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Abstract. The class of weakly acyclic games, which includes potential
games and dominance-solvable games, captures many practical appli-
cation domains. Informally, a weakly acyclic game is one where natural
distributed dynamics, such as better-response dynamics, cannot enter in-
escapable oscillations. We establish a novel link between such games and
the existence of pure Nash equilibria in subgames. Specifically, we show
that the existence of a unique pure Nash equilibrium in every subgame
implies the weak acyclicity of a game. In contrast, the possible existence
of multiple pure Nash equilibria in every subgame is insufficient for weak
acyclicity.

1 Introduction

In many domains, convergence to a pure Nash equilibrium is a fundamental
problem. In many engineered agent-driven systems that fare best when steady
at a pure Nash equilibrium, convergence to equilibrium is expected [7,9] to hap-
pen via better-response (best-response) dynamics: Start at some strategy profile.
Players take turns, in some arbitrary order, with each player making a better
response (best response) to the strategies of the other players, i.e., choosing
a strategy that increases (maximizes) their utility, given the current strategies
of the other players. Repeat this process until no player wants to switch to a
different strategy, at which point we reach a pure Nash equilibrium.

For better-response dynamics to converge to a pure Nash equilibrium re-
gardless of the initial strategy profile, a necessary condition is that, from every
strategy profile, there exist some better-response improvement path (that is, a
sequence of players’ better responses) leading from that strategy profile to a
pure Nash equilibrium. Games for which this property holds are called “weakly
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acyclic games” [10, 17]4. Both potential games [12, 15] and dominance-solvable
games [13] are special cases of weakly acyclic games.

In games that are not weakly acyclic, under better-/best-response dynamics,
there are starting states from where the game is guaranteed to oscillate indefi-
nitely. Moreover, the weak acyclicity of a game implies that natural decentral-
ized dynamics (e.g., randomized better-/best-response, or no-regret dynamics)
are stochastically guaranteed to reach a pure Nash equilibrium [8, 17]. Thus,
weakly acyclic games capture the possibility of reaching pure Nash equilibria
via simple, local, globally-asynchronous interactions between strategic agents,
independently of the starting state. We assert this is the realistic notion of “con-
vergence” in most distributed systems.

1.1 A Motivating Example

We now look at an example inspired by interdomain routing that has this natural
form of convergence despite it being, formally, possible that the network will
never converge. In keeping with results that we study here, we consider best-
response dynamics of a routing model in which each node can see each other
node’s current strategy, i.e., its “next hop” (the node to which it forwards its data
en route to the destination), as contrasted with models where nodes depending on
path announcements to learn this information. (Levin et al. [7] formalized routing
dynamics in which nodes learn about forwarding through path announcements.)
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Fig. 1. Instance of the interdomain
routing game that is weakly acyclic
and has a best-response cycle.

Consider the network on four nodes shown
in Fig. 1. Each of the nodes 1, 2, and 3 is
trying to get a path for network traffic to the
destination node d. A strategy of a node i is
a choice of a neighbor to whom i will forward
traffic; the strategy space of node i, Si, is its
neighborhood in the graph.. The utility of d
is independent of the outcome, and the utility
ui of node i 6= d depends only on the path
that i’s traffic takes to the destination (and
is −∞ if there is no path). We only need to
consider the relationships between the values
of ui on all possible paths; the actual values
of the utilities do not make a difference. Using 132d to denote the path from
1 to 2 to 3 to d, and similarly for other paths, here we assume the following:
u1(132d) > u1(1d) > u1(13d) > −∞; u2(213d) > u2(2d) > u2(21d) > −∞;
u3(321d) > u3(3d) > u3(32d) > −∞; and ui(P ) = −∞ for all other paths P ,
e.g., u1(12d) = −∞. These preferences are indicated by the lists of paths in
order of decreasing preference next to the nodes in Fig. 1.

4 In some of the economics literature, the terms “weak finite-improvement path prop-
erty” (weak FIP) and “weak finite best-response path property” (weak FBRP) are
also used, for weak acyclicity under better- and best-response dynamics, respectively.



(d, d, d) is a the unique pure Nash equilibrium in this game, and, ideally,
the dynamics would always converge to it. However, there exists a best-response
cycle:
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Here, each triple lists the paths that nodes 1, 2, and 3 get; the nodes’ strategies
correspond to the second node in their respective paths. The node above the
arrow between two triples is the one that makes a best response to get from one
triple to the next.

Once the network is in one of these states,5 there is a fair activation sequence
(i.e., in which every node is activated infinitely often) such that each activated
node best responds to the then-current choices of the other nodes and such that
the network never converges to a stable routing tree (a pure Nash equilibrium).

