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Abstract. In many real-world settings (e.g., interdomain routing in the
Internet) strategic agents are instructed to follow best-reply dynamics
in asynchronous environments. In such settings players learn of each
other’s actions via update messages that can be delayed or even lost. In
particular, several players might update their actions simultaneously, or
make choices based on outdated information. In this paper we analyze
the convergence of best- (and better-)reply dynamics in asynchronous
environments. We provide sufficient conditions, and necessary conditions
for convergence in such settings, and also study the convergence-rate of
these natural dynamics.

1 Introduction

Many real-life protocols can be regarded as executions of best-reply dynamics,
i.e, players (computational nodes) are instructed to repeatedly best-reply to
the actions of other players. In many cases, like Internet settings, this occurs
in asynchronous environments: Think of the players as residing in a computer
network, where their best-replies are transmitted to other players and serve as
the basis for the other players’ best-replies. These update messages that players
send to each other may be delayed or even lost, and so players may update
their actions simultaneously, and do so based on outdated information. Perhaps
the most notable example for this is the Border Gateway Protocol (BGP) that
handles interdomain routing in the Internet. As observed in [1], BGP can indeed
be seen as an execution of best-reply dynamics in asynchronous environments.

Asynchronous best-reply dynamics. The most fundamental question re-
garding best-reply dynamics in asynchronous settings is “When are such dy-
namics guaranteed to converge?”. This will certainly not happen if a pure Nash
equilibrium does not exist, but is not guaranteed even in very simple and well-
structured games that have a pure Nash. We present a formal framework for the
analysis of best-reply dynamics in asynchronous environments. We then exhibit
a simple class of games for which convergence to a unique pure Nash equilib-
rium is guaranteed. We term this class, which contains all strictly-dominance-
solvable games (games where iterated elimination of strictly dominated strategies
leaves a single strategy profile [2]), “max-solvable-games”. We also discuss the



convergence-rate of best-reply dynamics in asynchronous settings. We propose a
notion of an asynchronous phase, and show that for max-solvable games conver-
gence also happens quickly.

Theorem: Best reply-dynamics converge within
∑

i mi phases for every max-
solvable game, and in every asynchronous schedule. Here mi is the size of the
strategy space of the i’th player. In particular, this holds for all strictly-dom-
inance-solvable games.

This theorem shows that even though the “input” (a normal-form represen-
tation of a max-solvable game) is of exponential size (in the size of the strategy-
spaces), best-reply dynamics converges in a linear number of phases.

We consider a generalization of max-solvable games, called “weakly-max-
solvable games” that contains the class of weakly-dominance-solvable games
(games where iterated elimination of weakly-dominated strategies leaves a single
strategy profile [2]). For this class of games we show that no similar result holds;
not only are best-reply dynamics not guaranteed to converge, but any procedure
for finding a pure Nash equilibrium faces a severe obstacle.

Theorem: Finding a pure Nash equilibrium in weakly-max-solvable games re-
quires exponential communication in

∑
i mi. This is even true for the more re-

stricted class of weakly-dominance-solvable games.

This result follows the line of research initiated by Conitzer and Sandholm [3],
and further studied in the work of Hart and Mansour [4].

Asynchronous better-reply dynamics. At this point we turn our attention
to better-reply dynamics. Now, players are not required to continuously best-
reply to the strategies of the others, but merely to always choose strategies that
are better replies than the ones they currently have. Once again, we are inter-
ested in figuring out when these dynamics converge in asynchronous settings.
A natural starting point for this exploration is the well-known class of potential
games, introduced by Monderer and Shapley [5], building on the seminal work
of Rosenthal [6]. For these games, it is known that better-reply dynamics are
guaranteed to converge (if players update their strategies one by one, and learn
of each other’s action immediately).

We show, in contrast, that even for these games asynchrony poses serious
challenges and may even lead to persistent oscillations. We consider a restricted,
yet expressive, form of asynchrony – settings in which players may update strate-
gies simultaneously (and not necessarily one by one), but update messages ar-
rive at their destinations immediately (no delay). We call such restricted asyn-
chronous settings “simultaneous settings”. We prove the following theorem:

Theorem: If every subgame of a potential game has a unique pure Nash equi-
librium then better-reply dynamics are guaranteed to converge for every simulta-
neous schedule. (By subgame, we mean a game that is the result of elimination
of players’ strategies from the original game.)



