizes the expression maxi,j vi(Sj) − vi(Si) (over all possible
allocations). Intuitively, we wish to minimize the maximal envy an agent might feel by comparing his value
for a bundle of items given to another agent to the value he assigns the items allocated to him. [30] proves
several approximability results for this problem. The parameter considered in [30] is the maximal marginal
utility.

Definition 6 The maximal marginal utility α is defined as follows:
α = maxi∈[n],j∈[m],S⊆[m] vi(S

⋃{j})− vi(S).

That is, α is the maximal value by which the value of an agent increases when one good is added to his
bundle. [30] proves that there always exists an allocation of items with an envy value of at most α. [30] also
exhibits a universally truthful randomized mechanism that obtains an approximation of O(

√
αn

1
2+ε) w.h.p.

for large values of n.
Lipton et al. are interested in the question of whether there are truthful mechanisms that produce alloca-

tions with minimal or bounded envy. [30] shows that no truthful mechanism can guarantee a perfect solution
(minimum envy). We strengthen this lower bound by showing that no truthful deterministic mechanism can
guarantee an allocation that has an envy value within α from optimal.

Theorem 4.4 No truthful deterministic mechanism can guarantee an allocation that has an envy within α
from optimal.

Proof: Let M be a truthful deterministic mechanism for this problem Consider an instance with 2 agents
and 3 goods. Each agent i = 1, 2 has the same additive valuation function vi that assigns any of the single
items a value of 1. Observe, that in this case α = 1. Notice, that the minimal envy for this instance is 1
(simply assign two items to one of the agents and one item to the other). Hence, if M assigns all items to
one of the agents the envy of the other is precisely 3, which is a 2α distance from optimal.

We are left with the case in which one of the agents receives two items and the other is given one item.
Assume w.l.o.g. that agent 1 is given items 1, 2 and agent 2 is given item 3. We now change the valuation
function of agent 1 into the following additive valuation:

v1(j) =
{

1 + ε, j = 1, 2
ε, j = 3

Observe, that now α = 1 + ε. Also observe that the minimal envy for this new instance is ε (e.g.,
assign item 1 to agent 1 and items 2, 3 to agent 2). However, the reader is encouraged to verify that the
monotonicity of M dictates that the allocation remain the same even after the alteration of the valuation
of agent 1. Therefore, we end up with an allocation in which the envy of agent 2 is 1. As α = 1 + ε this is
arbitrarily close to α.

Remark 4.5 [30] also considers the social-choice function that aims to minimize the envy-ratio (defined
therein) of the chosen allocation (over all possible allocations of goods). Using similar arguments to those
in the proof of Theorem 4.4 one can easily show that no truthful deterministic mechanism for the envy-ratio
minimization problem has an approximation factor better than 2. This result too can easily be extended to a
weaker lower bound for truthful randomized mechanisms.
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A Appendix

A.1 A Truthful 7m
8

-Approximation Mechanism for the Scheduling Problem with
Unrelated Machines

Nisan and Ronen [33] present a truthful deterministic mechanism that obtains an m-approximation. For the
case of 2 machines, they exhibit a universally-truthful randomized mechanism that obtains an approximation
of 7

4 . We generalize this result by presenting a universally-truthful randomized mechanism that obtains an
approximation-ratio of 7m

8 . This mechanism is based on that of [33]. We now turn to the description of our
mechanism:

Input: m valuations vi.

Output: An allocation T = T1,...,Tm of tasks, and payments p1, ..., pm such that T has a makespan value
which is a 7m

8 -approximation to the optimal makespan value, and the payments induce truthfulness.

The Mechanism:

1. For every machine i let Ti = ∅ and pi = 0.

2. Partition the set of machines into two sets S1 = {1, ..., m
2 } and S2 = {m

2 + 1, ...,m}.
3. For each task j = 1, ..., n perform the following actions:

• Let v1 = mini∈S1 vi(j) and let I = argmini∈S1 vi(j).

• Let v′1 = mini∈S1−{I} vi(j).

• Let v2 = mini∈S2 vi(j) and let II = argmini∈S2 vi(j).

• Let v′2 = mini∈S2−{II} vi(j).

• Randomly and uniformly choose a value R ∈ {0, 1}.
• If R = 0 and v1 ≤ 4

3v2 set TI = TI

⋃{j} and set pI = pI + min{v′1, 4
3v2}.

• If R = 0 and v1 > 4
3v2 set TII = TII

⋃{j} and set pII = pII + min{v′2, 3
4v1}.

• If R = 1 and v2 ≤ 4
3v1 set TII = TII

⋃{j} and set pII = pII + min{v′2, 4
3v1}.

• If R = 1 and v2 > 4
3v1 set TI = TI

⋃{j} and set pI = pI + min{v′1, 3
4v2}.

4. Allocate each machine i the tasks in Ti, and pay it a sum of pi.

Remark A.1 If m cannot be divided by 2 simply add the extra machine to either S1 or S2.

Theorem A.2 There exists a universally truthful randomized mechanism for the scheduling problem that
obtains an approximation ratio of 7m

8 .

Proof: We prove the theorem for the case that m can be divided by 2. The proof for the other case is
similar. Our proof relies on the proof of Nisan and Ronen [33]. Observe, that the utility of each machine
after the algorithm finishes is the sum of its utilities for the different tasks. Hence, it is sufficient to prove
that for each individual task a machine has no incentive to lie. As in [33], this is guaranteed because the
allocation of each task is in fact a weighted VCG mechanism (see [33] for further explanations), which is
known to be truthful. Hence, this mechanism is universally truthful.

We now need to prove that the approximation ratio guaranteed by the mechanism is indeed 7m
8 . Let

A be an instance of the scheduling problem with n tasks, and with m machines that have the valuation
functions v1, ..., vm. We define an instance B of scheduling problem with n tasks, and with 2 machines that
have the valuation function v′1, v

′
2, in the following way: For all j ∈ [n] v′1(j) = mini∈S1 vi(j). Similarly, for

all j ∈ [n] v′2(j) = mini∈S2 vi(j). We denote by M(A) and by M(B) the makespan values our mechanism
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generates for A and B respectively. We denote by O(A) and by O(B) the optimal makespan values for A
and B respectively.

First, notice that M(A) ≤ M(B). This is because applying our mechanism to B results in the same
makespan value as applying it to A in the worst-case scenario in which tasks are always assigned to the
same machines in S1 and in S2. It also holds that M(B) ≤ 7

4O(B) because in the case that there are only
two machines our mechanism is precisely that of [33], which guarantees a 7

4 approximation ratio. We now
have that M(A) ≤ 7

4O(B). All that is left to show is that O(B) ≤ m
2 O(A). Consider the optimal allocation

of tasks for A. By giving all tasks assigned to machines in S1 to machine 1 in B, and allocating all tasks
assigned to machines in S2 to machine 2 in B, we end up with a makespan value for B that is at most
m
2 O(A). The theorem follows.
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