Although this cycle seems to suggest that the network in Fig. 1 would be
operationally troublesome, it is not as problematic as we might fear. From every
point in the state space, there is a sequence of best-response moves that leads to
the unique pure Nash equilibrium. We may see this by inspection in this case, but
this example also satisfies the hypotheses of our main theorem below. So long as
each node has some positive probability of being the next activated node, then,
with probability 1, the network will eventually converge to the unique stable
routing tree, regardless of the initial configuration of the network.

1.2 Our Results

Weak acyclicity is connected to the study of the computational properties of sink
equilibria [2,4], minimal collections of states from which best-response dynamics
cannot escape: a game is weakly acyclic if and only if all sinks are “singletons”,
that is, pure Nash equilibria. Unfortunately, Mirrokni and Skopalik [11] found
that reliably checking weak acyclicity is extremely computationally intractable
in the worst case (PSPACE-complete) even in succinctly-described games. This
means, inter alia, that not only can we not hope to consistently check games in
these categories for weak acyclicity, but we cannot even hope to have general
short “proofs” of weak acyclicity, which, once somehow found, could be tractably
checked.

With little hope of finding robust, effective ways to consistently check weak
acyclicity, we instead set out to find sufficient conditions for weak acyclicity:

5 For example, this might happen if the link between 2 and d temporarily fails. 2
would always choose to send traffic to 1 (if anywhere); 1 would eventually converge
to sending traffic directly to d (with 2 sending its traffic to 1), and 3 would then be
able to send its traffic along 321d. Once the failed link between 2 and d is restored,
2’s best response to the choices of the other nodes is to send its traffic directly to d,
resulting in the first configuration of the cycle above.



finding usable properties that imply weak acyclicity may yield better insights
into at least some cases where we need weak acyclicity for the application.

In this work, we focus on general normal-form games. Potential games, the
much better understood subcategory of weakly acyclic games, are known to have
the following property, which we will refer to as subgame stability, abbreviated
SS: not only does a pure Nash equilibrium exist in the game, but a pure Nash
equilibrium exists in each of its subgames, i.e., in each game obtained from the
original game by the removal of players’ strategies. Subgame stability is a useful
property in many contexts. For example, in network routing games, subgame
stability corresponds to the important requirement that there be a stable routing
state even in the presence of arbitrary network malfunctions [5]. We ask the
following natural question: When is the strong property of subgame stability
sufficient for weak acyclicity?

Yamamori and Takahashi [16] prove the following two results6:

Theorem: [16] In 2-player games, subgame stability implies weak acyclicity,
even under best response.

Theorem: [16] There exist 3 × 3 × 3 games for which subgame stability holds
that are not weakly acyclic under best response.

Thus, subgame stability is sufficient for weak acyclicity in 2-player games,
yet is not always sufficient for weak acyclicity in games with n > 2 players.
Our goal in this work is to (1) identify sufficient conditions for weak acyclicity
in the general n-player case; and (2) pursue a detailed characterization of the
boundary between games for which subgame stability does imply weak acyclicity
and games for which it does not.

Our main result for n-player games shows that a constraint stronger than SS,
that we term “unique subgame stability” (USS), is sufficient for weak acyclicity:

Theorem: If every subgame of a game Γ has a unique pure Nash equilibrium
then Γ is weakly acyclic, even under best response.

This result casts an interesting contrast against the negative result in [16]:
unique equilibria in subgames guarantee weak acyclicity, but the existence of
more pure Nash equilibria in subgames can lead to violations of weak acyclicity.
Hence, perhaps counter-intuitively, too many stable states can potentially result
in persistent instability of local dynamics.

We consider SS games, USS games, and also the class of strict and subgame
stable games SSS, i.e., subgame stable games which have no ties in the util-
ity functions. We observe that these three classes of games form the hierarchy
USS ⊂ SSS ⊂ SS. We examine the number of players, number of strategies, and
the strictness of the game (the constraint that there are no ties in the utility
function), and give a complete characterization of the weak acyclicity implica-
tions of each of these. Our contributions are summarized in Table 1.

6 Yamamori and Takahashi use the terms quasi-acyclicity for weak acyclicity under
best response, and Pure Nash Equilibrium Property (PNEP) for subgame stability.



2 players 3 players 4+ players

2×M 3×M 2× 2× 2
2× 2×M
2× 3×M 2× 4× 4 3× 3× 3 2× 2× 2× 2

∃ pNE X(Lma 4) 6⇒(easy) X∗ (Lma 5) 6⇒(easy)

SS X [16] 6⇒(Thm 2) 6⇒(Thm 2 & [16]) 6⇒(Thm 2)

SSS X(Lma 5) X(Thm 3) 6⇒(Thm 4) 6⇒(Thm 4 & [16]) 6⇒(Thm 5)

USS X(Thm 1)

Table 1. Results summary: The impact of USS/SSS/SS on weak acyclicity: X marks
classes with guaranteed weak acyclicity, even under best response; 6⇒ marks classes
which admit counter-examples which are not weakly acyclic even under better response.
∗: only for strict games