In fact, we show that this result is almost a characterization, in the sense
that the uniqueness of pure Nash equilibria in every subgame is also a neces-
sary condition for convergence in simultaneous settings for a large subclass of
potential games.

Organization of the Paper: In Section 2 we present a model for analyzing
best- and better-reply dynamics in asynchronous settings. In Section 3 we present
and discuss max-solvable games. In Section 4 we explore potential games. Due
to space constraints many of the proofs are omitted (see [7] for a full version).

2 Synchronous, Simultaneous, and Asynchronous
Environments

We use standard game-theoretic notation: Let G be a normal-form game with n
players 1, 2, . . . , n. We denote by Si the (finite) strategy space of the i’th player.
Let S = S1 × . . . × Sn, and let S−i = S1 × . . . × Si−1 × Si+1 × . . . × Sn be
the cartesian product of all strategy spaces but Si. Each player i has a utility
function ui that specifies i’s payoff for any strategy-profile of the players. For
any strategy si ∈ Si, and every (n − 1)-tuple of strategies s−i ∈ S−i, we shall
denote by (si, s−i) the strategy profile in which player i plays si ∈ Si and all
other players play their strategies in s−i. Given s−i ∈ S−i, si ∈ Si is said to be
a best reply to s−i if ui(si, s−i) = maxs′

i
∈Si

ui(s′i, s−i). Given s−i ∈ S−i, s′i ∈ Si

is said to be a better-reply of player i than si ∈ Si if ui(s′i, s−i) > ui(s′i, s−i).
Consider the following best-reply dynamics procedure: We start with an ini-

tial strategy profile of the players s ∈ S. There is set of rounds R = {1, 2, ...} of
infinite size. In each round one or more players are chosen to participate. Every
player chosen to participate must switch to a best-reply to his most recent infor-
mation about the strategies of the other players, and send update messages to
all other players announcing his strategy (a player must announce his strategy
to all other players even if it did not change).

As in [1], there is an adversarial entity called the Scheduler that is in charge
of making the following decisions: Choosing the initial strategy profile s ∈ S.
Determining which players will participate in which round (a function f from R
to subsets of the players). Determining when sent update messages reach their
destinations (see below). The Scheduler must be restricted not to indefinitely
starve any player from best-replying (that is, each player participates in infinitely
many rounds). We shall name all the choices made by the Scheduler a schedule.
We distinguish between three types of settings:

Synchronous settings: In these settings, the Scheduler can only choose one
player to play in each round (that is, |f(r)| = 1 for any r ∈ R). In addition,
update messages sent by players arrive at their destinations immediately (that
is, at the end of the round in which they were sent). Hence, players’ actions are
observable to other players. Observe, that a game is a potential game iff for each
of its subgames, better-reply dynamics are guaranteed to converge to a pure
Nash equilibrium for any synchronous schedule.



Simultaneous settings: In simultaneous settings, the Scheduler can choose any
number of players to play in each round (|f(r)| can be any number in 1, 2, . . . , n
for any r ∈ R). As in synchronous settings, players’ actions are observable (up-
date messages sent by players arrive at their destinations immediately).

Asynchronous settings: As in simultaneous settings, the Scheduler can choose
any number of players to play in each round. However, in asynchronous settings
the Scheduler can also decide when each sent update message arrives at its
destination (at the end of the round in which it was sent or in some subsequent
round) subject to the limitation that messages that were sent earlier arrive before
later ones. It can also decide to drop update messages. The Scheduler may not
prevent all update messages of a player from reaching another player indefinitely.

Elementary examples (like the “Battle of the Sexes” game) show that even in
very simple games, in which best-reply dynamics are guaranteed to converge in
synchronous settings, they might not converge in simultaneous settings (and, in
particular, in asynchronous settings). Similarly, it can be shown that convergence
of best-reply dynamics in simultaneous settings does not imply convergence in
asynchronous settings.