1.3 Other Related Work

Weak acyclicity has been specifically addressed in a handful of specially-struc-
tured games: in an applied setting, BGP with backup routing [1], in a game-
theoretical setting, games with “strategic complementarities” [3, 6] (a super-
modularity condition on lattice-structured strategy sets), and in an algorithmic
setting, in several kinds of succinct games [11]. Milchtaich [10] studied Rosen-
thal’s congestion games [15] and proved that, in interesting cases, such games
are weakly acyclic even if the payoff functions (utilities) are not universal but
player-specific. Marden et al. [9] formulated the cooperative-control-theoretic
consensus problem as a potential game (implying that it is weakly acyclic); they
also defined and investigated a time-varying version of weak acyclicity.

1.4 Outline of Paper

In the following, we recall the relevant concepts and definitions in Section 2,
present our sufficient condition for weak acyclicity in Section 3, and our charac-
terization of weak acyclicity implications in Section 4.

2 Weakly acyclic games and subgame stability

We use standard game-theoretic notation. Let Γ be a normal-form game with
n players 1, . . . , n. We denote by Si be the strategy space of the ith player. Let
S = S1× . . .×Sn, and let S−i = S1× . . .×Si−1×Si+1× . . .×Sn be the cartesian
product of all strategy spaces but Si. Each player i has a utility function ui that
specifies i’s payoff in every strategy-profile of the players. For each strategy
si ∈ Si, and every (n− 1)-tuple of strategies s−i ∈ S−i, we denote by ui(si, s−i)
the utility of the strategy profile in which player i plays si and all other players
play their strategies in s−i. We will make use of the following definitions.

Definition 1 (better-response strategies). A strategy s′i ∈ Si is a better-
response of player i to a strategy profile (si, s−i) if ui(s′i, s−i) > ui(si, s−i).

Definition 2 (best-response strategies). A strategy si ∈ Si is a best re-
sponse of player i to a strategy profile s−i ∈ S−i of the other players if si ∈
argmaxs′i∈Si

ui(s′i, s−i)



Definition 3 (pure Nash equilibria). A strategy profile s is a pure Nash
equilibrium if, for every player i, si is a best response of i to s−i

Definition 4 (better- and best-response improvement paths). A better-
response (best-response) improvement path in a game Γ is a sequence of strategy
profiles s1, . . . , sk such that for every j ∈ [k − 1] (1) sj and sj+1 only differ in
the strategy of a single player i and (2) i’s strategy in sj+1 is a better response to
sj−i (best response to sj−i and ui(s

j+1
i , sj−i) > ui(s

j
i , s

j
−i)). The better-response

dynamics (best-response dynamics) graph for Γ is the graph on the strategy
profiles in Γ whose edges are the better-response (best-response) improvement
paths of length 1.

We will use ∆RΓ (s) and BRΓ (s) to denote the set of all states reachable by,
respectively, better and best responses when starting from s in Γ .

We are now ready to define weakly acyclic games [17]. Informally, a game
is weakly acyclic if a pure Nash equilibrium can be reached from any initial
strategy profile via a better-response improvement path.

Definition 5 (weakly acyclic games). A game Γ is weakly acyclic if, from
every strategy profile s, there is a better-response improvement path s1 . . . , sk

such that s1 = s, and sk is a pure Nash equilibrium in Γ . (I.e., for each s,
there’s a pure Nash equilibrium in ∆RΓ (s).)

We also coin a parallel definition based on best-response dynamics.

Definition 6 (weak acyclicity under best response). A game Γ is weakly
acyclic under best response if, from every strategy profile s, there is a best-
response improvement path s1 . . . , sk such that s1 = s and sk is a pure Nash
equilibrium in Γ . (I.e., for each s, there’s a pure Nash equilibrium in BRΓ (s).)

Weak acyclicity of either kind is equivalent to requiring that, under the re-
spective dynamics, the game has no “non-trivial” sink equilibria [2, 4], i.e., sink
equilibria containing more than one strategy profile. Conventionally, sink equilib-
ria are defined with respect to best-response dynamics, but the original definition
by Goemans et al. [4] takes into account better-response dynamics as well.

The following follows easily from definitions:

Claim. If a game is weakly acyclic under best response then it is weakly acyclic.

On the other hand, the game in Figure 2, mentioned, e.g., in [8], is weakly
acyclic, but not weakly acyclic under best response.

Curiously, all of our results apply both to weak acyclicity in its conventional
better-response sense and to weak acyclicity under best response. Thus, unlike
weak acyclicity itself, the conditions presented in this paper are “agnostic” to the
better-/best-response distinction (like the notion of pure Nash equilibria itself).

We now present the notion of subgame stability.

Definition 7 (subgames). A subgame of a game Γ is a game Γ ′ obtained
from Γ via the removal of players’ strategies.



H T X

H 2,0 0,2 0,0
T 0,2 2,0 0,0
X 0,0 1,0 3,3

Fig. 2. Matching pennies with a “better-response”
escape route, but a best response persistent cycle.

c0 c1

b0 b1 b0 b1

a0 2,2,2 1,2,2 2,1,2 2,2,1
a1 2,2,1 2,1,2 1,2,2 0,0,0

Fig. 3. 2×2×2 subgame-stable
game with a non-trivial sink

Definition 8 (subgame stability). Subgame stability is said to hold for a
game Γ if every subgame of Γ has a pure Nash equilibrium. We use SS to denote
the class of subgame stable games.

Definition 9 (unique subgame stability). Unique subgame stability is said
to hold for a game Γ if every subgame of Γ has a unique pure Nash equilibrium.
We use USS to denote the class of such games.

We will also consider games in which no player has two or more equally good
responses to any fixed set of strategies played by the other players. Following,
e.g., [14], we define strict games as follows.

Definition 10 (strict game). A game Γ is strict if, for any two distinct
strategy profiles s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) such that there is some

j ∈ [n] for which s′ = (s′j , s−j) (i.e., s and s′ differ only in j’s strategy), then
uj(s) 6= uj(s′).

Definition 11 (SSS). We use SSS to denote the class of games that are both
strict and subgame stable.

It’s easy to connect unique subgame stability and strictness. To do so, we
use the next definition, which will also play a role in our main proofs.

Definition 12 (subgame spanned by profiles). For game Γ with n players
and profiles s1, . . . , sk in Γ , the subgame spanned by s1, . . . , sk is the subgame
Γ ′ of Γ in which the strategy space for player i is S′i = {sji |1 ≤ j ≤ k}.

Claim. The categories USS, SSS, and SS form a hierarchy: USS ⊂ SSS ⊂ SS

Proof. SSS ⊂ SS by definition. To see that USS ⊂ SSS observe the following.
If a game is not strict, there are sj , s′j ∈ Sj and s−j such that uj(sj , s−j) =
uj(s′j , s−j). Both strategy profiles in the subgame spanned by (sj , s−j) and
(s′j , s−j) are pure Nash equilibria, violating unique subgame stability.

3 Sufficient condition for weak acyclicity with n players

When is weak acyclicity guaranteed in n-player games for n ≥ 3? We prove that
the existence of a unique pure Nash equilibrium in every subgame implies weak
acyclicity. We note that this is not true when subgames can contain multiple
pure Nash equilibria [16]. Thus, while at first glance, introducing extra equilibria



might seem like it would make it harder to get “stuck” in a non-trivial component
of the state space with no “escape path” to an equilibrium, this intuition is false;
allowing extra pure Nash equilibria in subgames actually enables the existence
of non-trivial sinks.

Theorem 1. Every game Γ that has a unique pure Nash equilibrium in every
subgame Γ ′ ⊆ Γ is weakly acyclic under best-response (as are all of its subgames).

We shall need the following technical lemma:

Lemma 1. If s is a strategy profile in Γ , and Γ ′ is the subgame of Γ spanned by
BRΓ (s), then any best-response improvement path s, s1, . . . , sk in Γ ′ that starts
at s is also a best-response improvement path in Γ . x

Proof. We proceed by induction on the length of the path. The base case is
tautological. Inductively, assume s, . . . , si is a best-response improvement path
in Γ . The strategy si+1 is a best response to si in Γ ′ by some player j. This
guarantees that si is not a best response by j to si−j in Γ ′, let alone in Γ , so
Γ ′ ⊇ BRΓ (s) ⊇ BRΓ (si) must contain a best-response ŝij to si−j in Γ , and since
si+1
j is a best-response in Γ ′, we are guaranteed that uj(ŝij , s

i
−j) = uj(si+1), so

si+1 must be a best-response in Γ .

We may now prove Theorem 1.

Proof (Proof of Theorem 1). To prove Theorem 1, assume that Γ is a game
satisfying the hypotheses of the theorem, and for a subgame ∆ ⊆ Γ , denote by
s∆ the unique pure Nash equilibrium in ∆. We will proceed by induction up the
semilattice of subgames of Γ . The base cases are trivial: any 1×· · ·×1 subgame
is weakly acyclic for lack of any transitions. Suppose that for some subgame Γ ′

of game Γ we know that every strict subgame Γ ′′ ( Γ ′ is weakly acyclic.
Suppose that Γ ′ is not weakly acyclic: it has a state s from which its unique

pure Nash equilibrium sΓ ′ cannot be reached by best responses. Let Γ ′′ be the
game spanned by BR(s). Consider the cases of (i) sΓ ′ ∈ Γ ′′ and (ii) sΓ ′ 6∈ Γ ′′:

Case (i): sΓ ′ ∈ Γ ′′. This requires that, for an arbitrary player j with more
than 1 strategy in Γ ′, there be a best-response improvement path from s to some
profile ŝ where j plays the same strategy as it does in sΓ ′′ . Take one such j, and
let Γ j be the subgame of Γ ′ where j is restricted to playing ŝj only. Since sΓ ′ is
in Γ j , the inductive hypothesis guarantees a best-response improvement path in
Γ j from ŝ to sΓ ′ . By construction, that path must only involve best responses
by players other than j, who have the same strategy options in Γ j as they did
in Γ ′, so that path is also a best-response improvement path in Γ ′, assuring a
best-response improvement path in Γ ′ from s to sΓ ′ via ŝ.