In an analogous way, we can now define synchronous, simultaneous, and
asynchronous convergence of better-reply dynamics.

3 Max-Solvable Games

In this section we present a class of games called “max-solvable games” for which
best-reply dynamics are guaranteed to converge to a pure Nash equilibrium even
in asynchronous settings. We then discuss a generalization of these games, that
contains all dominance-solvable games (games in which the iterated removal of
dominated strategies results in a single strategy profile).

3.1 Max-Solvable Games - Definitions

We start by defining max-solvable games.

Definition 1. A strategy si ∈ Si is max-dominated if for every strategy-profile
of the other players s−i = (s1, . . . , si−1, si+1, . . . , sn) there is a strategy s′i such
that ui(s′i, s−i) > ui(si, s−i).

That is, a strategy of a player is max-dominated if it is not a best-reply to
any strategy-profile of the other players. Observe, that every strictly dominated
strategy is max-dominated. In fact, a strategy is max-dominated even if it is
strictly dominated by a mixed strategy.

Informally, a max-solvable game is a game in which the iterated elimination
of max-dominated strategies results in a single strategy-profile.

Definition 2. A game G is said to be max-solvable if there is a sequence of
games G0, . . . , Gr such that:



– G0 = G
– For every k ∈ {0, . . . , r− 1}, Gk+1 is a subgame of Gk achieved by removing

a max-dominated strategy from the strategy space of one player in Gk.
– The strategy space of each player in Gr is of size 1.

The class of max-solvable-games contains all strictly-dominance-solvable ones.
We shall refer to an elimination order of max-dominated strategies, that results
in a single strategy-profile as an elimination sequence of a max-solvable game.

3.2 Asynchronous Best-Reply Dynamics and Max-Solvable Games

One of the helpful features of max-solvable games is the fact that such games
always have a unique pure Nash equilibrium.

Proposition 1. Any max-solvable game has a unique pure Nash equilibrium.

We now show that in max-solvable games, best-reply dynamics always con-
verge to the unique pure Nash equilibrium, even in asynchronous settings. How
long does this take? Answering this question requires further clarifications as we
must account for the fact that update messages can be arbitrarily delayed, and
that players might be prevented from best-replying for long periods of time. We
define an asynchronous phase to be a period of time in which every player is
activated at least once, and every player receives at least one update message
from each of his neighbours. We prove that, for any asynchronous schedule, best-
reply dynamics converge to the unique pure Nash equilibrium in a number of
asynchronous phases that is at most

∑
i mi, where mi is the size of the strategy

space of the i’th player.

Theorem 1. In any max-solvable game, best-reply dynamics converges for every
asynchronous schedule within

∑
i mi asynchronous phases.

Proof. Consider an elimination sequence of max-dominated strategies that re-
sults in a single strategy-profile. Let strategy s1 of some player i be the first
strategy to be eliminated. Player i is activated once during the first asynchronous
phase. If he is playing s1 then he will switch to another strategy since s1 is max-
dominated. Furthermore, no best-reply of player i in the future will ever cause
him to choose strategy s1. From this point onwards, the best-reply dynamics are
effectively occurring in a game where s1 does not exist. Let us now consider the
next strategy in the elimination order s2, which belongs to some player j (that
can be i, or some other player). Given that player i never plays s1, s2 is now
max-dominated. Player j is activated during the second asynchronous phase. If
he is playing s2 he will move to another strategy. No matter what, s2 will never
be played again. More generally, after k asynchronous phases the k’th strategy
in the elimination order will never be played again. Therefore after

∑
i(mi − 1)

asynchronous phases we are bound to reach the pure Nash equilibrium, which is
the remaining strategy-profile.



3.3 Weakly-Max-Solvable-Games

The definition of max-dominated strategies required that, for any strategy-profile
of the other players, a max-dominated strategy be strictly worse than another
strategy. In this section we discuss the case of ties.

Definition 3. A strategy si ∈ Si is weakly-max-dominated if for every strategy-
profile of the other players s−i = (s1, . . . , si−1, si+1, . . . , sn) there is another
strategy s′i such that ui(s′i, s−i) ≥ ui(si, s−i).