Case (ii): sΓ ′ 6∈ Γ ′′. Then, Γ ′′’s unique pure equilibrium sΓ ′′ must be distinct
from sΓ ′ . Since sΓ ′ is the only pure equilibrium in Γ ′, sΓ ′′ must have an outgoing
best-response edge to some profile ŝ in Γ ′. But the inductive hypothesis ensures
that sΓ ′′ ∈ BRΓ ′′(s); by Lemma 1, sΓ ′′ ∈ BRΓ ′(s), which then ensures that ŝ
must also be in BRΓ ′(s), and hence in Γ ′′, so sΓ ′′ isn’t an equilibrium in Γ ′′.



4 Characterizing the implications of subgame stability

[16] establishes that in 2-player games, subgame stability implies weak acyclicity,
even under best response, yet this is not true in 3x3x3 games. We now present
a a complete characterization of when subgame stability is sufficient for weak
acyclicity, as a function of game size and strictness. Our next result shows that
the two-player theorem of [16] is maximal:

Theorem 2. Subgame stability is not sufficient for weak acyclicity even in non-
strict 2× 2× 2 games.

Proof. The game in Fig. 3 can be seen to provide the needed counterexample.

However, if we require the games to be strict, subgame stability turns out to
be somewhat useful in 3-player games:

Theorem 3. In any strict 2 × 2 ×M or 2 × 3 ×M game, subgame stability
implies weak acyclicity, even under best response.

We will first need a couple of technical lemmas:

Lemma 2. In strict games, neither a pure Nash equilibrium and strategy profiles
differing from it in only one player’s action can be part of a non-trivial sink of
the best-response dynamics.

Proof. A pure Nash equilibrium always forms a 1-node sink. If the game is strict,
profiles differing by one player’s action have to give that one player a strictly
lower payoff, requiring a best-response transition to the equilibrium’s sink. Any
node connected to either cannot be in a sink.

Lemma 3. The profiles of a game that constitute a non-trivial sink of the best-
response dynamics cannot be all contained within a subgame which is weakly
acyclic under best-response.

Proof. Consider such a non-trivial sink of game Γ contained in such a subgame
Γ ′. Take a profile s in the sink, and consider the path P = {s = s0, s1, . . . , sk} of
Γ ′ best responses that leads to sk, an equilibrium of Γ ′. This path is guaranteed
to exist since Γ ′ is weakly acyclic under best response. Consider the last profile
in P , sa, such that all profiles on P between s and sa are in the sink.

If sa = sk (i.e. if P is entirely in the sink), there has to be a best response
transition in Γ from sk to some s′, since sk cannot be an equilibrium of Γ and
be in a non-trivial sink. If s′ were in Γ ′, the transition from sk to s′ would have
been a best response in Γ ′, too, contradicting sk being an equilibrium of Γ ′ —
thus, s′ is not in Γ ′, but is in the sink.

If sa 6= sk, the transition from sa to sa+1, by some player i, is a best response
in Γ ′, but not in Γ . So sai is not i’s best response to sa−i, and thus there is a best
response by i from sa to some s′ in Γ . Since sa to sa+1 is not a best response
transition by in Γ , ui(s′) > ui(sa+1), and since sa+1 is a best response in Γ ′, s′

must not be in Γ ′ — but since sa is in the sink, so is s′ 6∈ Γ ′.



We now start with the corner cases of 3-player, 2×2×2 games, and 2-player,
2 ×m games, where weak acyclicity requires even less than subgame stability.
The former result forms the base case for Theorem 3, and both might also be of
independent interest.

Lemma 4. In any 2 × m game, and if there is a pure Nash equilibrium, the
game is weakly acyclic, even under best response.

Proof. In general 2×m games with pure Nash equilibrium (s∗, t∗), a non-trivial
best-response sink cannot consist of moves by just one player, so the first player
will play both of his strategies somewhere in such a sink, including s∗, so there
is some (s∗, t′) state in the sink. If t′ is not a best response to s∗, there would
be a best-response transition to the equilibrium (s∗, t∗), which couldn’t happen
in a sink. If t′ is a best response to s∗, and s∗ is a best response to t′, then
(s∗, t′) is a Nash equilibrium, which couldn’t happen in a sink. Lastly, if t′ is a
best response to s∗, but s∗ is not a best response to t′, there has to be some
inbound best-response transition into (s∗, t′) from another profile in the sink,
and that transition then has to involve a move by player 2, from some other
state (s∗, t′′), guaranteeing that t′′ is not a best response to s∗. Since t∗ has
to also be a best response to s∗, there is then a best response transition from
(s∗, t′′) to the equilibrium (s∗, t∗), concluding the proof.

Lemma 5. In any strict 2×2×2 game, if there is a pure Nash equilibrium, the
game is weakly acyclic, even under best response.

Proof. In strict 2× 2× 2 games, Lemma 2 leaves 4 other strategy profiles, with
the possible best-response transitions forming a star in the underlying undirected
graph. Since best-response links are antisymmetric (s → s′ and s′ → s cannot
both be best-response moves), there can be no cycle among those 4 profiles, and
thus no non-trivial sink components.

Proof (Theorem 3). We treat the 2× 2×M and 2× 3×M cases separately.
The 2× 2×M case: With Lemma 5 as the base case, assume, inductively, that
the 2× 2× 2 claim holds for all values of M through some M ′ − 1, and suppose
some 2× 2×M ′ game Γ , with strategy sets {a0,1},{b0,1},and {c0,...,M ′−1}, has
a non-trivial best-response sink X. WLOG, let (a0, b0, c0) be an equilibrium of
Γ .

Lemma 3 guarantees that X is not contained in the subgame Γ−c0 , where
only strategy c0 is removed, leaving a strict, subgame stable 2 × 2 × M ′ − 1
game, which is weakly acyclic under best response by the inductive hypothesis.
But the only profile using c0 that is allowed to be in X after applying Lemma
2 is (a1, b1, c0), from which the same lemma guarantees that only player 3 can
make a best-response transition. Thus, it can have no inbound best-response
transitions by player 3, leaving no way for it to be reached from the rest of X,
which can thus not be a sink.
The 2× 3×M case: The 2× 3× 2 case is isomorphic to the above. With that
as the base case, assume, inductively, that the 2 × 3 ×M claim holds for all



values of M up to some M ′ − 1, and suppose that a 2 × 3 ×M ′ game Γ , with
strategy sets {a0,1},{b0,1,2},and {c0,...,M ′−1} has a non-trivial sink X. Again
let (a0, b0, c0), WLOG, be an equilibrium of Γ . The inductive hypothesis and
Lemma 3 guarantee that X spans Γ , and, in particular, has at least one node of
form (∗, ∗, c0), and at least one of form (∗, b0, ∗).

By Lemma 2, the (∗, ∗, c0) node has to be one of the two nodes (a1, b1,2, c0),
and that node cannot have an outbound best response by player 1. To be in a
non-trivial sink, it has to have an inbound and an outbound best response, one
of which is thus by player 3, and the other by player 2, ensuring that both of
the two nodes (a1, b1,2, c0) are in X. One of those will then be player 2’s best
response to (a1, c0); WLOG, let that one be (a1, b1, c0). Then, the only inbound
best response to lead to (a1, b2, c0) is by player 3, and player 3 has to have an
outbound best response from (a1, b1, c0) to some (a1, b1, cx).

From (a1, b1, cx), if there is an outbound best response by player 2, it cannot
be to (a1, b2, cx): else the subgame with strategies {a1}, {b1,2}, and {c0,x} is
isomorphic to Matching Pennies. Player 2’s best response would thus have to
instead be to (a1, b0, cx). From there, player 1 cannot have an outbound best
response by Lemma 2, thus requiring player 3 to have a best response to some
(a1, b0, cy); from there, too, player 1 cannot have a best response by Lemma 2,
requiring a best response by player 2. But then, in the 1 × 3 × M ′ subgame
formed by removing strategy a0, for each of player 2’s strategies, player 3’s best
response is to a profile that has an outbound best response by player 2, which
precludes an equilibrium.

Thus, from (a1, b1, cx), the sole possible outbound best response is by player
1, to (a0, b1, cx).

Consider now the 2× 2×M ′ subgame Γ−b0 formed by taking away strategy
b0, and let s∗ be its pure Nash equilibrium. If s∗ is of form (a0, b1,2, c0), that
would require that it be player 1’s best response in Γ to (b1,2, c0), thus putting
s∗ in the sink, in violation of Lemma 2. s∗ also cannot be of form (a1, b1,2, c0):
otherwise, it is in the sink, and yet the only outbound best responses in Γ must
be those not in Γ ′, i.e. by player 2 to (a1, b0, c0), in violation of Lemma 2. Thus,
s∗ has player 3 playing a strategy other than c0, which is its best response to
one of (a1, b1,2). Player 3’s best response to (a1, b2) is c0, so that cannot be s∗.
Player 3’s best response to (a1, b1) is cx, but there is an outbound best response
by player 1 to (a0, b1, cx) from there, which is within Γ−b0 . Thus, s∗ = (a0, by, cz),
for y ∈ {1, 2}.