Now, we can define weakly-max-solvable games as games in which the iterative
removal of weakly-max-dominated strategies results in a single strategy-profile.
Observe that any weakly-dominance-solvable game is a weakly-max-solvable
game. Unfortunately, as the following example demonstrates, best-reply dynam-
ics are not guaranteed to converge even in weakly-dominance-solvable games.

Example 1. Consider the game depicted by the following matrix (the rows are
player 1’s strategies and the columns are player 2’s strategies):

1,1 0,0
1,0 0,1
0,1 1,0

First, observe that this is indeed a weakly-dominance-solvable game. Observe
that if the initial strategy-profile is the leftmost entry in the lower row (row 3)
of the game-matrix, then the following best-reply dynamics is possible: Player
one moves from row 3 to row 2, player 2 moves from the left column to the right
one, player 1 moves from row 2 to row 3, player 2 moves from the right column
to the left one, and so on.

Weakly-dominance-solvable games always have pure Nash equilibria. As we
have just seen, best-reply dynamics are not guaranteed to converge to such an
equilibrium. Is there a different procedure that can do so in reasonable time?
We prove the following impossibility result:

Theorem 2. Finding a pure Nash equilibrium in games that are weakly-dom-
inance-solvable requires communicating exponentially many bits (in

∑
i mi).

4 Potential Games and Asynchrony

In this section we explore better-reply dynamics in the context of potential
games. While it is easy to see that in potential games better-reply dynamics
converge for any synchronous schedule, what happens in simultaneous and asyn-
chronous environments? We study the structural properties of potential games
for which convergence of better-reply dynamics in simultaneous settings is as-
sured.

We prove the following theorem:



Theorem 3. If every subgame of a potential game has a unique pure Nash equi-
librium, then better-reply dynamics converge for any simultaneous schedule.

We show that the uniqueness of pure Nash equilibria in every subgame of a
potential game is almost a characterization of potential games for which better-
reply dynamics always converge in simultaneous settings. We show this by prov-
ing that this is indeed also a necessary condition for a large subclass of potential
games, we term “strict potential games”.

Definition 4. A game G is strict if for any two strategy profiles s = (s1, ..., sn)
and s′ = (s′1, ..., s

′
n), such that there is some j ∈ [n] for which s′ = (s′j , s−j),

uj(s) 6= uj(s′).

That is, a game is strict if for any player i, for any two strategies of that
player si, s

′
i ∈ Si, and for any strategy-profile of the other players s−i, i strictly

prefers one strategy over the other. A strict potential game is a potential game
that is strict.

Theorem 4. If a strict potential game is such that better-reply dynamics con-
verge for any simultaneous schedule, then every subgame of that games has a
unique pure Nash equilibrium.

Remark 1. One might hope that any strict game in which every subgame has a
unique pure Nash equilibrium is a potential game. However, in the full version [7]
of the paper we give an example that shows that this is not the case.

What about asynchronous settings? We now show that the property that
guarantees the convergence of best-reply dynamics in a potential game (i.e.,
that every one of its subgames has a unique pure Nash equilibrium) does not
necessarily guarantee convergence in asynchronous schedules.

Example 2. Consider the game described by Fig. 1. The arrows describe the
better-replies of players from any strategy-profile (an arrow between strategy-
profiles denotes the transition caused by a best-reply update of a single player).

Fig. 1. A game in which better-reply dynamics might diverge for some asynchronous
schedule



The reader can verify that this is a potential game and that every subgame
has a unique Nash equilibrium. Recall, that in asynchronous settings, the Sched-
uler may delay messages. We shall show that better-reply dynamics may never
converge in such settings. Let us show such an oscillation (messages arrive im-
mediately unless specifically noted): We begin with state A and allow the row
player to update his strategy and notify everyone, thus arriving at state C. We
then activate the column player and the matrix player simultaneously and arrive
at state H. However, we delay the message sent to the row player by the matrix
player so that the row player in fact believes we are in state D. We then activate
the row player and allow him another update. He believes he moves to state B
while in fact we arrive at state F . We then release the message to the row player
and invoke the column player which updates his strategy from F to E. Then,
the matrix player is activated and we return to state A. Repeating this over and
over gives a permanent oscillation.
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