Then, s∗ again cannot be in X, since the sole outbound transition in Γ could
only be to (a0, b0, ∗), violating Lemma 2. Neither (a1, by, cz) nor any (a0, by, ∗)
profile can be in X, either, since their best-response transition to s∗ in Γ ′ would
also be a best response in Γ , putting s∗ into X. If the one (a0, bv, cz) profile
with 0 6= v 6= y were in X, it has a best response to s∗ in Γ ′, so it has to have a
best response by player 2 in Γ — but it can’t be to (a0, b0, cz) by Lemma 2, and
can’t be to s∗ since s∗ can’t be in X. Thus, much like in Lemma 2, no profile
differing in at most one player’s strategy from s∗ can be in X, either.



We can now show that nodes (a1, b0,v, cz) are both in X, by an argument
symmetrical to that for (a1, b1,2, c0). The same argument will yield that either
bv or b0 is the best response to (a1, cz), and that the other one of the two is a
best response by player 3. We finish by analyzing the cartesian product of those
two cases, and whether v ∈ {1, 2}:

v = 1, bv is best response: The above argument will require that the best
response to (a1, b1) by player 3, cx, be neither c0 nor cz. If the outbound best
response from (a1, b1, cx) is by player 2, to b0 or b2, then either {a1} × {b0,1} ×
{cz,x} or {a1} × {b1,2} × {c0,x}, respectively, form a subgame isomorphic to
matching pennies. On the other hand, suppose the outbound best response from
(a1, b1, cx) is by player 1, to (a0, b1, cx). Since (a0, b0, ∗) nodes and (a0, b2, ∗)
nodes may not be in X, the only outbound response from there is by player
3, to some cw, from which the only outbound best response is by player 1 to
(a1, b1, cw), creating a matching pennies subgame with strategies {a0,1}×{b1}×
{cw,x}.

v = 1, b0 is best response: Then, cz has to be the best response to (a1, b1)
by player 3, requiring that cx = cz, but it was established above that (a1, b1, cx)
cannot have an outbound best response by player 2.

v = 2, bv is best response: An argument symmetrical to the v = 1, b = 0
case will show that c0, the requisite best response to (a1, b1) cannot have an
outbound best response by player 2.

v = 2, b0 is best response: Contradiction, since that would require both cz
and c0 to be the best response to (a1, b2).

Thus, Γ cannot have a non-trivial best-response sink.

Theorem 3 is maximal. All bigger sizes of 3-player games admit subgame-
stable counter-examples that are not weakly acyclic:

Theorem 4. In non-degenerate7 strict 3-player games, the existence of pure
Nash equilibria in every subgame is insufficient to guarantee weak acyclicity, for
any game with at least 3 strategies for each player, and any game with at least
4 strategies for 2 of the players.

Proof. The first half of the theorem follows directly from a specific counterexam-
ple game in [16]. There, the strict 3-player, 3×3×3 game in question is stated to
demonstrate that SSS does not imply weak acyclicity under best response. Ac-
tually, their very same counter-example is not even weakly acyclic under better
response. Here, we examine a 2× 4× 4 counter-example to establish the second
half of the theorem, and a 3 × 3 × 3 counterexample slightly cleaner than the
one in [16], both shown in Figure 4.

In each of these three player games, there is a pure Nash equilibrium in the
full game, s∗ = (a1, b1, c1) in Γ3,3,3, and s∗ = (a3, b3, c1) in Γ4,4,2, with utility 5
for each of the players. In both, there is a cycle C, every profile in which differs
from s∗ in at least 2 players’ strategies. Any profile (ai, bj , ck) that’s neither s∗

nor in C yields utilities (i, j, k). With utilities in C always in {4, 5}, there is never

7 Each player has 2 or more strategies



c0 c1 c2

b0 b1 b2 b0 b1 b2 b0 b1 b2

a0 0, 0, 0 5, 5, 4 5, 4, 5 4, 5, 5 0, 1, 1 0, 2, 1 5, 5, 4 5, 4, 5 0, 2, 2

a1 5, 4, 5 1, 1, 0 4, 5, 5 1, 0, 1 5, 5, 5 1, 2, 1 1, 0, 2 1, 1, 2 1, 2, 2

a2 4, 5, 5 2, 1, 0 2, 2, 0 5, 5, 4 2, 1, 1 2, 2, 1 2, 0, 2 2, 1, 2 2, 2, 2

c0 c1

b0 b1 b2 b3 b0 b1 b2 b3

a0 5, 5, 5 0, 1, 0 0, 2, 0 0, 3, 0 5, 5, 4 0, 1, 1 5, 4, 5 0, 3, 1

a1 1, 0, 0 1, 1, 0 5, 5, 4 5, 4, 5 1, 0, 1 1, 1, 1 4, 5, 5 1, 3, 1

a2 2, 0, 0 5, 4, 5 2, 2, 0 4, 5, 5 2, 0, 1 2, 1, 1 2, 2, 1 2, 3, 1

a3 5, 4, 5 4, 5, 5 3, 2, 0 3, 3, 0 3, 0, 1 3, 1, 1 3, 2, 1 5, 5, 5

Fig. 4. 3-player strict subgame stable games that are not weakly acyclic, even under
better-response dynamics

an incentive for anyone to unilaterally leave the cycle C, forming a “sheath” of
low-utility states separating C from the rest of the game, particularly s∗. Thus
C is a persistent cycle. By construction, the game is strict and at each state in
C there is a unique player who has a better response to the current state.

Consider any subgame Γ ′ of either game. If Γ ′ contains s∗, s∗ is a pure Nash
equilibrium of Γ ′ as well.

Suppose Γ ′ is not the full game. In the course of cycling through C, each
strategy of each player is used at least once. Thus, Γ ′ cannot contain all of C.
If it has at least some states of C, pick one state that is in Γ ′, and follow the
edges of C until you get to a state whose sole outbound better-response move
has been “broken” by the better-response strategy being removed in Γ ′. This
process will terminate, since C is a simple cycle in Γ that had at least one node
missing in Γ ′. The sole player that had an incentive to move in that state in Γ
now no longer has that option, and if he has any other strategy, the resulting
state cannot be in C, since C never uses more than 2 strategies of any player i in
combination with any fixed s−i. Thus, any other strategy is not an improvement
for that player, either, and this new state is thus a pure Nash equilibrium in Γ ′.

Lastly, if Γ ′ contains neither s∗ nor any nodes of C, taking the highest-index
strategy for each player yields a profile that has to be a pure Nash equilibrium,
since the utilities of non-C, non-s∗ profiles are just (i, j, k).

Thus, every subgame is guaranteed to have a pure Nash equilibrium, and,
due to C, both games are not weakly acyclic. The theorem holds for games with
more strategies by padding the counter-examples above.

With 4 or more players, a more mechanistic approach produces analogous
examples even with just 2 strategies per player:

Theorem 5. In a strict n-player game for an arbitrary n ≥ 4, the existence of
pure Nash equilibria in every subgame is insufficient to guarantee weak acyclicity,
even with only 2 strategies per player.



Proof. For strategy profiles in {0, 1}n, using indices mod n, set the utilities to:

u(s) =


(4, . . . , 4) at s = (1, . . . , 1)
(3, . . . , 3, 2

i’th
, 3, . . . , 3) when si−1 = si = 1, s−(i−1,i) = 0

(3, . . . , 3, 2
i+ 1’th

, 3, . . . , 3) when si = 1, s−i = 0

s else (for the “sheath”).

Similarly to Theorem 4, this plants a global pure Nash equilibrium at (1, . . . , 1),
and creates a “fragile” better-response cycle. Here, the cycle alternates between
profiles with edit distance n−1 and n−2 from the global pure Nash equilibrium.
At every point of the cycle, the only non-sheath profiles 1 step away are its
predecessor and successor on the cycle, so the cycle is persistent. Since each
profile with edit distance n − 1 from the equilibrium is covered, removing any
player’s 1 strategy breaks the cycle, thus guaranteeing a pure Nash equilibrium
in every subgame by the same reasoning as above.

We note that, in the counter-example results — Theorems 2, 4, and 5 — the
counter-example games of fixed size easily extend to games with extra strategies
for some or all players, or with extra players, by “padding” the added part
of the payoff table with negative, unique values that, for the added profiles,
make payoffs independent of the other players, such as, e.g., ui(s) = −si. This
preserves SS, SSS, and USS properties without changing weak acyclicity. Thus,
this completes our classification of weak acyclicity under the three subgame-
based properties, as shown in Table 1.

5 Concluding remarks

The connection between weak acyclicity and unique subgame stability that we
present is surprising, but not immediately practicable: in most succinct game
representations, there is no reason to believe that checking unique subgame sta-
bility will be tractable in many general settings. In a complexity-theoretic sense,
USS is closer to tractability than weak acyclicity: Any reasonable game repre-
sentation will have some “reasonable” representation of subgames, i.e., one in
which checking whether a state is a pure Nash equilibrium is tractable, which
puts unique subgame stability in a substantially easier complexity class, Π3P ,
than the class PSPACE for which weak acyclicity is complete in many games.

We leave open the important question of finding efficient algorithms for check-
ing unique subgame stability, which may well be feasible in particular classes of
games. Also open and relevant, of course, is the question of more broadly appli-
cable and tractable conditions for weak acyclicity. In particular, there may well
be other levels of the subgame stability hierarchy between SSS and USS that
could give us weak acyclicity in broader classes of games.
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